Advertisement

Fourier Method for Approximating Eigenvalues of Indefinite Stekloff Operator

  • Yangqingxiang Wu
  • Ludmil ZikatanovEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11087)

Abstract

We introduce an efficient method for computing the Stekloff eigenvalues associated with the indefinite Helmholtz equation. In general, this eigenvalue problem requires solving the Helmholtz equation with Dirichlet and/or Neumann boundary condition repeatedly. We propose solving the discretized problem with Fast Fourier Transform (FFT) based on carefully designed extensions and restrictions operators. The proposed Fourier method, combined with proper eigensolver, results in an efficient and easy approach for computing the Stekloff eigenvalues.

Keywords

Stekloff eigenvalues FFT Helmholtz equation 

References

  1. Brandt, A., Livshits, I.: Wave-ray multigrid method for standing wave equations. Electron. Trans. Numer. Anal 6(162–181), 91 (1997)MathSciNetzbMATHGoogle Scholar
  2. Cakoni, F., Colton, D., Meng, S., Monk, P.: Stekloff eigenvalues in inverse scattering. SIAM J. Appl. Math. 76(4), 1737–1763 (2016).  https://doi.org/10.1137/16M1058704. ISSN 0036–1399MathSciNetCrossRefGoogle Scholar
  3. Cakoni, F., Kress, R.: A boundary integral equation method for the transmission Eigenvalue problem. Appl. Anal. 96(1), 23–38 (2017).  https://doi.org/10.1080/00036811.2016.1189537. ISSN 0003–6811MathSciNetCrossRefGoogle Scholar
  4. Chen, Z., Xiang, X.: A source transfer domain decomposition method for Helmholtz equations in unbounded domain. SIAM J. Numer. Anal. 51(4), 2331–2356 (2013)MathSciNetCrossRefGoogle Scholar
  5. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, vol. 93. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-1-4614-4942-3CrossRefzbMATHGoogle Scholar
  6. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965). ISSN 0025–5718MathSciNetCrossRefGoogle Scholar
  7. Elman, H.C., Ernst, O.G., O’leary, D.P.: A multigrid method enhanced by Krylov subspace iteration for discrete Helmholtz equations. SIAM J. Sci. Comput. 23(4), 1291–1315 (2001)MathSciNetCrossRefGoogle Scholar
  8. Engquist, B., Ying, L.: Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers. Multiscale Model. Simul. 9(2), 686–710 (2011)MathSciNetCrossRefGoogle Scholar
  9. Ernst, O.G., Gander, M.J.: Why it is difficult to solve Helmholtz problems with classical iterative methods. In: Graham, I., Hou, T., Lakkis, O., Scheichl, R. (eds.) Numerical Analysis of Multiscale Problems. LNCSE, vol. 83, pp. 325–363. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-22061-6_10CrossRefzbMATHGoogle Scholar
  10. Eslaminia, M., Guddati, M.N.: A double-sweeping preconditioner for the Helmholtz equation. J. Comput. Phys. 314, 800–823 (2016)MathSciNetCrossRefGoogle Scholar
  11. Gander, M.J., Graham, I.G., Spence, E.A.: Applying GMRES to the Helmholtz equation with shifted Laplacian preconditioning: what is the largest shift for which wavenumber-independent convergence is guaranteed? Numer. Math. 131(3), 567–614 (2015).  https://doi.org/10.1007/s00211-015-0700-2. ISSN 0029–599XMathSciNetCrossRefGoogle Scholar
  12. Golub, G.H., Van Loan, C.F.: Matrix Computations, vol. 3. JHU Press, Baltimore (2012)zbMATHGoogle Scholar
  13. Lahaye, D., Vuik, C.: How to choose the shift in the shifted Laplace preconditioner for the Helmholtz equation combined with deflation. In: Lahaye, D., Tang, J., Vuik, K. (eds.) Modern Solvers for Helmholtz Problems. GSMA, pp. 85–112. Birkhäuser, Cham (2017).  https://doi.org/10.1007/978-3-319-28832-1_4CrossRefzbMATHGoogle Scholar
  14. Osei-Kuffuor, D., Saad, Y.: Preconditioning Helmholtz linear systems. Appl. Numer. Math. 60(4), 420–431 (2010)MathSciNetCrossRefGoogle Scholar
  15. Sheikh, A.H., Lahaye, D., Garcia Ramos, L., Nabben, R., Vuik, C.: Accelerating the shifted Laplace preconditioner for the Helmholtz equation by multilevel deflation. J. Comput. Phys. 322, 473–490 (2016).  https://doi.org/10.1016/j.jcp.2016.06.025. ISSN 0021–9991MathSciNetCrossRefGoogle Scholar
  16. Stolk, C.C.: A rapidly converging domain decomposition method for the Helmholtz equation. J. Comput. Phys. 241, 240–252 (2013)MathSciNetCrossRefGoogle Scholar
  17. Zepeda-Núnez, L., Demanet, L.: The method of polarized traces for the 2D Helmholtz equation. J. Comput. Phys. 308, 347–388 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations