Skip to main content

Ultra-Low Power CAN Detection and VA Prediction

  • Chapter
  • First Online:
Ultra Low Power ECG Processing System for IoT Devices

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 788 Accesses

Abstract

In this chapter, an ECG processor on-chip for full ECG feature extraction and cardiac autonomic neuropathy (CAN) is presented. Absolute value curve length transform (ACLT) is performed for QRS detection, whereas full feature extraction (detecting QRSon, QRSoff, P-, and T-waves) is achieved by low-pass differentiation. Proposed QRS detector attains a sensitivity of 99.37% and predictivity of 99.38%. Extracted RR interval along with QT interval enables CAN severity detector. CAN is cardiac arrhythmia usually seen in diabetic patients and have prevalent effect in sudden cardiac death. In this chapter, the first hardware real-time implementation of the CAN severity detector is proposed. Detection is based on RR variability and QT variability analysis. RR variability metrics are based on mean RR interval and RMSSD of RR interval. The proposed architecture is implemented in 65 nm technology, and it consumes only 75 nW at 0.6 V, when operating at 250 Hz. Ultra-low power dissipation of the system enables it to be integrated into wearable healthcare devices.

This chapter also presents an architecture for VA prediction. The architecture was optimized for ultra-low power operation compared to prior state-of-the-art design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.Y. Lee, J.H. Hong, C.H. Hsieh, M.C. Liang, S.Y.C. Chien, K.H. Lin, Low-power wireless ECG acquisition and classification system for body sensor networks. IEEE J. Biomed. Health Inf. 19(1), 236–246 (2015)

    Article  Google Scholar 

  2. Y.-J. Min, H.-K. Kim, Y.-R. Kang, G.-S. Kim, J. Park, S.-W. Kim, Design of wavelet-based ECG detector for implantable cardiac pacemakers. IEEE Trans. Biomed. Circuits Syst. 7(4), 426–436 (2013)

    Article  Google Scholar 

  3. P. Li, X. Zhang, M. Liu, X. Hu, B. Pang, Z. Yao, H. Jiang, H. Chen, A 410-nW efficient QRS processor for mobile ECG monitoring in 0.18-μm CMOS. IEEE Trans. Biomed. Circuits Syst. 11(6), 1356–1365 (2017)

    Google Scholar 

  4. N. Bayasi, T. Tekeste, H. Saleh, B. Mohammad, A. Khandoker, M. Ismail, Low-power ECG-based processor for predicting ventricular arrhythmia. IEEE Trans. Very Large Scale Integr. VLSI Syst. 24(5), 1962–1974 (2016)

    Article  Google Scholar 

  5. X. Liu, J. Zhou, Y. Yang, B. Wang, J. Lan, C. Wang, J. Luo, W.L. Goh, T.T.-H. Kim, M. Je, A 457 nW near-threshold cognitive multi-functional ECG processor for long-term cardiac monitoring. IEEE J. Solid State Circuits 49(11), 2422–2434 (2014)

    Article  Google Scholar 

  6. J. Pan, W.J. Tompkins, A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32(3), 230–236 (1985)

    Article  Google Scholar 

  7. J. Martinez, R. Almeida et al., A wavelet-based ECG delineator: evaluation on standard database. IEEE Trans. Biomed. Eng. 51(4), 570–348 (2004)

    Article  Google Scholar 

  8. E.B. Mazomenos, D. Biswas, A. Acharyya, T. Chen, K. Maharatna, J. Rosengarten, J. Morgan, N. Curzen, A low-complexity ECG feature extraction algorithm for mobile healthcare applications. IEEE J. Biomed. Health Inf. 17(2), 459–469 (2013)

    Article  Google Scholar 

  9. A.H. Khandoker, M.H. Imam, J. Couderc, M. Palaniswami, H.F. Jelinek, QT variability index changes with severity of cardiovascular autonomic neuropathy. IEEE Trans. Inf. Technol. Biomed. 16(5), 900–906 (2012)

