Skip to main content

North American Crop Wild Relatives of Temperate Berries (Fragaria L., Ribes L., Rubus L., and Vaccinium L.)

  • Chapter
  • First Online:
North American Crop Wild Relatives, Volume 2

Abstract

The crop wild relatives of temperate berry species abound on the North American continent, where more than 180 species are endemic. The development and production of berry crops, such as strawberries (Fragaria L.), currants and gooseberries (Ribes L.), raspberries and blackberries (Rubus L.), and blueberries and cranberries (Vaccinium L.), have global economic importance. The cultivated crops derived from these species have a total global annual farm gate value of roughly USD $3.7 billion, with production on the rise. Global strawberry production is more than twice the combined production of other temperate berry crops. Berries are highly nutritious and positively impact consumer health and vitality. Significant North American genetic resources have contributed to the development and cultivation of these globally produced and consumed crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalders LE, Hall IV (1966) A cytotaxonomic survey of the native blackberries of Nova Scotia. Can J Genet Cytol 8(3):528–532

    Google Scholar 

  • Adams AN, Thresh JM (1987) Reversion of black currant. In: Converse RH (ed) Virus diseases of small fruits, vol 631. United States Department of Agriculture, Washington, DC, pp 133–136

    Google Scholar 

  • AAFC Plant Gene Resources of Canada (2017) Germplasm Resources Information Network-Canadian Version (GRIN-CA) database. Plant Gene Resources of Canada, Saskatoon, SK. http://pgrc3.agr.gc.ca/search_grinca-recherche_rirgc_e.html. Accessed 18 Jan 2017

  • Alice LA, Campbell CS (1999) Phylogeny of Rubus (Rosaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences. Am J Bot 86(1):81–97

    CAS  PubMed  Google Scholar 

  • Alice LA, Goldman DH, Macklin JA, Moore G (2015) Rubus. In: F. o. N. A. E. Committee (ed) Flora of North America, vol 9. New York and Oxford. Retrieved from http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=128837

  • Amsellem L, Dutech C, Billotte N (2001) Isolation and characterization of polymorphic microsatellite loci in Rubus alceifolius Poir. (Rosaceae), an invasive weed in La Réunion island. Mol Ecol Notes 1(1–2):33–35. https://doi.org/10.1046/j.1471-8278.2000.00013.x

    CAS  Google Scholar 

  • Ash MM, Wolford KA, Carden TJ, Hwang KT, Carr TP (2011) Unrefined and refined black raspberry seed oils significantly lower triglycerides and moderately affect cholesterol metabolism in male Syrian hamsters. J Med Food 14(9):1032–1038. https://doi.org/10.1089/jmf.2010.0181

    CAS  PubMed  Google Scholar 

  • Barney DL, Fallahi E (2009) Growing currants, gooseberries & Jostaberries in the inland Northwest and intermountain West. University of Idaho Extension, Bul 855

    Google Scholar 

  • Barney DL, Hummer KE (2005) Currants, gooseberries, and jostaberries: a guide for growers, marketers, and researchers in North America. CRC Press, Boca Raton

    Google Scholar 

  • Basey A (2017) Grafted Blueberry Trial. http://oregonstate.edu/dept/NWREC/programs/berry-crops/grafted-blueberry-trial. Accessed 10/11/2017

  • Bassil NV, Davis TM, Zhang H, Ficklin S, Mittmann M, Webster L et al (2015) Development and preliminary evaluation of a 90K Axiom® SNP array for the allo-octoploid cultivated strawberry Fragaria × ananassa. BMC Genomics 16(155):30. https://doi.org/10.1186/s12864-015-1310-1

    Google Scholar 

  • Bauer A (1986) New results of breeding Ribes nidigrolaria: Amphidiploid species hybrids between blackcurrant and gooseberry. Acta Hortic 183, 107–110. https://doi.org/10.17660/ActaHortic.1986.183.14

  • BGCI (2017) PlantSearch database. http://bgci.org/plant_search.php. Accessed 10 Aug 2017

  • Bian Y, Ballington J, Raja A, Brouwer C, Reid R, Burke M et al (2014) Patterns of simple sequence repeats in cultivated blueberries (Vaccinium section Cyanococcus spp.) and their use in revealing genetic diversity and population structure. Mol Breed 34(2):675–689

    CAS  Google Scholar 

  • Bolda MP, Goodhue RE, Zalom FG (2010) Spotted wing drosophila: potential economic impact of a newly established pest. Giannini Found Agric Econ 13:5–8

