Skip to main content

Introduction

  • Chapter
  • First Online:
Free Boundary Problems

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2218))

  • 897 Accesses

Abstract

In my childhood, I read oftentimes in various Russian fairy tales the expression from the epigraph. It was a standard task for a fairy tale hero, to be accomplished by any means. Nowadays, a similar task is faced by mathematicians studying free boundary problems. You may ask, why is this so? I will try to explain.

Go I know not whitherand fetch I know not what

Russian Fairy Tales

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.W. Alt, L.A. Caffarelli, A. Friedman, Variational problems with two phases and their free boundaries. Trans. Am. Math. Soc. 282(2), 431–461 (1984)

    Article  MathSciNet  Google Scholar 

  2. J. Andersson, N. Matevosyan, H. Mikayelyan, On the tangential touch between the free and the fixed boundaries for the two-phase obstacle-like problem. Ark. Mat. 44(1), 1–15 (2006)

    Article  MathSciNet  Google Scholar 

  3. D.E. Apushkinskaya, N. Matevosyan, N.N. Uraltseva, The behavior of the free boundary close to a fixed boundary in a parabolic problem. Indiana Univ. Math. J. 58(2), 583–604 (2009)

    Article  MathSciNet  Google Scholar 

  4. I. Athanasopoulos, S. Salsa, An application of a parabolic comparison principle to free boundary problems. Indiana Univ. Math. J. 40(1), 29–32 (1991)

    Article  MathSciNet  Google Scholar 

  5. D.E. Apushkinskaya, H. Shahgholian, N.N. Uraltseva, Boundary estimates for solutions of a parabolic free boundary problem. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 271, 39–55 (2000)

    MATH  Google Scholar 

  6. D.E. Apushkinskaya, N.N. Uraltseva, On the behavior of the free boundary near the boundary of the domain. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 221(Kraev. Zadachi Mat. Fiz. i Smezh. Voprosy Teor. Funktsii. 26), 5–19, 253 (1995). English transl. in J. Math. Sci. (N.Y.) 87(2), 3267–3276 (1997)

    Google Scholar 

  7. D.E. Apushkinskaya, N.N. Uraltseva, Boundary estimates for solutions of two-phase obstacle problems. Probl. Math. Anal. (34), 3–11 (2006). English transl. in J. Math. Sci. (N.Y.) 142(1), 1723–1732 (2007)

    Google Scholar 

  8. D.E. Apushkinskaya, N.N. Uraltseva, Boundary estimates for solutions to the two-phase parabolic obstacle problem. Probl. Math. Anal. (38), 3–10 (2008). English transl. in J. Math. Sci. (N.Y.) 156(4), 569–576 (2009)

    Google Scholar 

  9. D. E. Apushkinskaya and N. N. Uraltseva. Uniform estimates near the initial state for solutions of the two-phase parabolic problem. Algebra i Analiz 25(2), 63–74 (2013)

    MathSciNet  Google Scholar 

  10. D.E. Apushkinskaya, N.N. Uraltseva, Free boundaries in problems with hysteresis. Phil. Trans. Roy. Soc. A 373(2050), 20140271 (2015)

    Google Scholar 

  11. D.E. Apushkinskaya, N.N. Ural’tseva, Kh. Shakhgolyan, On global solutions of a parabolic problem with an obstacle. Algebra i Analiz 14(1), 3–25 (2002)

    MathSciNet  MATH  Google Scholar 

  12. D.E. Apushkinskaya, N.N. Ural’tseva, Kh. Shakhgolyan, On the Lipschitz property of the free boundary in a parabolic problem with an obstacle. Algebra i Analiz 15(3), 78–103 (2003)

    MathSciNet  MATH  Google Scholar 

  13. C. Baiocchi, Su un problema di frontiera libera connesso a questioni di idraulica. Ann. Mat. Pura Appl. (4) 92, 107–127 (1972)

    Google Scholar 

  14. H. Berestycki, L.A. Caffarelli, L. Nirenberg, Uniform estimates for regularization of free boundary problems, in Analysis and Partial Differential Equations. Lecture Notes in Pure and Applied Mathematics, vol. 122 (Dekker, New York, 1990), pp. 567–619

    Google Scholar 

  15. A. Blanchet, J. Dolbeault, R. Monneau, On the continuity of the time derivative of the solution to the parabolic obstacle problem with variable coefficients. J. Math. Pures Appl. (9) 85(3), 371–414 (2006)

