Disc vs. Annulus: On the Bleaching Pattern Optimization for FRAP Experiments

  • Ctirad MatonohaEmail author
  • Štěpán Papáček
  • Stefan Kindermann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11087)


This study deals with the problem of optimal setting of experimental design variables, which controls the accuracy of the numerical process of determining model parameters from data. Our approach, although case independent, is formulated as an inverse problem of a diffusion coefficient estimation using the FRAP (Fluorescence Recovery After Photobleaching) experimental technique. The key concept relies on the analysis of the sensitivity of the measured output with respect to the model parameters. Based on this idea, we optimize an experimental design factor being the initial concentration of some particles. Numerical experiments on a 2D finite domain show that the discretized optimal initial condition attains only two values representing the existence or non-existence of diffusive particles. The number of jumps between these values determines the connectivity (or the bleaching pattern) and is dependent on the value of a diffusion coefficient, e.g., the annulus shaped initial condition is better than a disc for some specific range of model parameters.


Optimization Parameter identification FRAP Bleaching pattern Initial boundary value problem Sensitivity measure 



This work was supported by the long-term strategic development financing of the Institute of Computer Science (RVO:67985807) and by the Ministry of Education, Youth and Sports of the Czech Republic - projects “CENAKVA” (No. CZ.1.05/2.1.00/01.0024), “CENAKVA II” (No. LO1205 under the NPU I program) and ‘The CENAKVA Centre Development’ (No. CZ.1.05/2.1.00/19.0380).


  1. 1.
    Bates, D.M., Watts, D.G.: Nonlinear Regression Analysis: Its Applications. Wiley, New York (1988)CrossRefGoogle Scholar
  2. 2.
    Blumenthal, D., Goldstien, L., Edidin, M., Gheber, L.A.: Universal approach to FRAP analysis of arbitrary bleaching patterns. Scientific reports 5, Article no. 11655 (2015).
  3. 3.
    Cintrón-Arias, A., Banks, H.T., Capaldi, A., Lloyd, A.L.: A sensitivity matrix based methodology for inverse problem formulation. J. Inv. Ill-Posed Probl. 17, 545–564 (2009)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Engl, H., Hanke, M., Neubauer, A.: Regularization of Ill-Posed Problems. Kluwer, Dortrecht (1996)zbMATHGoogle Scholar
  5. 5.
    Hadamard, J.: Lectures on the Cauchy Problem in Linear Partial Differential Equations. Yale University Press, New Haven (1923)zbMATHGoogle Scholar
  6. 6.
    Kaňa, R., Kotabová, E., Lukeš, M., Papáček, Š., Matonoha, C., Liu, L.N., Prášil, O., Mullineaux, C.W.: Phycobilisome mobility and its role in the regulation of light harvesting in red algae. Plant Physiol. 165, 1618–1631 (2014)CrossRefGoogle Scholar
  7. 7.
    Kaňa, R., Matonoha, C., Papáček, Š., Soukup, J.: On estimation of diffusion coefficient based on spatio-temporal FRAP images: an inverse ill-posed problem. In: Chleboun, J., Segeth, K., Šístek, J., Vejchodský, T. (eds.) Programs and Algorithms of Numerical Mathematics 16, pp. 100–111 (2013)Google Scholar
  8. 8.
    Kindermann, S., Papáček, Š.: On data space selection and data processing for parameter identification in a reaction-diffusion model based on FRAP experiments. Abstr. Appl. Anal. Article ID 859849 (2015)Google Scholar
  9. 9.
    Kindermann, S., Papáček, Š.: Optimization of the shape (and topology) of the initial conditions for diffusion parameter identification (2016).
  10. 10.
    Lukšan, L., Tůma, M., Matonoha, C., Vlček, J., Ramešová, N., Šiška, M., Hartman, J.: UFO 2014 - interactive system for universal functional optimization. Technical report V-1218. Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague (2014).
  11. 11.
    Mai, J., Trump, S., Ali, R., Schiltz, R.L., Hager, G., Hanke, T., Lehmann, I., Attinger, S.: Are assumptions about the model type necessary in reaction-diffusion modeling? A FRAP application. Biophys. J. 100(5), 1178–1188 (2011)CrossRefGoogle Scholar
  12. 12.
    Mueller, F., Mazza, D., Stasevich, T.J., McNally, J.G.: FRAP and kinetic modeling in the analysis of nuclear protein dynamics: what do we really know? Curr. Opin. Cell Biol. 22, 1–9 (2010)CrossRefGoogle Scholar
  13. 13.
    Mullineaux, C.W., Tobin, M.J., Jones, G.R.: Mobility of photosynthetic complexes in thylakoid membranes. Nature 390, 421–424 (1997)CrossRefGoogle Scholar
  14. 14.
    Papáček, Š., Kaňa, R., Matonoha, C.: Estimation of diffusivity of phycobilisomes on thylakoid membrane based on spatio-temporal FRAP images. Math. Comput. Modell. 57, 1907–1912 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Papáček, Š., Kindermann, S.: On optimization of FRAP experiments: model-based sensitivity analysis approach. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2016. LNCS, vol. 9656, pp. 545–556. Springer, Cham (2016). Scholar
  16. 16.
    Sadegh Zadeh, K., Montas, H.J., Shirmohammadi, A.: Identification of biomolecule mass transport and binding rate parameters in living cells by inverse modeling. Theor. Biol. Med. Modell. 3, 36 (2006)CrossRefGoogle Scholar
  17. 17.
    Sbalzarini, I.F.: Analysis, modeling and simulation of diffusion processes in cell biology. VDM Verlag Dr. Muller (2009)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ctirad Matonoha
    • 1
    Email author
  • Štěpán Papáček
    • 2
  • Stefan Kindermann
    • 3
  1. 1.Institute of Computer ScienceThe Czech Academy of SciencesPrague 8Czech Republic
  2. 2.Institute of Complex Systems, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of WatersUniversity of South Bohemia in České BudějoviceNové HradyCzech Republic
  3. 3.Industrial Mathematics InstituteUniversity of LinzLinzAustria

Personalised recommendations