    Google Scholar 

  • Brazelton C, Young K (2017) World blueberry statistics and global market analysis. Paper presented at the International Blueberry Organization 2016

    Google Scholar 

  • Brennan RM (1996) Currants and gooseberries. In: Janick J, Moore JN (eds) Fruit breeding, vol. 2: vine and small fruit crops. John Wiley & Sons, Inc., New York, pp 191–295

    Google Scholar 

  • Brennan RM (2008) Currants and gooseberries. In: Temperate fruit crop breeding. Springer, New York, pp 177–196

    Google Scholar 

  • Brennan RM, Jorgensen L, Woodhead M, Russell JR (2002) Development and characterization of SSR markers in Ribes species. Mol Ecol Notes 2(3):327–330. https://doi.org/10.1046/j.1471-8286.2002.00233.x

    CAS  Google Scholar 

  • Brennan RM, Jorgensen L, Hackett C, Woodhead M, Gordon S, Russell JR (2008) The development of a genetic linkage map of blackcurrant (Ribes nigrum L.) and the identification of regions associated with key fruit quality and agronomic traits. Euphytica 161(1):19–34. https://doi.org/10.1007/s10681-007-9412-8

    CAS  Google Scholar 

  • Brennan RM, Jorgensen L, Gordon S, Loades K, Hackett C, Russell JR (2009) The development of a PCR-based marker linked to resistance to the blackcurrant gall mite (Cecidophyopsis ribis Acari: Eriophyidae). Theor Appl Genet 118(2):205–211. https://doi.org/10.1007/s00122-008-0889-x

    CAS  PubMed  Google Scholar 

  • Bushakra JM, Stephens MJ, Atmadjaja AN, Lewers KS, Symonds VV, Udall JA et al (2012) Construction of black (Rubus occidentalis) and red (R. idaeus) raspberry linkage maps and their comparison to the genomes of strawberry, apple, and peach. Theor Appl Genet 125(2):311–327. https://doi.org/10.1007/s00122-012-1835-5

    CAS  PubMed  Google Scholar 

  • Bushakra JM, Bryant DW, Dossett M, Vining KJ, VanBuren R, Gilmore BS et al (2015) A genetic linkage map of black raspberry (Rubus occidentalis) and the mapping of Ag4 conferring resistance to the aphid Amphorophora agathonica. Theor Appl Genet 128(8):1631–1646. https://doi.org/10.1007/s00122-015-2541-x

    PubMed  PubMed Central  Google Scholar 

  • Caplan JS, Yeakley JA (2013) Functional morphology underlies performance differences among invasive and non-invasive ruderal Rubus species. Oecologia 173(2):363–374. https://doi.org/10.1007/s00442-013-2639-2

    PubMed  Google Scholar 

  • Castro-Lopez P, Stafne ET, Clark JR, Lewers KS (2013) Genetic map of the primocane-fruiting and thornless traits of tetraploid blackberry. Theor Appl Genet 126(10):2521–2532. https://doi.org/10.1007/s00122-013-2152-3

    CAS  Google Scholar 

  • Cavanna M, Torello Marinoni D, Beccaro GL, Bounous G (2009) Microsatellite-based evaluation of Ribes spp. germplasm. Genome 52(10):839–848. https://doi.org/10.1139/G09-057

    CAS  PubMed  Google Scholar 

  • Chambers AH, Carle S, Njuguna W, Chamala S, Bassil NV, Whitaker VM et al (2013) A genome-enabled, high-throughput, and multiplexed fingerprinting platform for strawberry (Fragaria L.). Mol Breed 31:615–629. https://doi.org/10.1007/s11032-012-9819-3

    CAS  Google Scholar 

  • Chambers AH, Pillet J, Plotto A, Bai J, Whitaker VM, Folta KM (2014) Identification of a strawberry flavor gene candidate using an integrated genetic-genomic-analytical chemistry approach. BMC Genomics 15(1):217

    PubMed  PubMed Central  Google Scholar 

  • Clark JR, Finn CE (2011) Blackberry breeding and genetics. In: Flachowsky H, Hanke MV (eds) Methods in temperate fruit breeding. Fruit, vegetable and cereal science and biotechnology, vol 5. Global Science Books, Ltd, UK, Ikenobe, Japan. pp 27–43

    Google Scholar 

  • Clark JR, Stafne ET, Hall HK, Finn CE (2007) Blackberry breeding and genetics. In: Janick J (ed) Plant breeding reviews, vol 29. John Wiley & Sons, Inc., New York, pp 19–144