    Google Scholar 

  16. H. Brézis, D. Kinderlehrer, The smoothness of solutions to nonlinear variational inequalities. Indiana Univ. Math. J. 23(9), 831–844 (1974)

    Article  MathSciNet  Google Scholar 

  17. H. Berestycki, B. Larrouturou, A semi-linear elliptic equation in a strip arising in a two-dimensional flame propagation model. J. Reine Angew. Math. 396, 14–40 (1989)

    MathSciNet  MATH  Google Scholar 

  18. A. Blanchet, On the singular set of the parabolic obstacle problem. J. Diff. Equ. 231(2), 656–672 (2006)

    Article  MathSciNet  Google Scholar 

  19. H. Berestycki, B. Larrouturou, L. Nirenberg, A nonlinear elliptic problem describing the propagation of a curved premixed flame, in Mathematical Modeling in Combustion and Related Topics (Lyon, 1987). NATO Advanced Science Institutes Series E: Applied Sciences, vol. 140 (Nijhoff, Dordrecht, 1988), pp. 11–28

    Google Scholar 

  20. L.A. Caffarelli, The smoothness of the free surface in a filtration problem. Arch. Rational Mech. Anal. 63(1), 77–86 (1976)

    Article  MathSciNet  Google Scholar 

  21. L.A. Caffarelli, The regularity of free boundaries in higher dimensions. Acta Math. 139(3–4), 155–184 (1977)

    Article  MathSciNet  Google Scholar 

  22. L.A. Caffarelli, Compactness methods in free boundary problems. Commun. Partial Diff. Equ. 5(4), 427–448 (1980)

    Article  MathSciNet  Google Scholar 

  23. L.A. Caffarelli, A monotonicity formula for heat functions in disjoint domains, in Boundary Value Problems for Partial Differential Equations and Applications. RMA Research Notes in Applied Mathematics, vol. 29 (Masson, Paris, 1993), pp. 53–60

    Google Scholar 

  24. L.A. Caffarelli, The obstacle problem revisited. J. Fourier Anal. Appl. 4(4–5), 383–402 (1998)

    Article  MathSciNet  Google Scholar 

  25. L.A. Caffarelli, C.E. Kenig, Gradient estimates for variable coefficient parabolic equations and singular perturbation problems. Am. J. Math. 120(2), 391–439 (1998)

    Article  MathSciNet  Google Scholar 

  26. L.A. Caffarelli, L. Karp, H. Shahgholian, Regularity of a free boundary with application to the Pompeiu problem. Ann. of Math. (2) 151(1), 269–292 (2000)

    Google Scholar 

  27. L. Caffarelli, A. Petrosyan, H. Shahgholian, Regularity of a free boundary in parabolic potential theory. J. Am. Math. Soc. 17(4), 827–869 (electronic) (2004)

    Google Scholar 

  28. J. Crank, Free and Moving Boundary Problems (The Clarendon Press Oxford University Press, New York, 1987)

    MATH  Google Scholar 

  29. L.A. Caffarelli, H. Shahgholian, The structure of the singular set of a free boundary in potential theory. Izv. Nats. Akad. Nauk Armenii Mat. 39(2), 43–58 (2004)

    MathSciNet  Google Scholar 

  30. L. Caffarelli, S. Salsa, A Geometric Approach to Free Boundary Problems. Graduate Studies in Mathematics, vol. 68 (American Mathematical Society, Providence, RI, 2005)

    Google Scholar 

  31. G. Duvaut, J.-L. Lions, Inequalities in Mechanics and Physics (Springer, Berlin, 1976). Translated from the French by C. W. John, Grundlehren der Mathematischen Wissenschaften, 219

    Google Scholar 

  32. G. Duvaut, Résolution d’un problème de Stefan (fusion d’un bloc de glace à zéro degré). C. R. Acad. Sci. Paris Sér. A-B 276, A1461–A1463 (1973)

    MATH  Google Scholar 

  33. J. Frehse, On the regularity of the solution of a second order variational inequality. Boll. Un. Mat. Ital. (4) 6, 312–315 (1972)

    Google Scholar 

  34. A. Friedman, Variational Principles and Free-Boundary Problems. Pure and Applied Mathematics (Wiley, New York, 1982). A Wiley-Interscience Publication