    Article  Google Scholar 

  10. Y.P. Chen, D. Jeon, Y. Lee, Y. Kim, Z. Foo, I. Lee, N.B. Langhals, G. Kruger, H. Oral, O. Berenfeld, Z. Zhang, D. Blaauw, D. Sylvester, An injectable 64 nW ECG mixed-signal SoC in 65 nm for Arrhythmia monitoring. IEEE J. Solid State Circuits 50(1), 375–390 (2015)

    Article  Google Scholar 

  11. R. Gutiérrez-Rivas, J.J. García, W.P. Marnane, Á. Hernández, Novel real-time low-complexity QRS complex detector based on adaptive thresholding. IEEE Sensors J. 15(10), 6036–6043 (2015)

    Article  Google Scholar 

  12. C.-I. Ieong, P.-I. Mak, C.-P. Lam, C. Dong, M.-I. Vai, P.-U. Mak, S.-H. Pun, F. Wan, R.P. Martins, A 0.83-QRS detection processor using quadratic spline wavelet transform for wireless ECG acquisition in 0.35-CMOS. IEEE Trans. Biomed. Circuits Syst. 6(6), 586–595 (2012)

    Google Scholar 

  13. A.I. Vinik, R.E. Maser, B.D. Mitchell, R. Freeman, Diabetic autonomic neuropathy. Diabetes Care 26(5), 1553–1579 (2003)

    Article  Google Scholar 

  14. D.J. Ewing, C.N. Martyn, R.J. Young, B.F. Clarke, The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care 8(5), 491–498 (1985)

    Article  Google Scholar 

  15. M.H. Imam, C.K. Karmakar, A.H. Khandoker, H.F. Jelinek, M. Palaniswami, Heart rate independent QT variability component can detect subclinical cardiac autonomic neuropathy in diabetes, in 2016 IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC) (IEEE, New York, 2016), pp. 928–931

    Google Scholar 

  16. H.F. Jelinek, D.J. Cornforth, M.P. Tarvainen, N.T. Miloevic, Multiscale Renyi entropy and cardiac autonomic neuropathy, in 2015 20th International Conference on Control Systems and Computer Science (CSCS) (IEEE, New York, 2015), pp. 545–547

    Book  Google Scholar 

  17. H.F. Jelinek, M.P. Tarvainen, D.J. Cornforth, Renyi entropy in identification of cardiac autonomic neuropathy in diabetes, in Computing in Cardiology (CinC), 2012 (IEEE, New York, 2012)

    Google Scholar 

  18. D.J. Cornforth, M.P. Tarvainen, H.F. Jelinek, Evaluation of normalised Renyi entropy for classification of cardiac autonomic neuropathy, in 2014 8th Conference of the European Study Group on Cardiovascular Oscillations (ESGCO) (IEEE, New York, 2014), pp. 1–2

    Google Scholar 

  19. M.P. Tarvainen, D.J. Cornforth, H.F. Jelinek, Principal component analysis of heart rate variability data in assessing cardiac autonomic neuropathy, in 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE, New York, 2014), pp. 6667–6670

    Google Scholar 

  20. J. Abawajy, A. Kelarev, M.U. Chowdhury, H.F. Jelinek, Enhancing predictive accuracy of cardiac autonomic neuropathy using blood biochemistry features and iterative multi tier ensembles. IEEE J. Biomed. Health Inf. 20(1), 408–415 (2016)

    Article  Google Scholar 

  21. P. Laguna, D. Vigo, R. Jane, P. Caminal, Automatic wave onset and offset determination in ECG signals: validation with the CSE database, in Proceedings of Computers in Cardiology 1992 (IEEE, New York, 1992), pp. 167–170

    Google Scholar 

  22. J.M. Bote, J. Recas, F. Rincon, D. Atienza, R. Hermida, A modular low-complexity ECG delineation algorithm for real-time embedded systems. IEEE J. Biomed. Health Inf. 22(2), 429–441 (2017)

    Article  Google Scholar 

  23. T. Tekeste, H. Saleh, B. Mohammad, A. Khandoker, M. Elnaggar, A nano-Watt ECG feature extraction engine in 65nm technology. IEEE Trans. Circuits Syst. Express Briefs PP(99):1–1 (2017)

    Google Scholar 

  24. S.Y. Hsu, Y. Ho, Y. Tseng, T.Y. Lin, P.Y. Chang, J.W. Lee, J.H. Hsiao, S.M. Chuang, T.Z. Yang, P.C. Liu, T.F. Yang, R.J. Chen, C. Su, C.Y. Lee, A sub-100 μW multi-functional cardiac signal processor for mobile healthcare applications, in 2012 Symposium on VLSI Circuits (VLSIC), June 2012, pp. 156–157

    Google Scholar 

  25. M.D. Rollins, J.G. Jenkins, D.J. Carson, B.G. McClure, R.H. Mitchell, S.Z. Imam, Power spectral analysis of the electrocardiogram in diabetic children. Diabetologia 35(5), 452–455 (1992)

    Article  Google Scholar 

  26. D.J. Ewing, B.F. Clarke, Diagnosis and management of diabetic autonomic neuropathy. Br. Med. J. (Clin. Res. Ed.) 285(6346), 916 (1982)

    Google Scholar 

  27. V. Spallone, G. Menzinger, Diagnosis of cardiovascular autonomic neuropathy in diabetes. Diabetes 46(Suppl. 2), S67–S76 (1997)

    Article  Google Scholar 

  28. M. Malik, Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 17, 354–381 (1996)

    Google Scholar 

  29. A.H. Khandoker, H.F. Jelinek, T. Moritani, M. Palaniswami, Association of cardiac autonomic neuropathy with alteration of sympatho-vagal balance through heart rate variability analysis. Med. Eng. Phys. 32(2), 161–167 (2010)

    Article  Google Scholar 

  30. E.K. Kasper, R.D. Bergeret et al., Beat to beat QT interval variability: novel evidence for repolarization lability in Ischemic and nonischemic dilated cardiomyopathy. Circulation 96(5), 1557–1565 (1997)

    Article  Google Scholar 

  31. A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K.Peng, and H. E.Stanley, “PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals,” Circulation, vol. 101, no. 23, pp. e215–e220, 2000 (June 13), circulation Electronic Pages: http://circ.ahajournals.org/cgi/content/full/101/23/e215 PMID:1085218; doi:10.1161/01.CIR.101.23.e215.

  32. H.F. Jelinek, C. Wilding, P. Tinely, An innovative multi-disciplinary diabetes complications screening program in a rural community: a description and preliminary results of the screening. Aust. J. Prim. Health 12(1), 14–20 (2006)

    Article  Google Scholar 

  33. M. Yasin, T. Tekeste, H. Saleh, B. Mohammad, H. Saleh, O. Sinanoglu, M. Ismail, Ultra-low power, secure IoT platform for predicting cardiovascular diseases. IEEE Trans. Circuits Syst. Regul. Pap. 64(9), 2624–2637 (2017)

    Article  Google Scholar 

  34. H. Kim, R.F. Yazicioglu, T. Torfs, P. Merken, H.-J. Yoo, C. Van Hoof, A low power ECG signal processor for ambulatory arrhythmia monitoring system, in Proceedings of IEEE Symposium on VLSI Circuits (2010), pp. 19–20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tekeste Habte, T., Saleh, H., Mohammad, B., Ismail, M. (2019). Ultra-Low Power CAN Detection and VA Prediction. In: Ultra Low Power ECG Processing System for IoT Devices. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-97016-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97016-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97015-8

  • Online ISBN: 978-3-319-97016-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics