Skip to main content
  • 564 Accesses

Abstract

The previous chapter has provided various examples of multidimensional MCs that are used to model systems composed of a finite number of interacting submodels. Assuming that there are H such interacting submodels, the state space of submodel h was denoted by \(\mathcal{S}^{(h)}\) with \(\mathcal{S}^{(h)} \subseteq \mathbb{Z}_{\geq 0}\) for h = 1, , H, and \(\mathcal{S} = \times _{h=1}^{H}\mathcal{S}^{(h)}\) represented the Cartesian product of the submodel state spaces. Because the Cartesian product of multiple submodel state spaces is used in its definition without any restriction on the state spaces themselves, \(\mathcal{S}\) is called the H-dimensional product state space of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adelson-Velskii, G.M., Landis, E.M.: An algorithm for the organization of information. Sov. Math. Dokl. 3, 1259–1263 (1962)

    Google Scholar 

  2. Ajmone Marsan, M., Balbo, G., Conte, G.: A class of generalized stochastic Petri nets for the performance analysis of multiprocessor systems. ACM Trans. Comput. Syst. 2, 93–122 (1984)

    Article  Google Scholar 

  3. APNN–Toolbox. http://www4.cs.uni-dortmund.de/APNN-TOOLBOX/ (2004). Accessed May 27, 2018

    Google Scholar 

  4. Bause, F., Buchholz, P., Kemper, P.: A toolbox for functional and quantitative analysis of DEDS. In: Puigjaner, R., Savino, N.N., Serra, B. (eds.) Quantitative Evaluation of Computing and Communication Systems, Lecture Notes in Computer Science, vol 1469, pp. 356–359. Springer, Heidelberg (1998)

    Google Scholar 

  5. Bournez, K., Maler O., Pnueli A.: Orthogonal polyhedra: Representation and computation. In: Vaandrager, F., van Schuppen, J.H. (eds.) Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, vol 1569, pp. 46–60. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  6. Buchholz, P.: Hierarchical structuring of superposed GSPNs. IEEE Trans. Softw. Eng. 25, 166–181 (1999)

    Article  Google Scholar 

  7. Buchholz, P.: Structured analysis approaches for large Markov chains. Appl. Numer. Math. 31, 375–404 (1999)

    Article  MathSciNet  Google Scholar 

  8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edition. The MIT, Cambridge (2009)

    MATH  Google Scholar 

  9. Dayar, T., Orhan M.C.: Cartesian product partitioning of multi-dimensional reachable state spaces. Technical Report BU-CE-1303, Department of Computer Engineering, Bilkent University, Ankara (2013)

    Google Scholar 

  10. Dayar, T., Orhan, M.C.: Cartesian product partitioning of multi-dimensional reachable state spaces. Probab. Eng. Inf. Sci. 30, 413–430 (2016)

    Article  MathSciNet  Google Scholar 

  11. Dayar, T., Orhan, M.C.: CartesianProductPartitioning software. Version 2. http://www.cs.bilkent.edu.tr/~tugrul/software.html (2017). Accessed May 27, 2018

    Google Scholar 

  12. Dielissen, V.J., Kaldewaij, A.: (1991) Rectangular partition is polynomial in two dimensions but NP-complete in three. Inform. Process. Lett. 38, 1–6 (1991)

    Article  MathSciNet  Google Scholar 

  13. Ferrari, L., Sankar P.V., Sklansky, J.: Minimal rectangular partitions of digitized blobs. Comput. Vis. Graph. Image Process. 28, 58–71 (1984)

    Article  Google Scholar 

  14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  15. Jain, A., Sahni, S., Palta, J., Dempsey, J.: Partitioning 3D phantoms into homogeneous cuboids. Int. J. Found. Comput. Sci. 14, 905–931 (2003)

    Article  MathSciNet  Google Scholar 

  16. Keil, J.M.: Polygon decomposition. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 491–518. Elsevier, Amsterdam (2000)

    Chapter  Google Scholar 

  17. Kemper, P.: Numerical analysis of superposed GSPNs. IEEE Trans. Softw. Eng. 22, 615–628 (1996)

    Article  Google Scholar 

  18. Maehara, H.: Note on induced subgraphs of the unit distance graph E n. Discrete Comput. Geom. 4, 15–18 (1989)

    Article  MathSciNet  Google Scholar 

  19. Mitra, D., Mitrani, I.: Analysis of a Kanban Discipline for Cell Coordination in Production Lines, II: Stochastic Demands. Oper. Res. 39, 807–823 (1991)

    MATH  Google Scholar 

  20. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput. 16, 973–989 (1987)

    Article  MathSciNet  Google Scholar 

  21. Soltan, V., Gorpinevich, A.: (1993) Minimum dissection of a rectilinear polygon with arbitrary holes into rectangles. Discrete Comput. Geom. 9, 57–79 (1993)

    Article  MathSciNet  Google Scholar 

  22. Woodside, C.M., Li, Y.: Performance Petri net analysis of communications protocol software by delay equivalent aggregation. In: Proceedings of the 4th International Workshop on Petri Nets and Performance Models, pp. 64–73. IEEE Computer Society, Los Alamitos (1991)

    Google Scholar 

  23. Ziegler, G.M.: Lectures on Polytopes. Springer, New York (1995)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dayar, T. (2018). Avoiding Unreachable States. In: Kronecker Modeling and Analysis of Multidimensional Markovian Systems. Springer Series in Operations Research and Financial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-97129-2_3

Download citation

Publish with us

Policies and ethics