    Google Scholar 

  35. A. Friedman, M. Sakai, A characterization of null quadrature domains in R N. Indiana Univ. Math. J. 35(3), 607–610 (1986)

    Article  MathSciNet  Google Scholar 

  36. A. Gurevich, Boundary regularity for free boundary problems. Commun. Pure Appl. Math. 52(3), 363–403 (1999)

    Article  MathSciNet  Google Scholar 

  37. R. Jensen, Boundary regularity for variational inequalities. Indiana Univ. Math. J. 29(4), 495–504 (1980)

    Article  MathSciNet  Google Scholar 

  38. L. Karp, On the Newtonian potential of ellipsoids. Complex Variables Theory Appl. 25(4), 367–371 (1994)

    Article  MathSciNet  Google Scholar 

  39. L. Karp, A.S. Margulis, Newtonian potential theory for unbounded sources and applications to free boundary problems. J. Anal. Math. 70, 1–63 (1996)

    Article  MathSciNet  Google Scholar 

  40. L. Kapr, A.S. Margulis, Null quadrature domains and a free boundary problem for the Laplacian. Indiana Univ. Math. J. 61(2), 859–882 (2012)

    Article  MathSciNet  Google Scholar 

  41. N.V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations in a domain. Math. USSR Izv. 22(1), 67–98 (1984)

    Article  Google Scholar 

  42. D. Kinderlehrer, G. Stampacchia, An Introduction to Variational Inequalities and Their Applications. Pure and Applied Mathematics, vol. 88 (Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1980)

    Google Scholar 

  43. G. Lamé, B.P. Clapeyron, Mémoire sur la solidification par refroidissement d’um globe solide. Ann. Chem. Phys. 47, 250–256 (1831)

    Google Scholar 

  44. E. Lindgren, R. Monneau, Pointwise regularity of the free boundary for the parabolic obstacle problem. Calc. Var. 54(1), 299–347 (2015)

    Article  MathSciNet  Google Scholar 

  45. K. Nyström, A. Pascucci, S. Polidoro, Regularity near the initial state in the obstacle problem for a class of hypoelliptic ultraparabolic operators. J. Diff. Equ. 249(8), 2044–2060 (2010)

    Article  MathSciNet  Google Scholar 

  46. K. Nyström, On the behaviour near expiry for multi-dimensional American options. J. Math. Anal. Appl. 339(1), 644–654 (2008)

    Article  MathSciNet  Google Scholar 

  47. V.I. Oliker, N.N. Uraltseva, Evolution of nonparametric surfaces with speed depending on curvature. II. The mean curvature case. Commun. Pure Appl. Math. 46(1), 97–135 (1993)

    Article  Google Scholar 

  48. V.I. Oliker, N.N. Uraltseva, Evolution of nonparametric surfaces with speed depending on curvature. III. Some remarks on mean curvature and anisotropic flows, in Degenerate Diffusions (Minneapolis, MN, 1991). The IMA Volumes in Mathematics and Its Applications, vol. 47, pp. 141–156 (Springer, New York, 1993)

    Google Scholar 

  49. V.I. Oliker, N.N. Ural’tseva, Long time behavior of flows moving by mean curvature, in Nonlinear Evolution Equations. American Mathematical Society Translations: Series 2, vol. 164, pp. 163–170 (American Mathematical Society, Providence, RI, 1995)

    Google Scholar 

  50. V.I. Oliker, N.N. Ural’tseva, Long time behavior of flows moving by mean curvature. II. Topol. Methods Nonlinear Anal. 9(1), 17–28 (1997)

    Article  MathSciNet  Google Scholar 

  51. A. Petrosyan, H. Shahgholian, Parabolic obstacle problems applied to finance, in Recent Developments in Nonlinear Partial Differential Equations. Contemporary Mathematics, vol. 439, pp. 117–133 (American Mathematical Society, Providence, RI, 2007)

    Google Scholar 

  52. A. Petrosyan, H. Shahgholian, N. Uraltseva, Regularity of Free Boundaries in Obstacle-Type Problems. Graduate Studies in Mathematics, vol. 136 (American Mathematical Society, Providence, RI, 2012)