    Google Scholar 

  • Colquhoun TA, Levin LA, Moskowitz HR, Whitaker VM, Clark DG, Folta KM (2012) Framing the perfect strawberry: an exercise in consumer-assisted selection of fruit crops. J Berry Res 2(1):45–61

    CAS  Google Scholar 

  • Compendium of Raspberry and Blackberry Diseases and Pests (2017) Martin RR, Ellis MA, Williamson B, Williams RN (eds) 2nd ed. APS Press, St. Paul

    Google Scholar 

  • Covarrubias-Pazaran G, Diaz-Garcia L, Schlautman B, Deutsch J, Salazar W, Hernandez-Ochoa M et al (2016) Exploiting genotyping by sequencing to characterize the genomic structure of the American cranberry through high-density linkage mapping. BMC Genomics 17(1):451

    PubMed  PubMed Central  Google Scholar 

  • Coville FV (1921) Directions for blueberry culture, 1921: US Department of Agriculture

    Google Scholar 

  • Coville FV (1937) Improving the wild blueberry. US Department of Agriculture, Washington, DC

    Google Scholar 

  • Darrow GM (1966) The strawberry. History, breeding and physiology

    Google Scholar 

  • Daubeny HA (1996) Brambles. In: Janick J, Moore JN (eds) Fruit breeding, vol. II. Vine and small fruits. Wiley, New York, pp 109–190

    Google Scholar 

  • Davis TM, Yu H (1997) A linkage map of the diploid strawberry, Fragaria vesca. J Hered 88(3):215–221

    CAS  Google Scholar 

  • de Mattia F, Grassi F, Imazio S, Labra M (2008) Chloroplast and nuclear DNA markers to characterize cultivated and spontaneous Ribes. Plant Biosyst Int J Deal Asp Plant Biol 142(2):204–212. https://doi.org/10.1080/11263500802150290

    Google Scholar 

  • Diekmann M, Frison E, Putter T (1994) FAO/IPGRI technical guidelines for the safe movement of small fruit germplasm, vol. 13. Bioversity International

    Google Scholar 

  • Dossett M (2011) Evaluation of genetic diversity in wild populations of black raspberry (Rubus occidentalis L.) (Doctor of Philosophy), Oregon State University

    Google Scholar 

  • Dossett M, Finn CE (2010) Identification of resistance to the large raspberry aphid in black raspberry. J Am Soc Hortic Sci 135(5):438–444

    Google Scholar 

  • Dossett M, Kempler C (2012) Biotypic diversity and resistance to the raspberry aphid Amphorophora agathonica in Pacific Northwestern North America. J Am Soc Hortic Sci 137(6):445–451

    Google Scholar 

  • Dossett M, Bassil NV, Finn CE (2012a) Fingerprinting of black raspberry cultivars shows discrepancies in identification. Acta Hort (ISHS) 946:49–53

    Google Scholar 

  • Dossett M, Bassil NV, Lewers KS, Finn CE (2012b) Genetic diversity in wild and cultivated black raspberry (Rubus occidentalis L.) evaluated by simple sequence repeat markers. Genet Resour Crop Evol 59(8):1849–1865. https://doi.org/10.1007/s10722-012-9808-8

    CAS  Google Scholar 

  • Duchesne AN (1766) Histoire Naturelle des Fraisiers. Didot le jeune, Paris

    Google Scholar 

  • Eck P (1990) The American cranberry. Rutgers University Press, New Brunswick

    Google Scholar 

  • Faedi W, Mourgues F, Rosati C (2000) Strawberry breeding and varieties: situation and perspectives. Paper presented at the IV International Strawberry Symposium 567

    Google Scholar 

  • Fajardo D, Morales J, Zhu H, Steffan S, Harbut R, Bassil N et al (2013) Discrimination of American cranberry cultivars and assessment of clonal heterogeneity using microsatellite markers. Plant Mol Biol Report 31(2):264–271

    CAS  Google Scholar 

  • Finn CE (2001) Trailing blackberries: from clear-cuts to your table. HortScience 36(2):236–238

    Google Scholar 

  • Finn CE, Clark JR (2012) Blackberry. In: Badenes ML, Byrne DH (eds) Fruit breeding, vol 8. Springer, New York/Dordrecht/Heidelberg/London, pp 151–190

    Google Scholar 

  • Garcia-Seco D, Zhang Y, Gutierrez-Manero F, Martin C, Ramos-Solano B (2015) RNA-Seq analysis and transcriptome assembly for blackberry (Rubus sp. Var. Lochness) fruit. BMC Genomics 16(1):5

