Skip to main content

Introduction to Networked Control Systems

  • Chapter
  • First Online:
Control Strategies and Co-Design of Networked Control Systems

Abstract

This chapter introduces a brief description of Networked Control Systems. A formal review of this book is given, describing the key issues within each chapter. A review of the strategies present in the literature is made to study and compensate for the network imperfections presenting three main methodologies. The control methodology focuses on generating control signals that counteract the effects of the network imperfections through modelling its dynamics or considering them as uncertainties. The communication methodology aims to improve the transmission of information and minimise imperfections through the scheduling and synchronisation of the nodes present in the network as a function of the system performance. The co-design methodology considers increasing the advantages of the various methodologies with the purpose of increasing system performance and minimising the effects of network imperfections. It is also presented the time delay modelling in nondeterministic networks, the main imperfection of the network. Finally, the maximum allowed transfer interval term is described which is the maximum bound for time imperfections of the network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Halevy, Y., Ray, A.: Integrated communication and control systems: part I analysis. J. Dyn. Syst. Meas. Control 110, 367–373 (1988)

    Google Scholar 

  2. Nilsson, J.: Real-time control systems with delays. Ph.D Thesis, Department of Automatic Control, Lund Institute of Technology, Lund, Sweden (1998)

    Google Scholar 

  3. Heemels, M., Van de Wouw, A.N., Nesic, D.: Networked control systems with communication constraints tradeoffs between transmission intervals, delays and performance. IEEE Trans. Autom. Control 55(8) (2010)

    Google Scholar 

  4. Lincoln, B., Bernhardsson, B.: Optimal control over networks with long random delays. In: Proceedings International Symposium on Mathematical Theory of Networks and Systems, January 2000

    Google Scholar 

  5. Nian, X.: Stability of linear systems with time-varying delays: an Lyapunov functional approach. In: Proceedings of the American Control Conference, Denver, USA, June 2003

    Google Scholar 

  6. Pan, Y.J., Marquez, H.J., Chen, T.: Stabilization of remote control systems with unknown time varying delays by LMI techniques. Int. J. Control 79(7), 752–763 (2006)

    Article  MathSciNet  Google Scholar 

  7. Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Sastry, S.: An LQG optimal linear controller for control systems with packet losses. In: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005, Sevilla, Spain, December 2005

    Google Scholar 

  8. Fridman, E., Shaked, U.: Delay-dependent stability and H\(\infty \) control: constant and time-varying delays. Int. J. Control 76–1, 48–60 (2003)

    Article  MathSciNet  Google Scholar 

  9. Chen, J., Gu, K., Kharitonov, V.: Stability of Time-Delay Systems. Birkhauser, Boston (2002)

    MATH  Google Scholar 

  10. Brockett, R., Liberzon, D.: Quantized feedback stabilization of linear systems. IEEE Trans. Autom. Control 45(7), 1279–1289 (2000)

    Article  MathSciNet  Google Scholar 

  11. Delchamps, D.F.: Stabilizing a linear system with quantized state feedback. IEEE Trans. Autom. Control 35(8), 916–924 (1990)

    Article  MathSciNet  Google Scholar 

  12. Heemels, W.P.M.H., Gorter, R.J.A., van Zijl, A., Bosch, P.P.J.V.D., Weiland, S., Hendrix, W.H.A., Vonder, M.R.: Asynchronous measurement and control: a case study on motor synchronisation. Control Eng. Prac. 7(12), 1467–1482 (1999)

    Article  Google Scholar 

  13. Heemels, W.P.M.H., Siahaan, H., Juloski, A., Weiland, S.: Control of quantized linear systems: an optimal control approach. In: Proceedings of American Control Conference, Denver, CO, pp. 3502–3507 (2003)

    Google Scholar 

  14. Liberzon, D.: On stabilization of linear systems with limited information. IEEE Trans. Autom. Control 48(2), 304–307 (2003)

    Article  MathSciNet  Google Scholar 

  15. Nair, G.N., Evans, R.J.: Stabilizability of stochastic linear systems with finite feedback data rates. SIAM J. Control Optim. 43, 413–436 (2004)