    Google Scholar 

  53. J.-F. Rodrigues, Obstacle Problems in Mathematical Physics. North-Holland Mathematics Studies, vol. 134 (North-Holland Publishing Co., Amsterdam, 1987)

    Google Scholar 

  54. M.V. Safonov, Smoothness near the boundary of solutions of elliptic Bellman equations. Boundary value problems of mathematical physics and related problems in the theory of functions, no. 17 [Russian. English summary]. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 147, 150–154 (1985)

    Google Scholar 

  55. M. Sakai, Null quadrature domains. J. Anal. Math. 40, 144–154 (1982), 1981

    MathSciNet  Google Scholar 

  56. M. Sakai, Regularity of a boundary having a Schwarz function. Acta Math. 166(3–4), 263–297 (1991)

    Article  MathSciNet  Google Scholar 

  57. D.G. Schaeffer, Some examples of singularities in a free boundary. Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 4(1), 133–144 (1977)

    Google Scholar 

  58. H. Shahgholian, On quadrature domains and the Schwarz potential. J. Math. Anal. Appl. 171(1), 61–78 (1992)

    Article  MathSciNet  Google Scholar 

  59. H. Shahgholian, C 1, 1 regularity in semilinear elliptic problems. Commun. Pure Appl. Math. 56(2), 278–281 (2003)

    Article  MathSciNet  Google Scholar 

  60. H. Shahgholian, Free boundary regularity close to initial state for parabolic obstacle problem. Trans. Am. Math. Soc. 360(4), 2077–2087 (2008)

    Article  MathSciNet  Google Scholar 

  61. J. Stefan, Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere. Sitzungsber. Österreich. Akad. Wiss. Math. Naturwiss. Kl. Abt. 2, Math. Astron. Phys. Meteorol. Tech. 98, 965–983 (1889)

    Google Scholar 

  62. H. Shahgholian, N. Uraltseva, Regularity properties of a free boundary near contact points with the fixed boundary. Duke Math. J. 116(1), 1–34 (2003)

    Article  MathSciNet  Google Scholar 

  63. H. Shahgholian, N. Uraltseva, G.S. Weiss, The two-phase membrane problem—regularity of the free boundaries in higher dimensions. Int. Math. Res. Not. IRMN (8), 16 (2007)

    Google Scholar 

  64. H. Shahgholian, N. Uraltseva, G.S. Weiss, A parabolic two-phase obstacle-like equation. Adv. Math. 221(3), 861–881 (2009)

    Article  MathSciNet  Google Scholar 

  65. H. Shahgholian, G.S. Weiss, The two-phase membrane problem—an intersection-comparison approach to the regularity at branch points. Adv. Math. 205(2), 487–503 (2006)

    Article  MathSciNet  Google Scholar 

  66. N.N. Uraltseva, C 1 regularity of the boundary of a noncoincident set in a problem with an obstacle. Algebra i Analiz 8(2), 205–221 (1996)

    MathSciNet  Google Scholar 

  67. N.N. Uraltseva, Two-phase obstacle problem. J. Math. Sci. (New York) 106(3), 3073–3077 (2001). Function theory and phase transitions

    Google Scholar 

  68. N.N. Uraltseva, Boundary estimates for solutions of elliptic and parabolic equations with discontinuous nonlinearities, in Nonlinear Equations and Spectral Theory. American Mathematical Society Translations Series 2, vol. 220, pp. 235–246 (American Mathematical Society, Providence, RI, 2007)

    Google Scholar 

  69. G.S. Weiss, Partial regularity for weak solutions of an elliptic free boundary problem. Commun. Partial Diff. Equ. 23(3–4), 439–455 (1998)

    Article  MathSciNet  Google Scholar 

  70. G.S. Weiss, Self-similar blow-up and Hausdorff dimension estimates for a class of parabolic free boundary problems. SIAM J. Math. Anal. 30(3), 623–644 (electronic) (1999)

    Google Scholar 

  71. G.S. Weiss, An obstacle-problem-like equation with two phases: pointwise regularity of the solution and an estimate of the Hausdorff dimension of the free boundary. Interfaces Free Bound. 3(2), 121–128 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Apushkinskaya, D. (2018). Introduction. In: Free Boundary Problems. Lecture Notes in Mathematics, vol 2218. Springer, Cham. https://doi.org/10.1007/978-3-319-97079-0_1

Download citation

Publish with us

Policies and ethics