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaston A, Perrotte J, Lerceteau-Köhler E, Rousseau-Gueutin M, Petit A, Hernould M et al (2013) PFRU, a single dominant locus regulates the balance between sexual and asexual plant reproduction in cultivated strawberry. J Exp Bot 64:1837. https://doi.org/10.1093/jxb/ert047

    CAS  PubMed  Google Scholar 

  • Georgi L, Johnson-Cicalese J, Honig J, Das SP, Rajah VD, Bhattacharya D et al (2013) The first genetic map of the American cranberry: exploration of synteny conservation and quantitative trait loci. Theor Appl Genet 126(3):673–692

    CAS  PubMed  Google Scholar 

  • Global Crop Diversity Trust (2017) GENESYS. https://www.genesys-pgr.org/welcome. Accessed 18 Jan 2017

  • Gordon TR, Kirkpatrick SC, Henry PM, Kong M, Broome JC (2015) First report of a wilt disease of blackberry caused by Fusarium oxysporum in California. Plant Dis 100(5):1018–1018. https://doi.org/10.1094/PDIS-07-15-0784-PDN

    Google Scholar 

  • Graham J, Smith K, MacKenzie K, Jorgenson L, Hackett C, Powell W (2004) The construction of a genetic linkage map of red raspberry (Rubus idaeus subsp. idaeus) based on AFLPs, genomic-SSR and EST-SSR markers. Theor Appl Genet 109(4):740–749

    CAS  PubMed  Google Scholar 

  • Gupta V, Estrada AD, Blakley I, Reid R, Patel K, Meyer MD et al (2015) RNA-Seq analysis and annotation of a draft blueberry genome assembly identifies candidate genes involved in fruit ripening, biosynthesis of bioactive compounds, and stage-specific alternative splicing. GigaScience 4(1):5

    PubMed  PubMed Central  Google Scholar 

  • Hancock JF (2006a) California public strawberry breeders: a perfect marriage of genetics and culture. HortScience 41(1):16

    Google Scholar 

  • Hancock JF (2006b) Highbush blueberry breeders. HortScience 41(1):20–21

    Google Scholar 

  • Hancock JF, Lyrene P, Finn CE, Vorsa N, Lobos GA (2008a) Blueberries and Cranberries. In: Hancock JF (ed) Temperate fruit crop breeding: germplasm to genomics. Springer Netherlands, Dordrecht, pp 115–150

    Google Scholar 

  • Hancock JF, Weebadde CK, Serçe S (2008b) Challenges faced by day-neutral strawberry breeders in the continental climates of the Eastern United States and Canada. HortScience 43(6):1635–1636

    Google Scholar 

  • Hancock JF, Finn CE, Luby JJ, Dale A, Callow PW, Serçe S (2010) Reconstruction of the strawberry, Fragaria × ananassa, using genotypes of F. virginiana and F. chiloensis. HortScience 45(7):1006–1013

    Google Scholar 

  • Harmat L, Porpaczy A, Himelrick D, Galletta G (1990) Currant and gooseberry management. In: Small fruit crop management. Prentice Hall, Englewood Cliffs, pp 245–272

    Google Scholar 

  • Hokanson K, Smith M, Connor A, Luby J, Hancock JF (2006) Relationships among subspecies of New World octoploid strawberry species, Fragaria virginiana and Fragaria chiloensis, based on simple sequence repeat marker analysis. Botany 84(12):1829–1841

    CAS  Google Scholar 

  • Howarth DG, Gardner DE, Morden CW (1997) Phylogeny of Rubus subgenus Idaeobatus (Rosaceae) and its implications toward colonization of the Hawaiian Islands. Syst Bot 22(3):433–441. https://doi.org/10.2307/2419819

    Google Scholar 

  • Hummer KE (2008) Global conservation strategy for Fragaria (Strawberry). Scripta Hortic 6:87

    Google Scholar 

  • Hummer KE, Dale A (2010) Horticulture of Ribes. For Pathol 40(3–4):251–263. https://doi.org/10.1111/j.1439-0329.2010.00657.x

    Google Scholar 

  • Hummer KE, Bassil NV, Njuguna W (2011) Fragaria. In: Wild crop relatives: genomic and breeding resources. Springer, Heidelberg, pp 17–44

    Google Scholar 

  • Hummer KE, Pomper KW, Postman JD, Graham CJ, Stover E, Mercure EW et al (2012) Emerging fruit crops. In: Fruit breeding. Springer, Boston, pp 97–147

    Google Scholar 

  • ITPGRFA (2017) International treaty for plant genetic resources for food and agriculture. Retrieved 1/15/2017, from United Nations Food and Agriculture Organization http://www.fao.org/plant-treaty/en/

  • Jenderek MM, Forsline P, Postman J, Stover E, Ellis D (2011) Effect of geographical location, year and cultivar on survival of Malus sp. dormant buds stored in vapor of liquid nitrogen. Hortscience 46(9):1230–1234

    Google Scholar 

  • Jennings DL (1988) Raspberries and blackberries: their breeding, diseases and growth. Academic Press, San Diego, CA

    Google Scholar 

  • Jennings, H.A. Daubeny, J.N. Moore1991. Blackberries and raspberries (Rubus) J.N. Moore, J.R. Ballington Jr. (Eds.), Genetic Resources of Temperate Fruit and Nut Crops, Volume 1, ISHS, Wageningen, The Netherlands (1991), p. 355

    Google Scholar 

  • Koskela EA, Sønsteby A, Flachowsky H, Heide OM, Hanke MV, Elomaa P, Hytönen T (2016) TERMINAL FLOWER1 is a breeding target for a novel everbearing trait and tailored flowering responses in cultivated strawberry (Fragaria × ananassa Duch.). Plant Biotechnol J 14:1852–1861

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kron KA, Powell EA, Luteyn JL (2002) Phylogenetic relationships within the blueberry tribe (Vaccinieae, Ericaceae) based on sequence data from MATK and nuclear ribosomal ITS regions, with comments on the placement of Satyria. Am J Bot 89(2):327–336. https://doi.org/10.3732/ajb.89.2.327

    CAS  PubMed  Google Scholar 

  • Lee V (1964) Antoine Nicolas Duchesne—First strawberry hybridist. Am Hortic Mag 43:80–88

    Google Scholar 

  • Lerceteau-Köhler E, Moing A, Guérin G, Renaud C, Petit A, Rothan C, Denoyes B (2012) Genetic dissection of fruit quality traits in the octoploid cultivated strawberry highlights the role of homoeo-QTL in their control. Theor Appl Genet 124(6):1059–1077

    PubMed  PubMed Central  Google Scholar 

  • Lewers KS, Saski C, Cuthbertson B, Henry D, Staton M, Main D et al (2008) A blackberry (Rubus L.) expressed sequence tag library for the development of simple sequence repeat markers. BMC Plant Biol 8(1):69

    PubMed  PubMed Central  Google Scholar 

  • Liston A, Cronn R, Ashman T-L (2014) Fragaria: a genus with deep historical roots and ripe for evolutionary and ecological insights. Am J Bot 101(10):1686–1699

    PubMed  Google Scholar 

  • Maas JL (1998) Compendium of strawberry diseases, 2nd edn. APS Press, St. Paul, pp 1–98

    Google Scholar 

  • Mace TA, King SA, Ameen Z, Elnaggar O, Young G, Riedl KM et al (2014) Bioactive compounds or metabolites from black raspberries modulate T lymphocyte proliferation, myeloid cell differentiation and Jak/STAT signaling. Cancer Immunol Immunother 63(9):889–900. https://doi.org/10.1007/s00262-014-1564-5

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin RR, Polashock JJ, Tzanetakis IE (2012) New and emerging viruses of blueberry and cranberry. Viruses 4(11):2831–2852. https://doi.org/10.3390/v4112831

    PubMed  PubMed Central  Google Scholar 

  • McCallum S, Graham J, Jorgensen L, Rowland LJ, Bassil NV, Hancock JF et al (2016) Construction of a SNP and SSR linkage map in autotetraploid blueberry using genotyping by sequencing. Mol Breed 36(4):1–24

    CAS  Google Scholar 

  • Moerman DE (1996) An analysis of the food plants and drug plants of native North America. J Ethnopharmacol 52(1):1–22. https://doi.org/10.1016/0378-8741(96)01393-1

    CAS  PubMed  Google Scholar 

  • Moerman DE (2009) Native American medicinal plants: an ethnobotanical dictionary. Timber Press, Portland

    Google Scholar 

  • Montrose DC, Horelik NA, Madigan JP, Stoner GD, Wang L-S, Bruno RS et al (2011) Anti-inflammatory effects of freeze-dried black raspberry powder in ulcerative colitis. Carcinogenesis 32(3):343–350. https://doi.org/10.1093/carcin/bgq248

    CAS  PubMed  Google Scholar 

  • Morden CW, Gardner DE, Weniger DA (2003) Phylogeny and biogeography of Pacific Rubus subgenus Idaeobatus (Rosaceae) species: investigating the origin of the endemic Hawaiian raspberry R. macraei. Pac Sci 57(2):181–197

    Google Scholar 

  • MortaÅŸ H, Åžanlıer N (2017) Nutritional evaluation of commonly consumed berries: composition and health effects. Fruits 72(1):5–23. https://doi.org/10.17660/th2017/72.1.1

    Google Scholar 

  • Moyer RA, Hummer KE, Finn CE, Frei B, Wrolstad RE (2002) Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. J Agric Food Chem 50(3):519–525. https://doi.org/10.1021/jf011062r

    CAS  PubMed  Google Scholar 

  • NatureServe (2017) NatureServe Explorer: an online encyclopedia of life [web application]. Version 7.1. From NatureServe http://explorer.natureserve.org

  • Neto CC, Amoroso JW, Liberty AM (2008) Anticancer activities of cranberry phytochemicals: An update. Mol Nutr Food Res 52(S1), S18–S27. https://doi.org/10.1002/mnfr.200700433

  • Polashock J, Zelzion E, Fajardo D, Zalapa J, Georgi L, Bhattacharya D, Vorsa N (2014) The American cranberry: first insights into the whole genome of a species adapted to bog habitat. BMC Plant Biol 14(1):165

    PubMed  PubMed Central  Google Scholar 

  • Postman JD, Hummer KE, Stover E, Krueger R, Forsline P, Grauke LJ et al (2006) Fruit and nut genebanks in the U.S. National Plant Germplasm System. HortScience 41(5):1188–1194

    Google Scholar 

  • Richardson CW (1914) A preliminary note on the genetics of Fragaria. J Genet 3(3):171–177. https://doi.org/10.1007/bf02981712

    Google Scholar 

  • Rodrigo KA, Rawal Y, Renner RJ, Schwartz SJ, Tian Q, Larsen PE, Mallery SR (2006) Suppression of the tumorigenic phenotype in human oral squamous cell carcinoma cells by an ethanol extract derived from freeze-dried black raspberries. Nutr Cancer 54(1):58–68. https://doi.org/10.1207/s15327914nc5401_7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rowland LJ, Ogden EL, Bassil N, Buck EJ, McCallum S, Graham J et al (2014) Construction of a genetic linkage map of an interspecific diploid blueberry population and identification of QTL for chilling requirement and cold hardiness. Mol Breed 34(4):2033–2048

    CAS  Google Scholar 

  • Russell JR, Bayer M, Booth C, Cardle L, Hackett CA, Hedley PE et al (2011) Identification, utilisation and mapping of novel transcriptome-based markers from blackcurrant (Ribes nigrum). BMC Plant Biol 11(1):147. https://doi.org/10.1186/1471-2229-11-147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Russell JR, Hackett C, Hedley P, Liu H, Milne L, Bayer M et al (2014) The use of genotyping by sequencing in blackcurrant (Ribes nigrum): developing high-resolution linkage maps in species without reference genome sequences. Mol Breed 33(4):835–849. https://doi.org/10.1007/s11032-013-9996-8

    CAS  Google Scholar 

  • Salentijn EM, Aharoni A, Schaart JG, Boone MJ, Krens FA (2003) Differential gene expression analysis of strawberry cultivars that differ in fruit-firmness. Physiol Plant 118(4):571–578

    CAS  Google Scholar 

  • Sargent DJ, Davis TM, Tobutt KR, Wilkinson MJ, Battey NH, Simpson DW (2004) A genetic linkage map of microsatellite, gene-specific and morphological markers in diploid Fragaria. Theor Appl Genet 109(7):1385–1391

    CAS  PubMed  Google Scholar 

  • Sargent DJ, Clarke J, Simpson DW, Tobutt KR, Arús P, Monfort A et al (2006) An enhanced microsatellite map of diploid Fragaria. Theor Appl Genet 112(7):1349–1359

    CAS  PubMed  Google Scholar 

  • Sargent DJ, Fernández-Fernández F, Rys A, Knight V, Simpson DW, Tobutt KR (2007) Mapping of A1 conferring resistance to the aphid Amphorophora idaei and dw (dwarfing habit) in red raspberry (Rubus idaeus L.) using AFLP and microsatellite markers. BMC Plant Biol 7(1):15