    Article  MathSciNet  Google Scholar 

  16. Tatikonda, S., Mitter, S.K.: Control under communication constraints. IEEE Trans. Autom. Control 49(7), 1056–1068 (2004)

    Article  MathSciNet  Google Scholar 

  17. Luck, R., Ray, A.: An observer-based compensator for distributed delays. Automatica 26–5, 903–908 (1990)

    Article  Google Scholar 

  18. Eker, J., Cervin, A.: Distributed wireless control using Bluetooth. In: Proceeding of IFAC Conference on New Technologies for Computer Control, Hong Kong, P.R. China, pp. 1–6, November 2001

    Article  Google Scholar 

  19. Ji, K., Kim, W.J., Srivastava, A.: Internet-based real-time control architectures with time-delay/packet-loss compensation. Asian J. Control 9(1) (2006)

    Article  Google Scholar 

  20. Li, Q., Mills, D.L.: Jitter-based delay-boundary prediction of wide-area networks. IEEE/ACM Trans. Netw. 9(5), 578–590 (2001)

    Article  Google Scholar 

  21. Ploplys, N.J., Kawka, P.A., Alleyne, A.G.: Closed-loop control over wireless network. IEEE Control Syst. Mag. 24(3), 58–71 (2004)

    Google Scholar 

  22. Hong, S.H.: Scheduling algorithm of data sampling times in the integrated communication and control systems. IEEE Trans. Control Syst. Technol. 3(2) (1995)

    Google Scholar 

  23. Pegden, C.G., Shannon, R.E., Sadowski, R.P.: Introduction to Simulation Using SIMAN. McGraw Hill (1995)

    Google Scholar 

  24. Lu, C., Stankovic, J.A., Tao, G., Son, S.H.: Feedback control real-time scheduling: framework, modeling and algorithms. Real-Time Syst. 23, 85–126 (2002)

    Article  Google Scholar 

  25. Tanenbaum, A.S.: Computer Networks, 3rd ed. Prentice-Hall Inc. (1996)

    Google Scholar 

  26. Lian, F., Moyne, J., Tilbury, D.: Network design consideration for distributed control systems. IEEE Trans. Control Syst. Technol. 10(2) (2002)

    Google Scholar 

  27. Tarn, T.J., Xi, N.: Planning and control of internet-based teleoperation. In: Proceedings of SPIE: Telemanipulator and Telepresence Technologies V, Boston, MA, vol. 35, no. 24, pp. 189–193 (1998)

    Google Scholar 

  28. Castillo-Gutierrez, O.O., Benitez, Perez H.: A Novel Technique to Enlarge the Maximum Allowable Delay Bound in Sampled-Data Systems. Congreso Nacional de Control Automatico, Mexico (2017)

    Google Scholar 

  29. Chan H., Ozguner U.: Optimal control of systems over a communication network with queue via a jump system approach. In: Proceedings of the IEEE Conference on Control Applications, pp. 1148–1153 (1995)

    Google Scholar 

  30. Filipovic, V.Z.: Robust control of systems over communication network. Sci. Tech. Rev. 57(2), 24–30 (2007)

    Google Scholar 

  31. Wang, F.Y., Liu, D.: Networked Control Systems Theory and Applications. Springer, London (2008)

    Book  Google Scholar 

  32. Benitez-Perez, H., Benitez-Perez, A., Ortega-Arjona, J.,Esquivel-Flores, O.: Networked control systems design consideringscheduling restrictions. Int. J. Adv. Fuzzy Syst. 2012, 9(2012). Article ID 927878

    Google Scholar 

  33. Walsh, G.C., Beldiman, O., Bushnell, L.G.: Asymptotic behavior of nonlinear networked control systems. IEEE Trans. Autom. Control 46(7), 1093–1097 (2001)

    Article  MathSciNet  Google Scholar 

  34. Quinones-Reyes, P., Benitez-Perez, H., Cardenas-Flores, F.,Ortega-Arjona, J.: Reconfigurable fuzzy Takagi Sugeno modelpredictive control networked control (Magnetic Levitation CaseStudy). Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.224–8, 1022–1032 (2010)

    Google Scholar 

  35. Benitez-Perez, H., Ortega-Arjona, J., Cardenas-Flores, F.,Quinones-Reyes, P.: Reconfiguration control strategy usingTakagi-Sugeno model predictive control for network controlsystems—a magnetic levitation case study. Proc. Inst. Mech. Eng.224(I8), 1022–1032 (2010)

    Google Scholar 

  36. Goktas, F., Smith, J. M., Bajcsy, R.: \(\mu \)-Synthesis for distributed control systems with network-induced delays. In: Proceedings of the 35th IEEE Conference on Decision and Control, vol. 1, pp. 813–814. IEEE (1996)

    Google Scholar 

  37. Bemporad, A., Heemels, M., Johansson, M.: Networked Control Systems, vol. 406. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  38. Lincoln, B.: Dynamic programming and time-varying delay systems. Ph.D. Thesis, Lund Institute of Technology (2003)

    Google Scholar 

  39. Yu, H., Zhang, B.: Stability of model-based networked control singularly perturbed systems with time-varying transmission times. In: 2016 Chinese Control and Decision Conference (CCDC), pp. 5722–5725. IEEE (2016)

    Google Scholar 

  40. Almutairi, N.B., Chow, M.Y., Tipsuwan, Y.: Network-based controlled dc motor with fuzzy compensation. In: Proceedings The 27th Annual Conference of the IEEE Industrial Electronics Society, Denver, USA, vol. 3, pp. 1844–1849 (2001)

    Google Scholar 

  41. Zhang, T., Li, Y.C.: A fuzzy smith control of time-varying delay systems based on time delay identification. In: Proceedings of the Second International Conference on Machine Learning and Cybernetics, November 2003

    Google Scholar 

  42. Tipsuwan, T., Chow, M.Y.: Network-based controller adaptation based on QoS negotiation and deterioration. In: Proceedings of the 27th Annual Conference of the IEEE Industrial Electronics Society, Denver, USA, vol. 3, pp. 1794–1799 (2001)

    Google Scholar 

  43. Lankes, S., Reke, M., Jabs, A.: A time-triggered Ethernet protocol for real-time CORBA. In: Proceedings of the 5th IEEE International Symposium on Object-Oriented Real-Time Distributed Computing, Washington, DC, USA, pp. 215–222, April 2002

    Google Scholar 

  44. Filipiak, J.: Modelling and Control of Dynamic Flows in Communication Networks. Springer (1988)

    Book  Google Scholar 

  45. Aström, K.J., Wittenmark, B.: Computer-Controlled Systems: Theory and Design, 2nd edn. Prentice-Hall Inc., Englewood Cliffs (1990)

    Google Scholar 

  46. Liou, L.W., Ray, A.: Integrated communication and control systems: part III—Nonidentical sensor and controller sampling. J. Dyn. Syst. Measurement Control 112, 357–364 (1990)

    Article  Google Scholar 

  47. Tipsuwan, Y., Chow, M.Y.: Control methodologies in networked control systems. Control Eng. Pract. 11(10), 1099–1111 (2003)

    Article  Google Scholar 

  48. Walsh, G.C., Ye, H., Bushnell, L.G.: Stability analysis of networked control systems. IEEE Trans. Control Syst. Technol. 10(3), 438–446 (2002)

    Article  Google Scholar 

  49. Khalil, H.K.: Nonlinear Systems, 2nd edn. Prentice Hall, Upper Saddle River (1995)

    Google Scholar 

  50. Gupta, V., Spanos, D., Hassibi, B., Murria, M.R.: On LQG control across a stochastic packet-dropping link. In: Proceedings 2005 American Control Conference, Portland, USA, pp. 360–365, June 2005

    Google Scholar 

  51. Imer, O.C., Yuksel, S., Basar, T.: Optimal control of LTI systems over unreliable communication links. Automatica 42(9), 1429–1439 (2006)

    Article  MathSciNet  Google Scholar 

  52. Arzen, K.E., Bernhardsson, B., Eker, J., Cervin, A, Nilsson, K., Persson, P., Sha, L.: Integrated control and scheduling. Technical Report ISRN LUTFD2/TFRT7586SE, Lund Institute of Technology, Sweden (1999)

