Advertisement

Schur Complement-Schwarz DD Preconditioners for Non-stationary Darcy Flow Problems

  • Radim BlahetaEmail author
  • Tomáš Luber
  • Jakub Kružík
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11087)

Abstract

The paper concerns development of highly parallelizable preconditioners for solving nonstationary Darcy flow problems. The discretization of the solved problem is done by mixed finite elements in space and by first order implicit Euler discretization in time. The systems with generalized saddle point matrices, which appear in each time step of the implicit Euler method, are then solved by FGMRES method with a block type preconditioner. Moreover, highly parallelizable, one-level additive Schwarz method is used for preconditioning of the velocity block. Both analysis and numerical experiment show that this application of the Schwarz method is highly efficient for a class of flow problems with parameters corresponding to many applications in geosciences.

Notes

Acknowledgement

The work was done within the projects LD15105 “Ultrascale computing in geosciences” and LQ1602 “IT4Innovations excellence in science” supported by the Ministry of Education, Youth and Sports of the Czech Republic. The third author acknowledges the support of the Czech Science Foundation (GACR) project no. 15-18274S. Authors would also like to thank the referees for their helpful comments.

References

  1. 1.
    Axelsson, O., Blaheta, R.: Preconditioning of matrices partitioned in \(2\times 2\) block form: eigenvalue estimates and Schwarz DD for mixed FEM. Numer. Linear Algebra Appl. 17, 787–810 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Axelsson, O., Blaheta, R., Byczanski, P.: Stable discretization of poroelasticity problems and efficient preconditioners for arising saddle point type matrices. Comput. Vis. Sci. 15, 191–207 (2012).  https://doi.org/10.1007/s00791-013-0209-0MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Axelsson, O., Blaheta, R., Kohut, R.: Preconditioned methods for high order strongly stable time integration methods with an application for a DAE problem. Numer. Linear Algebra Appl. 22, 930–949 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Axelsson, O., Blaheta, R., Luber, T.: Preconditioners for Mixed FEM solution of stationary and nonstationary porous media flow problems. In: Lirkov, I., Margenov, S.D., Waśniewski, J. (eds.) LSSC 2015. LNCS, vol. 9374, pp. 3–14. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-26520-9_1CrossRefGoogle Scholar
  5. 5.
    Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of parallelism in object-oriented numerical software libraries. In: Arge, E., Bruaset, A.M., Langtangen, H.P. (eds.) Modern Software Tools for Scientific Computing, pp. 163–202. Birkhäuser, Boston (1997).  https://doi.org/10.1007/978-1-4612-1986-6_8CrossRefzbMATHGoogle Scholar
  6. 6.
    Bean, M., Lipnikov, K., Yi, S.-Y.: A block-diagonal preconditioner for a four-field mixed finite element method for Biot’s equations. Appl. Numer. Math. 122, 1–13 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bjorstad, P.E., Mandel, J.: On the spectra of sums of orthogonal projections with applications to parallel computing. BIT 31, 76–88 (1991)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Blaheta, R.: Space decomposition preconditioners and parallel solvers. In: Feistauer, M., Dolejŝí, V., Knobloch, P., Najzar, K. (eds.) Numerical Mathematics and Advanced Applications, pp. 20–38. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-642-18775-9_2CrossRefzbMATHGoogle Scholar
  9. 9.
    Blaheta, R., Luber, T.: Algebraic preconditioning for Biot-Barenblatt poroelastic systems. Appl. Math. 62(6), 561–577 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite ElementMethods and Applications. Springer Series in Computational Mathematics, vol. 44. Springer, Berlin (2013).  https://doi.org/10.1007/978-3-642-36519-5CrossRefzbMATHGoogle Scholar
  11. 11.
    Chen, Z., Huan, G., Ma, Y.: Computational Methods for Multiphase Flows in Porous Media. SIAM, Philadelphia (2006)CrossRefGoogle Scholar
  12. 12.
    Duffield, G.M.: Representative Values of Hydraulic Properties. AQTESOLV. http://www.aqtesolv.com/aquifer-tests/aquifer_properties.htm
  13. 13.
    Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Springer, New York (2004).  https://doi.org/10.1007/978-1-4757-4355-5CrossRefzbMATHGoogle Scholar
  14. 14.
    Kraus, J., Lazarov, R., Lymbery, M., Margenov, S., Zikatanov, L.: Preconditioning heterogeneous H(div) problems by additive schur complement approximation and applications. SIAM J. Sci. Comput. 38(2), A875–A898 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kwak, D.Y., Pyo, H.C.: Mixed finite element methods for general quadrilateral grids. Appl. Math. Comput. 217, 6556–6565 (2011)MathSciNetzbMATHGoogle Scholar
  16. 16.
    PETSc - Portable: Extensible Toolkit for Scientific Computation, Argone National Laboratory. http://www.mcs.anl.gov/petsc/
  17. 17.
    SALOMON - IT4Innovations National Supercomputing Centre, Ostrava CR. https://docs.it4i.cz/salomon
  18. 18.
    Toselli, A., Widlund, O.B.: Domain Decomposition Methods — Algorithms and Theory. Springer, Berlin (2005).  https://doi.org/10.1007/b137868CrossRefzbMATHGoogle Scholar
  19. 19.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Geonics CASOstravaCzech Republic
  2. 2.IT4Innovations National Supercomputing CentreVSB - Technical UniversityOstravaCzech Republic

Personalised recommendations