Skip to main content
  • 557 Accesses

Abstract

Transient analysis fors MCs refers to computing the probability distribution at a particular time instant starting from an initial probability distribution. As such, steady state need not exist to carry out transient analysis, and the more interesting problem formulation turns out to be related to CTMCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. APNN–Toolbox. http://www4.cs.uni-dortmund.de/APNN-TOOLBOX/ (2004). Accessed May 27, 2018

    Google Scholar 

  2. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  3. Bause, F., Buchholz, P., Kemper, P.: A toolbox for functional and quantitative analysis of DEDS. In: Puigjaner, R., Savino, N.N., Serra, B. (eds.) Quantitative Evaluation of Computing and Communication Systems, Lecture Notes in Computer Science, vol 1469, pp. 356–359. Springer, Heidelberg (1998)

    Google Scholar 

  4. Bobbio, A., Trivedi, K.S.: An aggregation technique for the transient analysis of stiff Markov chains. IEEE Trans. Comput. C-35, 803–814 (1986)

    Article  Google Scholar 

  5. Burrage, K.: Parallel and Sequential Methods for Ordinary Differential Equations. Oxford University, Oxford (1995)

    MATH  Google Scholar 

  6. Çınlar, E.: Introduction to Stochastic Processes. Prentice-Hall, Englewood Cliffs (1975)

    MATH  Google Scholar 

  7. Dayar, T., Mikeev, L., Wolf, V.: On the numerical analysis of stochastic Lotka–Volterra models. In: Ganzha, M., Paprzycki, M. (eds.) Proceedings of the 2010 International Multiconference on Computer Science and Information Technology (IMCSIT), Wisla, Poland, pp. 289–296. IEEE, Piscataway (2010)

    Google Scholar 

  8. Dayar T., Orhan, M.C.: CompactTransientSolver software. http://www.cs.bilkent.edu.tr/~tugrul/software.html (2017). Accessed May 27, 2018

    Google Scholar 

  9. Dayar, T., Orhan, M.C.: On compact vector formats in the solution of the chemical master equation with backward differentiation. Numer. Linear Algebr. Appl. e2158 (2018)

    Google Scholar 

  10. Dayar, T., Orhan, M.C.: A software tool for the compact solution of the chemical master equation. In: German, R., Hielscher, K.S., Krieger, U. (eds.) MMB 2018: Measurement, Modelling and Evaluation of Computing Systems, Lecture Notes in Computer Science, vol 10740, pp. 312–316. Springer, Cham (2018)

    Google Scholar 

  11. Dinh, K.N., Sidje, R.B.: Understanding the finite state projection and related methods for solving the chemical master equation. Phys. Biol. 13, Article 035003 (2016)

    Article  Google Scholar 

  12. Fehlberg, E.: Low order classical Runge–Kutta formulas with step size control and their application to some heat transfer problems. Comput. 6, 61–71 (1970)

    Article  MathSciNet  Google Scholar 

  13. Fox, B.L., Glynn, P.W.: Computing Poisson probabilities. Commun. ACM 31, 440–445 (1988)

    Article  MathSciNet  Google Scholar 

  14. Gear, C.W.: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, Englewood Cliffs (1973)

    Google Scholar 

  15. Goutsias, J., Jenkinson, G.: Markovian dynamics on complex reaction networks. Phys. Rep. 529, 199–264 (2013)

    Article  MathSciNet  Google Scholar 

  16. Grassmann, W.K.: Transient solutions in Markovian queueing systems. Comput. Oper. Res. 4, 47–56 (1977)

    Article  Google Scholar 

  17. Gross, D., Miller, D.R.: The randomization technique as a modeling tool and solution procedure for transient Markov processes. Oper. Res. 32, 343–361 (1984)

    Article  MathSciNet  Google Scholar 

  18. Hegland, M., Burden, C., Santoso, L., MacNamara, S., Booth, H.: A solver for the stochastic master equation applied to gene regulatory networks. J. Comput. Appl. Math. 205, 708–724 (2007)

    Article  MathSciNet  Google Scholar 

  19. Jahnke, T., Huisinga, W.: A dynamical low-rank approach to the chemical master equation. B. Math. Biol. 70, 2283–2302 (2008)

    Article  MathSciNet  Google Scholar 

  20. Jahnke, T., Udrescu, T.: Solving chemical master equations by adaptive wavelet compression. J. Comput. Phys. 16, 5724–5741 (2010)

    Article  MathSciNet  Google Scholar 

  21. Jensen, A.: Markov chains as an aid in the study of Markov processes. Skand. Aktuartidskr. 36, 87–91 (1953)

    MATH  Google Scholar 

  22. Munsky, B., Khammash, M.: The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124, 044104 (2006)

    Article  Google Scholar 

  23. Philippe, B., Sidje, R.B.: Transient solutions of Markov processes by Krylov subspaces. Computations with Markov Chains, Proceedings of the Second International Workshop on the Numerical Solution of Markov Chains, pp. 95–119. Kluwer, Boston (1995)

    Chapter  Google Scholar 

  24. Reibman, A., Trivedi, K.: Numerical transient analysis of Markov models. Comput. Oper. Res. 15, 19–36 (1988)

    Article  Google Scholar 

  25. Shampine, L.F., Reichelt, M.W.: The MATLAB ODE Suite. SIAM J. Sci. Comput. 18, 1–22 (1997)

    Article  MathSciNet  Google Scholar 

  26. Shea, M.A., Ackers, G.K.: The OR control system of bacteriophage lambda: A physical-chemical model for gene regulation. J. Mol. Biol. 181, 211–230 (1985)

    Article  Google Scholar 

  27. Sidje, R.B., Stewart, W.J.: A numerical study of large sparse matrix exponentials arising in Markov chains. Comput. Stat. Data Anal. 29 345–368 (1999)

    Article  Google Scholar 

  28. Sjöberg, P.L., Lötstedt, P., Elf, J.: Fokker–Planck approximation of the master equation in molecular biology, Comput. Vis. Sci. 12, 37–50 (2009)

    Article  MathSciNet  Google Scholar 

  29. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University, Princeton (1994)

    MATH  Google Scholar 

  30. Wolf, V., Goel, R., Mateescu, M., Henzinger, T.A.: Solving the chemical master equation using sliding windows. BMC Syst. Biol. 4, 42 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dayar, T. (2018). Transient Analysis. In: Kronecker Modeling and Analysis of Multidimensional Markovian Systems. Springer Series in Operations Research and Financial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-97129-2_7

Download citation

Publish with us

Policies and ethics