    Google Scholar 

  53. Xia, F., Sun, Y.X., Tian, Y.C., Tade, M.O., Dong, J.X.: Fuzzy feedback scheduling of resource-constrained embedded control systems. Int. J. Innovative Comput. Inf. Control 5, 311–321 (2005)

    Google Scholar 

  54. Wan, J., Li, D.: Fuzzy feedback scheduling algorithm based on output jitter in resource-constrained embedded systems. In: 2010 IEEE International Conference on Environmental Science and Computer Engineering, vol. 2, pp. 457–460 (2010)

    Google Scholar 

  55. Branisky, M.S., Phillips, S.M., Zhang, W.: Scheduling and feedback co-design for networked control systems. Proc. IEEE Conf. Decis. Control 2, 1211–1217 (2002)

    Article  Google Scholar 

  56. Liu, J.W.S.: Real-Time Systems. Prentice Hall (2000)

    Google Scholar 

  57. Sename, O., Simon, D., Robert, D.: Feedback scheduling for real-time control of systems with communication delays. In: Proceedings of the IEEE Conference on Emerging Technologies and Factory Automation (2003)

    Google Scholar 

  58. Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Jordan, M.I., Sastry, S.S.: Kalman filtering with intermittent observations. IEEE Trans. Autom. Control 49(9), 1453–1464 (2004)

    Article  MathSciNet  Google Scholar 

  59. Smith, S.C., Seiler, P.: Estimation with lossy measurements: jump estimators for jump systems. IEEE Trans. Autom. Control 48(12), 2163–2171 (2003)

    Article  MathSciNet  Google Scholar 

  60. Montestruque, L.A., Antsaklis, P.: Stability of model-based networked control systems with time-varying transmission times. IEEE Trans. Autom. Control 49(9), 1562–1572 (2004)

    Article  MathSciNet  Google Scholar 

  61. Fujioka, H.: Stability analysis for a class of networked/embedded control systems: a discrete-time approach. In: Proceedings of American Control Conference, pp. 4997–5002 (2008)

    Google Scholar 

  62. Cloosterman, M., van de Wouw, N., Heemels, W., Nijmeijer, H.: Stability of networked control systems with uncertain time-varying delays. IEEE Trans. Autom. Control 54(7), 1575–1580 (2009)

    Article  MathSciNet  Google Scholar 

  63. Gielen, R.H., Olaru, S., Lazar, M., Heemels, W.P.M.H., van de Wouw, N., Niculescu, S.I.: On polytopic inclusions as a modeling framework for systems with time-varying delays. Automatica 46(3), 615–619 (2010)

    Article  MathSciNet  Google Scholar 

  64. Hetel, L., Daafouz, J., Iung, C.: Stabilization of arbitrary switched linear systems with unknown time-varying delays. IEEE Trans. Autom. Control 51(10), 1668–1674 (2006)

    Article  MathSciNet  Google Scholar 

  65. Kao, C.Y., Lincoln, B.: Simple stability criteria for systems with time-varying delays. Automatica 40, 1429–1434 (2004)

    Article  MathSciNet  Google Scholar 

  66. Naghshtabrizi, P., Hespanha, J.P., Teel, A.R.: Stability of delay impulsive systems with application to networked control systems. In: Proceedings of American Control Conference, New York, pp. 4899–4904 (2007)

    Google Scholar 

  67. Zhang, L., Shi, Y., Chen, T., Huang, B.: A new method for stabilization of networked control systems with random delays. IEEE Trans. Autom. Control 50(8), 1177–1181 (2005)

    Article  MathSciNet  Google Scholar 

  68. Brockett, R.: Stabilization of motor networks. In: Proceedings of 34th IEEE Conference on Decision Control, vol. 2, pp. 1484–1488 (1995)

    Google Scholar 

  69. Dačić, D.B., Nešić, D.: Quadratic stabilization of linear networked control systems via simultaneous protocol and controller design. Automatica 43, 1145–1155 (2007)