    PubMed  PubMed Central  Google Scholar 

  • Scheerens JC, Erb WA, Goulart BL, Hancock JF (1999a) Blueberry hybrids with complex genetic backgrounds evaluated on mineral soils: flowering, fruit development, yield and yield components as influenced by parental species. Fruit Varieties J 53:91–104

    Google Scholar 

  • Scheerens JC, Erb WA, Goulart BL, Hancock JF (1999b) Blueberry hybrids with complex genetic backgrounds evaluated on mineral soils: stature, growth rate, yield potential and adaptability to mineral soil conditions as influenced by parental species. Fruit Varieties J 53:73–90

    Google Scholar 

  • Schlautman B, Fajardo D, Bougie T, Wiesman E, Polashock J, Vorsa N et al (2015) Development and validation of 697 novel polymorphic genomic and EST-SSR markers in the American cranberry (Vaccinium macrocarpon Ait.). Molecules 20(2):2001–2013

    PubMed  PubMed Central  Google Scholar 

  • Schwab W, Schaart JG, Rosati C (2009) Functional molecular biology research in Fragaria. In: Genetics and genomics of Rosaceae. Springer, New York, pp 457–486

    Google Scholar 

  • Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL et al (2011) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43(2):109–116. http://www.nature.com/ng/journal/v43/n2/abs/ng.740.html#supplementary-information

  • Sjulin TM (2006) Private strawberry breeders in California. HortScience 41(1):17–19

    Google Scholar 

  • Song G-Q, Hancock JF (2011) Vaccinium. In: Wild crop relatives: Genomic and breeding resources. Springer Nature Switzerland AG, pp 197–221

    Google Scholar 

  • Staudt G (1962) Taxonomic studies in the genus Fragaria typification of Fragaria species known at the time of Linnaeus. Can J Bot 40(6):869–886

    Google Scholar 

  • Staudt G (1999) Systematics and geographic distribution of the American strawberry species: taxonomic studies in the genus Fragaria (Rosaceae: Potentilleae), Univ Calif Berkeley Publ Bot 81:125

    Google Scholar 

  • Staudt G (2009) Strawberry biogeography, genetics and systematics. Acta Hortic 842:71–84. https://doi.org/10.17660/ActaHortic.2009.842.1

  • Stegmeir TL, Finn CE, Warner RM, Hancock JF (2010) Performance of an elite strawberry population derived from wild germplasm of Fragaria chiloensis and F. virginiana. HortScience 45(8):1140–1145

    Google Scholar 

  • Stevens M, Darris DC (2003) Plant guide: Salmonberry. In: USDA-NRCS (ed), vol. 060809 jsp

    Google Scholar 

  • Stoner GD, Sardo C, Apseloff G, Mullet D, Wargo W, Pound V et al (2005) Pharmacokinetics of anthocyanins and ellagic acid in healthy volunteers fed freeze-dried black raspberries daily for 7 days. J Clin Pharmacol 45(10):1153–1164. https://doi.org/10.1177/0091270005279636

    CAS  PubMed  Google Scholar 

  • Stoner GD, Wang L-S, Zikri N, Chen T, Hecht SS, Huang C et al (2007) Cancer prevention with freeze-dried berries and berry components. Semin Cancer Biol 17(5):403–410. https://doi.org/10.1016/j.semcancer.2007.05.001

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strik BC, Clark JR, Finn CE, Bañados MP (2007) Worldwide blackberry production. HortTechnology 17(2):205–213

    Google Scholar 

  • Thompson MM (1995) Chromosome numbers of Rubus species at the National Clonal Germplasm Repository. HortScience 30(7):1447–1452

    Google Scholar 

  • UNFAO. (2017). United Nations Food and Agriculture Organization. Retrieved 02/04/2017 http://www.fao.org/faostat/en/#data/QC

  • US Fish & Wildlife Service, Environmental Conservation Online System (2015) Ribes echinellum (Miccosukee gooseberry) 5-year review: summary and evaluation. Accessed from https://ecos.fws.gov/ecp0/profile/speciesProfile.action?spcode=Q217

  • USDA, ARS, National Plant Germplasm System (2017a) Germplasm Resources Information Network (GRIN Global) database. National Germplasm Resources Laboratory, Beltsville, MD. https://www.ars-grin.gov/npgs/acc/acc_queries.html. Accessed 14 Jan 2017

  • USDA, ARS, National Plant Germplasm System (2017b) Germplasm Resources Information Network (GRIN Global) Taxonomy. National Germplasm Resources Laboratory, Beltsville, MD. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomyquery.aspx. Accessed 27 Sept 2017

  • USDA-ERS (2010) Economic Research Service. Retrieved 01/15/2017 https://www.ers.usda.gov/topics/crops/fruit-tree-nuts/data.aspx

  • USDA-ERS (2018) U.S. Department of Agriculture, Economic Research Service. Fruit and Tree Nut Yearbook Tables. Available at: https://www.ers.usda.gov/data-products/fruit-and-tree-nut-data/fruit-and-tree-nut-yearbook-tables/. Accessed November 2018.

