Advertisement

Modeling and Simulation of Microalgae Growth in a Couette-Taylor Bioreactor

  • Štěpán Papáček
  • Ctirad MatonohaEmail author
  • Karel Petera
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11087)

Abstract

Despite the fact that biotechnology with microalgae is attracting a lot of research interest since 1950s, a reliable computational tool for simulation of microalgal bioreactors is still lacking. In this work, a unified multidisciplinary modeling framework for microalgae culture systems is presented. Our framework consists of the model of microalgae growth in form of advection-diffusion-reaction system within a phenomenological model of photosynthesis and photoinhibition. The fluid dynamics is described by the Navier-Stokes equations and the irradiance field inside a reactor closes the equation system. The main achievement resides in successful integration of computational fluid dynamics code ANSYS Fluent and reaction kinetics, which makes our approach reliable and simple to implement. As a case study, the simulation of microalgae growth in a Couette-Taylor bioreactor is presented. The bioreactor operation leads to hydrodynamically induced fluctuating light conditions and the flashing light enhancement phenomenon, known from experiments. The presented model thus exhibits features of a real system.

Keywords

Microalgae Mathematical modeling Photosynthesis CFD Couette-Taylor bioreactor Flashing light enhancement 

Notes

Acknowledgment

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic - projects “CENAKVA” (No. CZ.1.05/2.1.00/01.0024), “CENAKVA II” (No. LO1205 under the NPU I program) and The CENAKVA Centre Development (No. CZ.1.05/2.1.00/19.0380) and by the long-term strategic development financing of the Institute of Computer Science (RVO: 67985807).

References

  1. 1.
    Alvarez-Vázquez, L., Fernández, F.: Optimal control of bioreactor. Appl. Math. Comput. 216, 2559–2575 (2010)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Beek, W.J., Muttzall, K.M.K., van Heuven, J.W.: Transport Phenomena. Wiley, Hoboken (2000)Google Scholar
  3. 3.
    Bernard, O., Mairet, F., Chachuat, B.: Modelling of microalgae culture systems with applications to control and optimization. Adv. Biochem. Eng. Biotechnol. 153, 59–87 (2016)Google Scholar
  4. 4.
    Bernardi, A., Perin, G., Sforza, E., Galvanin, F., Morosinotto, T., Bezzo, F.: An identifiable state model to describe light intensity influence on microalgae growth. Ind. Eng. Chem. Res. 53, 6738–6749 (2014)CrossRefGoogle Scholar
  5. 5.
    Cornet, J.-F., Dussap, C.G., Gros, J.-B., Binois, C., Lasseur, C.: A simplified monodimensional approach for modeling coupling between radiant light transfer and growth kinetics in photobioreactors. Chem. Eng. Sci. 50, 1489–1500 (1995)CrossRefGoogle Scholar
  6. 6.
    Čelikovský, S., Papáček, Š., Cervantes-Herrera, A., Ruiz-León, J.: Singular perturbation based solution to optimal microalgal growth problem and its infinite time horizon analysis. IEEE Trans. Autom. Control 55, 767–772 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chisti, Y.: Biodiesel from microalgae. Biotechnol. Adv. 25, 294–306 (2007)CrossRefGoogle Scholar
  8. 8.
    Davis, E.A.: Turbulence. In: Burlew, J.S. (ed.) Algal Culture from Laboratory to Pilot Plant, vol. 600, pp. 135–138. Carnegie Institute, Washington, D.C. (1953)Google Scholar
  9. 9.
    Eilers, P.H.C., Peeters, J.C.H.: A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol. Model. 42, 199–215 (1988)CrossRefGoogle Scholar
  10. 10.
    ANSYS Fluent product documentation. http://www.ansys.com/
  11. 11.
    Kok, B.: Experiments on photosynthesis by Chlorella in flashing light. In: Burlew, J.S. (ed.) Algal Culture From Laboratory to Pilot Plant. Publ. no. 600, pp. 63–75. The Carnegie Institute, Washington, D.C. (1953)Google Scholar
  12. 12.
    Nedbal, L., Tichý, V., Xiong, F., Grobbelaar, J.U.: Microscopic green algae and cyanobacteria in high-frequency intermittent light. J. Appl. Phycol. 8, 325–333 (1996)CrossRefGoogle Scholar
  13. 13.
    Ooms, M.D., Dinh, C.T., Sargent, E.H., Sinton, D.: Photon management for augmented photosynthesis. Nat. Commun. 7, 12699 (2016).  https://doi.org/10.1038/ncomms12699CrossRefGoogle Scholar
  14. 14.
    Papáček, Š., Čelikovský, S., Štys, D., Ruiz-León, J.: Bilinear system as modelling framework for analysis of microalgal growth. Kybernetika 43, 1–20 (2007)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Papáček, Š., Stumbauer, V., Štys, D., Petera, K., Matonoha, C.: Growth impact of hydrodynamic dispersion in a Couette-Taylor bioreactor. Math. Comput. Model. 54(7–8), 1791–1795 (2011)CrossRefGoogle Scholar
  16. 16.
    Papáček, Š., Matonoha, C., Štumbauer, V., Štys, D.: Modelling and simulation of photosynthetic microorganism growth: random walk vs. finite difference method. Math. Comput. Simul. 82(10), 2022–2032 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Papacek, S., Jablonsky, J., Petera, K.: Advanced integration of fluid dynamics and photosynthetic reaction kinetics for microalgae culture systems (2017, submitted)Google Scholar
  18. 18.
    Rehák, B., Čelikovský, S., Papáček, Š.: Model for photosynthesis and photoinhibition: parameter identification based on the harmonic irradiation \(O_2\) response measurement. In: Joint Special Issue of TAC IEEE and TCAS, 101–108. IEEE (2008)CrossRefGoogle Scholar
  19. 19.
    Richmond, A.: Biological principles of mass cultivation. In: Richmond, A. (ed.) Handbook of Microalgal Culture: Biotechnology and Applied Phycology, pp. 125–177. Blackwell Publishing, Hoboken (2004)Google Scholar
  20. 20.
    Taylor, G.I.: Stability of a viscous liquid containing between two rotating cylinders. Phil. Trans. R. Soc. A223, 289–343 (1923)CrossRefGoogle Scholar
  21. 21.
    Terry, K.L.: Photosynthesis in modulated light: quantitative dependence of photosynthetic enhancement on flashing rate. Biotechnol. Bioeng. 28, 988–995 (1986)CrossRefGoogle Scholar
  22. 22.
    Wu, X., Merchuk, J.C.: A model integrating fluid dynamics in photosynthesis and photoinhibition processes. Chem. Eng. Sci. 56(11), 3527–3538 (2001)CrossRefGoogle Scholar
  23. 23.
    Wu, X., Merchuk, J.C.: Simulation of algae growth in a bench-scale bubble column reactor. Biotechnol. Bioeng. 80, 156–168 (2002)CrossRefGoogle Scholar
  24. 24.
    Celik, I., Ghia, U., Roache, P., Freitas, C., Coleman, H., Raad, P.: J. Fluids Eng. 130 (2008)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Štěpán Papáček
    • 1
  • Ctirad Matonoha
    • 2
    Email author
  • Karel Petera
    • 3
  1. 1.Institute of Complex Systems, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of WatersUniversity of South Bohemia in České BudějoviceNové HradyCzech Republic
  2. 2.Institute of Computer ScienceThe Czech Academy of SciencesPrague 8Czech Republic
  3. 3.Faculty of Mechanical EngineeringCzech Technical University in PraguePrague 6Czech Republic

Personalised recommendations