    Article  MathSciNet  Google Scholar 

  70. Hristu, D., Morgansen, K.: Limited communication control. Syst. Control Lett. 37(4), 193–205 (1999)

    Article  MathSciNet  Google Scholar 

  71. Rehbinder, H., Sanfridson, M.: Scheduling of a limited communication channel for optimal control. Automatica 40(3), 491–500 (2004)

    Article  MathSciNet  Google Scholar 

  72. Cloosterman, M., van de Wouw, N., Heemels, W., Nijmeijer, H.: Stabilization of networked control systems with large delays and packet dropouts. In: Proceedings of American Control Conference, pp. 4991–4996 (2008)

    Google Scholar 

  73. Gupta, V., Chung, T.H., Hassibi, B., Murray, R.M.: On a stochastic sensor selection algorithm with applications in sensor scheduling and sensor coverage. Automatica 42(2), 251–260 (2006)

    Article  MathSciNet  Google Scholar 

  74. Matveev, A.S., Savkin, A.V.: The problem of state estimation via asynchronous communication channels with irregular transmission times. IEEE Trans. Autom. Control, 48(4), 670–676 (2003)

    Article  MathSciNet  Google Scholar 

  75. Carnevale, D., Teel, A.R., Nesic, D.: A Lyapunov proof of improved maximum allowable transfer interval for networked control systems. IEEE Trans. Autom. Control 55, 892–897 (2007)

    Article  MathSciNet  Google Scholar 

  76. Donkers, M.C.F., Hetel, L., Heemels, W.P.M.H., van de Wouw, N., Steinbuch, M.: Stability analysis of networked control systems using a switched linear systems approach. In: Hybrid Systems: Computation and Control. Lecture Notes in Computer Science, pp. 150–164. Springer, New York (2009)

    Chapter  Google Scholar 

  77. Hetel, L., Daafouz, J., Iung, C.: Analysis and control of LTI and switched systems in digital loops via an event-based modeling. Int. J. Control 81(7), 1125–1138 (2008)

    Article  Google Scholar 

  78. Liberzon, D.: Quantization, time delays, and nonlinear stabilization. IEEE Trans. Autom. Control 51(7), 1190–1195 (2006)

    Article  MathSciNet  Google Scholar 

  79. Nesic, D., Teel, A.R.: Input-to-state stability of networked control systems. Automatica 40, 2121–2128 (2004)

    MathSciNet  MATH  Google Scholar 

  80. van de Wouw, N., Naghshtabrizi, P., Cloosterman, M., Hespanha, J.P.: Tracking control for sampled-data systems with uncertain time-varying sampling intervals and delays. Int. J. Robot. Nonlin. Control 20(4), 387–411 (2010)

    MathSciNet  MATH  Google Scholar 

  81. Heemels, W.P.M.H., Nesic, D., Teel, A.R., van deWouw, N.: Networked and quantized control systems with communication delays. In: Proceedings of Joint IEEE Conference on Decision Control (CDC) 28th Chinese Control Conference, pp. 7929–7935 (2009)

    Google Scholar 

  82. Nesic, D., Liberzon, D.: A unified framework for design and analysis of networked and quantized control systems. IEEE Trans. Autom. Control 54(4), 732–747 (2009)

    Article  MathSciNet  Google Scholar 

  83. Naghshtabrizi, P., Hespanha, J.P.: Designing an observer-based controller for a network control system. In: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005, Sevilla, Espaa, December 2005

    Google Scholar 

  84. Cloosterman, M., Hetel, L., van deWouw, N., Heemels, W., Daafouz, J., Nijmeijer, H.: Controller synthesis for networked control systems. Automatica 46(10) (2010)

    Article  MathSciNet  Google Scholar 

  85. Naghshtabrizi, P., Hespanha, J.P.: Stability of network control systems with variable sampling and delays. In: Proceedings of the Annual Allerton Conference on Communication, Control, and Computing CD ROM (2006)

    Google Scholar 

  86. Nesic, D., Teel, A.R.: Input-output stability properties of networked control systems. In: IEEE Trans. Autom. Control 49(10), 1650–1667 (2004)

