Advertisement

Software Tool for Cranial Orthosis Design

  • Milan Jaros
  • Tomas Karasek
  • Petr Strakos
  • Alena VasatovaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11087)

Abstract

Cranial orthoses are used to correct an abnormal children head shape, and such they have to be designed individually. Customization of those orthoses is currently fully manual task. A software tool should make this process semi-automatic with only small intervention from the user and speed up the whole process. In the future, this tool will be part of the process chain from 3D scanning of the patient head to the 3D printing of the final product. This will allow to produce the orthosis anywhere, without necessity to have expensive devices on one place. For high quality of 3D printing, 3D computer models with high-resolution meshes must be used. We have started development of our tool by rapid testing of methodology. For this purpose we used open source software Blender. Although Blender’s functions we used are more robust, they are also unnecessary computationally more expensive. For this reason we have implemented the necessary transformation functions using radial basis functions (RBF) which can be easily modified to include rigid body movements.

Keywords

Cranial orthosis Software tool Blender Radial basis function Rigid parts 

Notes

Acknowledgement

This work was supported by The Ministry of Education, Youth and Sports from the Large Infrastructures for Research, Experimental Development and Innovations project “IT4Innovations National Supercomputing Center - LM2015070”. This work is the main objective of contractual research conducted in collaboration with ING corporation spol. s.r.o.

References

  1. 1.
    Hardware Overview - IT4Innovations Documentation, August 2017. https://docs.it4i.cz/salomon/hardware-overview/
  2. 2.
    de Boer, A., van der Schoot, M., Bijl, H.: Mesh deformation based on radial basis function interpolation. Comput. Struct. 85(11), 784–795 (2007).  https://doi.org/10.1016/j.compstruc.2007.01.013. http://www.sciencedirect.com/science/article/pii/S0045794907000223. Fourth MIT Conference on Computational Fluid and Solid Mechanics
  3. 3.
    Clarren, S.K.: Plagiocephaly and torticollis: etiology, natural history, and helmet treatment. J. Pediatr. 98(1), 92–95 (1981). http://www.sciencedirect.com/science/article/pii/S0022347681805495CrossRefGoogle Scholar
  4. 4.
    Hotelling, H.: Analysis of a Complex of Statistical Variables Into Principal Components. Warwick & York (1933). https://books.google.cz/books?id=qJfXAAAAMAAJCrossRefGoogle Scholar
  5. 5.
    Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic coordinates for character articulation. ACM Trans. Graph. 26(3) (2007).  https://doi.org/10.1145/1276377.1276466CrossRefGoogle Scholar
  6. 6.
    Little, J., Hill, D., Hawkes, D.: Deformations incorporating rigid structures. Comput. Vis. Image Underst. 66(2), 223–232 (1997).  https://doi.org/10.1006/cviu.1997.0608. http://www.sciencedirect.com/science/article/pii/S1077314297906081CrossRefGoogle Scholar
  7. 7.
    Modersitzki, J.: Numerical Methods for Image Registration. Oxford University Press, Oxford (2004)zbMATHGoogle Scholar
  8. 8.
    Pearson, K.: On lines and planes of closest fit to systems of points in space. Philos. Mag. 2(11), 559–572 (1901).  https://doi.org/10.1080/14786440109462720
  9. 9.
    Persing, J., James, H., Swanson, J., Kattwinkel, J.: Prevention and management of positional skull deformities in infants. Pediatrics 112(1), 199–202 (2003). http://pediatrics.aappublications.org/content/112/1/199CrossRefGoogle Scholar
  10. 10.
    Schreen, G., Matarazzo, C.G.: Plagiocephaly and brachycephaly treatment with cranial orthosis: a case report. Einstein 11, 114–118 (2013). http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1679-45082013000100021&nrm=iso
  11. 11.
    Schroeder, W., Martin, K.M., Lorensen, W.E.: The Visualization Toolkit: An Object-oriented Approach to 3D Graphics, 2nd edn. Prentice-Hall Inc, Upper Saddle River (1998)Google Scholar
  12. 12.
    Sieger, D., Menzel, S., Botsch, M.: High quality mesh morphing using triharmonic radial basis functions. In: Jiao, X., Weill, J.C. (eds.) Proceedings of the 21st International Meshing Roundtable, pp. 1–15. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-33573-0_1CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Milan Jaros
    • 1
  • Tomas Karasek
    • 1
  • Petr Strakos
    • 1
  • Alena Vasatova
    • 1
    Email author
  1. 1.IT4Innovations, VSB - Technical University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations