Advertisement

Proportionality-Based Gradient Methods with Applications in Contact Mechanics

  • Zdeněk Dostál
  • Gerardo Toraldo
  • Marco Viola
  • Oldřich VlachEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11087)

Abstract

Two proportionality based gradient methods for the solution of large convex bound constrained quadratic programming problems, MPRGP (Modified Proportioning with Reduced Gradient Projections) and P2GP (Proportionality-based Two-phase Gradient Projection) are presented and applied to the solution of auxiliary problems in the inner loop of an augmented lagrangian algorithm called SMALBE (Semi-monotonic Augmented Lagrangian for Bound and Equality constraints). The SMALBE algorithm is used to generate the Lagrange multipliers for the equality constraints. The performance of the algorithms is tested on the solution of the discretized contact problems by means of TFETI (Total Finite Element Tearing and Interconnecting).

Keywords

QP optimization Contact problems P2GP MPRGP 

Notes

Acknowledgement

This work was supported by The Ministry of Education, Youth and Sports from the National Programme of Sustainability (NPS II) project “IT4Innovations excellence in science - LQ1602” and by the IT4Innovations infrastructure which is supported from the Large Infrastructures for Research, Experimental Development and Innovations project “IT4Innovations National Supercomputing Center - LM2015070”. The work was partially supported by Gruppo Nazionale per il Calcolo Scientifico - Istituto Nazionale di Alta Matematica (GNCS-INdAM).

References

  1. 1.
    Antonelli, L., De Simone, V., di Serafino, D.: On the application of the spectral projected gradient method in image segmentation. J. Math. Imaging Vis. 54(1), 106–116 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8(1), 141–148 (1988)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bielschowski, R.H., Friedlander, A., Gomes, F.A.M., Martínez, J.M., Raydan, M.: An adaptive algorithm for bound constrained quadratic minimization. Invest. Oper. 7, 67–102 (1997)Google Scholar
  4. 4.
    Bonettini, S., Zanella, R., Zanni, L.: A scaled gradient projection method for constrained image deblurring. Inverse Probl. 25, 015002 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cafieri, S., D’Apuzzo, M., Marino, M., Mucherino, M., Toraldo, G.: Interior-point solver for large-scale quadratic programming problems with bound constraints. J. Optim. Theory Appl. 129(1), 55–75 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cafieri, S., D’Apuzzo, M., De Simone, V., di Serafino, D., Toraldo, G.: Convergence analysis of an inexact potential reduction method for convex quadratic programming. J. Optim. Theory Appl. 135(3), 355–366 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Calamai, P.H., Moré, J.J.: Projected gradient methods for linearly constrained problems. Math. Program. 39, 93–116 (1987)MathSciNetCrossRefGoogle Scholar
  8. 8.
    di Serafino, D., Ruggiero, V., Toraldo, G., Zanni, L.: On the steplength selection in gradient methods for unconstrained optimization. Appl. Math. Comput. (2017).  https://doi.org/10.1016/j.amc.2017.07.037
  9. 9.
    di Serafino, D., Toraldo, G., Viola, M., Barlow, J.: A two-phase gradient method for quadratic programming problems with a single linear constraint and bounds on the variables. SIAM Journal on Optimization (2018, to appear)Google Scholar
  10. 10.
    De Asmundis, R., di Serafino, D., Landi, G.: On the regularizing behavior of the SDA and SDC gradient methods in the solution of linear ill-posed problems. J. Comput. Appl. Math. 302, 81–93 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dostál, Z.: Box constrained quadratic programming with proportioning and projections. SIAM J. Optim. 7(3), 871–887 (1997)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dostál, Z.: Inexact semi-monotonic augmented Lagrangians with optimal feasibility convergence for convex bound and equality constrained quadratic programming. SIAM J. Numer. Anal. 43(1), 96–115 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dostál, Z.: Semi-monotonic inexact augmented Lagrangians for quadratic programing with equality constraints. Optim. Methods Softw. 20(6), 715–727 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dostál, Z.: On the decrease of a quadratic function along the projected-gradient path. ETNA 31, 25–29 (2008)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Dostál, Z.: Optimal Quadratic Programming Algorithms: With Applications to Variational Inequalities. Springer, Heidelberg (2009).  https://doi.org/10.1007/b138610CrossRefzbMATHGoogle Scholar
  16. 16.
    Dostál, Z., Domorádová, M., Sadowská, M.: Superrelaxation in minimizing quadratic functions subject to bound constraints. Comput. Optim. Appl. 48(1), 23–44 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Dostál, Z., Kozubek, T., Markopoulos, A., Brzobohatý, T., Vondrák, V., Horyl, P.: Scalable TFETI algorithm for two dimensional multibody contact problems with friction. J. Computat. Appl. Math. 235(2), 403–418 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Dostál, Z., Kozubek, T., Brzobohatý, T., Markopoulos, A., Vlach, O.: Scalable TFETI with preconditioning by conjugate projector for transient frictionless contact problems of elasticity. CMAME 247–248, 37–50 (2012)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Dostál, Z., Kozubek, T., Sadowská, M., Vondrák, V.: Scalable Algorithms for Contact Problems. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-1-4939-6834-3CrossRefzbMATHGoogle Scholar
  20. 20.
    Dostál, Z., Kozubek, T., Vondrák, V., Brzobohatý, T., Markopoulos, A.: Scalable TFETI algorithm for the solution of multibody contact problems of elasticity. Int. J. Numer. Methods Eng. 82(11), 1384–1405 (2010)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Dostál, Z., Schöberl, J.: Minimizing quadratic functions subject to bound constraints with the rate of convergence and finite termination. Comput. Optimiz. Appl. 30(1), 23–44 (2005)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Farhat, C., Roux, F.-X.: A method of finite element tearing and interconnecting and its parallel solution algorithm. Int. J. Numer. Methods Eng. 32, 1205–1227 (1991)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Frassoldati, G., Zanni, L., Zanghirati, G.: New adaptive stepsize selections in gradient methods. J. Ind. Manag. Optim. 4, 299–312 (2008)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Friedlander, A., Martínez, J.M.: On the maximization of a concave quadratic function with box constraints. SIAM J. Optim. 4, 177–192 (1994)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Moré, J.J., Toraldo, G.: On the solution of large quadratic programming problems with bound constraints. SIAM J. Optim. 1, 93–113 (1991)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Zdeněk Dostál
    • 1
    • 4
  • Gerardo Toraldo
    • 2
  • Marco Viola
    • 3
  • Oldřich Vlach
    • 1
    • 4
    Email author
  1. 1.Department of Applied Mathematics, Faculty of Electrical Engineering and Computer ScienceVŠB-Technical University of OstravaOstravaCzech Republic
  2. 2.Department of Mathematics and ApplicationsUniversity of Naples Federico IINaplesItaly
  3. 3.Department of Computer Control and Management EngineeringSapienza University of RomeRomeItaly
  4. 4.IT4Innovations, National Supercomputing CenterVŠB-Technical University of OstravaOstravaCzech Republic

Personalised recommendations