    Article  MathSciNet  Google Scholar 

  87. Gao, H., Chen, T., Lam, J.: A new delay system approach to network-based control. Automatica 44(1), 39–52 (2008)

    Article  MathSciNet  Google Scholar 

  88. Chaillet, A., Bicchi, A.: Delay compensation in packet-switchingnetworked controlled sytems. In: Proceedings of IEEE Conference on Decision Control, pp. 3620–3625 (2008)

    Google Scholar 

  89. Lian, F., Moyne, J., Tilbury, D.: Network architecture and communication modules for guaranteeing acceptable control and communication performance for networked multi-agent systems. IEEE Trans. Industr. Inf. 2–1, 12–24 (2006)

    Article  Google Scholar 

  90. Fridman, E.: Introduction to Time-Delay Systems. Birkhäuser (2014)

    Google Scholar 

  91. Cervin, A., Ohlin, M., Henriksson, D.: Simulation of networked control systems using truetime. In: Proceedings of the 3rd International Workshop on Networked Control Systems: Tolerant to Faults, Nancy, France (2007)

    Google Scholar 

  92. Lian, F., Moyne, J., Otanez, P., Tilbury, D., Moyne, J.: Design of sampling and transmission rates for achieving control and communication performance in networked multi-agent system In: Proceedings of American Control Conference, pp. 3329–3334, Denver, USA, June 4–6 (2003)

    Google Scholar 

  93. Branicky, M., Liberatore, V., Phillips, S.: Networked control system co-simulation for co-design. In: Proceedings of American Control Conference, Denver, USA, pp. 3341–3346, 4 June 2003

    Google Scholar 

  94. Benitez-Perez, H., Garcia-Nocetti, F.: Reconfigurable Distributed Control. Springer, Berlin (2005)

    MATH  Google Scholar 

  95. Zhu, X., Hua, C., Wang, S.: State feedback controller design of networked control systems with time delay in the plant. Int. J. Innov. Comput. Inf. Control 4(2), 283–290 (2008)

    Google Scholar 

  96. Zhang, H., Yang, D., Chai, T.: Guaranteed cost networked control for T-S fuzzy systems with time delays. IEEE Trans. Syst. Man Cybern. C 37–2, 160–172 (2007)

    Article  Google Scholar 

  97. Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley (2001)

    Google Scholar 

  98. Esquivel-Flores, O., Benitez-Perez, H.: Reconfiguracion dinamica de sistemas distribuidos en tiempo real basada en agentes. Revista Iberoamericana de Automatica e Informatica Industrial 9–3, 300–313 (2012)

    Article  Google Scholar 

  99. Mendez-Monroy, P.E., Benitez-Perez, H.: Supervisory fuzzy control for networked control systems. Int. J. Innov. Comput. Inf. Control Exp. Lett. 3–2, 233–240 (2009)

    Google Scholar 

  100. Cervin, A., Henriksson, D., Lincoln, B., Eker, J., Arzen, K.-E.: How does control timing affect performance? Analysis and simulation of timing using jitterbug and truetime. IEEE Control Syst. 23(3), 16–30 (2003)

    Google Scholar 

  101. Fridman, E., Niculescu, S.I.: On complete Lyapunov-Krasovskii functional techniques for uncertain systems with fast-varying delays. Int. J. Robust Nonlinear Control 18(3), 364–374 (2008)

    Article  MathSciNet  Google Scholar 

  102. Koubias, S.A., Papadopoulos, G.D.: Modern fieldbus communication architectures for real-time industrial applications. Comput. Ind. 26(3), 243–252 (1995)

    Article  Google Scholar 

  103. Corkill, P.: Collaborating software: blackboard and multiagent systems and the future. Proc. Int. Lisp Conf. 3, 123–138 (2003)

    Google Scholar 

  104. Zhang, W.: Stability analysis of networked control systems, Ph.D. Thesis Department of Electrical Engineering and Computer Science, Case Western Reserve University (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor Benítez-Pérez .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benítez-Pérez, H., Ortega-Arjona, J.L., Méndez-Monroy, P.E., Rubio-Acosta, E., Esquivel-Flores, O.A. (2019). Introduction to Networked Control Systems. In: Control Strategies and Co-Design of Networked Control Systems . Modeling and Optimization in Science and Technologies, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-97044-8_1

Download citation

Publish with us

Policies and ethics