  • USDA-NASS (2015) National Agricultural Statistics Service. Retrieved 01/15/2017 https://nassgeodata.gmu.edu/CropScape/

  • USDA-NDL (2017) Nutrient Data Library. Retrieved 02/14/2017 https://www.ars.usda.gov/northeast-area/beltsville-md/beltsville-human-nutrition-research-center/nutrient-data-laboratory/

  • USDA-NRCS (2017) Natural Resource Conservation Service. https://plants.usda.gov/java/threat

  • van Dijk T, Pagliarani G, Pikunova A, Noordijk Y, Yilmaz-Temel H, Meulenbroek B et al (2014) Genomic rearrangements and signatures of breeding in the allo-octoploid strawberry as revealed through an allele dose based SSR linkage map. BMC Plant Biol 14(1):55

    PubMed  PubMed Central  Google Scholar 

  • VanBuren R, Bryant D, Bushakra JM, Vining KJ, Edger PP, Rowley ER et al (2016) The genome of black raspberry (Rubus occidentalis). Plant J 87(6):535–547. https://doi.org/10.1111/tpj.13215

    CAS  PubMed  Google Scholar 

  • Vander Kloet SP (2004) Vaccinia gloriosa. Small Fruits Rev 3(3–4):221–227. https://doi.org/10.1300/J301v03n03_01

    Google Scholar 

  • Ward JA, Bhangoo J, Fernández-Fernández F, Moore PP, Swanson JD, Viola R et al (2013) Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation. BMC Genomics 14(1):2

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weber CA (2003) Genetic diversity in black raspberry detected by RAPD markers. HortScience 38(2):269–272

    CAS  Google Scholar 

  • Weber CA (2013) Cultivar development and selection. In: Funt RC, Hall HK (eds) Raspberries. CAB International, London, pp 55–72

    Google Scholar 

  • Wiersema JH, León B (2016) World economic plants: a standard reference. CRC Press, Boca Raton

    Google Scholar 

  • Wilhelm S, Sagen JE (1974) A history of the strawberry: from ancient gardens to modern markets. University of California, Division of Agricultural Sciences, Berkeley

    Google Scholar 

  • Woodhead M, Weir A, Smith K, McCallum S, MacKenzie K, Graham J (2010) Functional markers for red raspberry. J Am Soc Hortic Sci 135(5):418–427

    Google Scholar 

  • Woodward M (1924) Gerard’s herball. The essence thereof distilled by Marcus Woodward from the edition of Thomas Johnson. Gerald Howe, London, p 1636

    Google Scholar 

  • Zhang Z, Knobloch TJ, Seamon LG, Stoner GD, Cohn DE, Paskett ED et al (2011) A black raspberry extract inhibits proliferation and regulates apoptosis in cervical cancer cells. Gynecol Oncol 123(2):401–406. https://doi.org/10.1016/j.ygyno.2011.07.023

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zikri NN, Riedl KM, Wang L-S, Lechner J, Schwartz SJ, Stoner GD (2009) Black raspberry components inhibit proliferation, induce apoptosis, and modulate gene expression in rat esophageal epithelial cells. Nutr Cancer 61(6):816–826. https://doi.org/10.1080/01635580903285148

    PubMed  PubMed Central  Google Scholar 

  • Zorrilla-Fontanesi Y, Cabeza A, Torres A, Botella M, Valpuesta V, Monfort A et al (2011) Development and bin mapping of strawberry genic-SSRs in diploid Fragaria and their transferability across the Rosoideae subfamily. Mol Breed 27(2):137–156. https://doi.org/10.1007/s11032-010-9417-1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim E. Hummer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hummer, K.E., Williams, K.A., Bushakra, J.M. (2019). North American Crop Wild Relatives of Temperate Berries (Fragaria L., Ribes L., Rubus L., and Vaccinium L.). In: Greene, S., Williams, K., Khoury, C., Kantar, M., Marek, L. (eds) North American Crop Wild Relatives, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-97121-6_9

Download citation

Publish with us

Policies and ethics