Skip to main content

Background on ECG Processing

  • Chapter
  • First Online:
Ultra Low Power ECG Processing System for IoT Devices

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

Abstract

In this chapter the basics about ECG processing are presented. First, ECG is introduced as a representation of the cardiac activity of the heart. ECG features and extraction techniques along with ECG classifiers are reviewed. Ultra-low power biomedical circuit approaches are also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Klinefelter, N.E. Roberts, Y. Shakhsheer, P. Gonzalez, A. Shrivastava, A. Roy, K. Craig, M. Faisal, J. Boley, S. Oh, Y. Zhang, D. Akella, D.D. Wentzloff, B.H. Calhoun, A 6.45μW self-powered IoT SoC with integrated energy-harvesting power management and ULP asymmetric radios, in 2015 IEEE International Solid- State Circuits Conference - (ISSCC), Feb 2015, pp. 1–3

    Google Scholar 

  2. J. Kwong, A.P. Chandrakasan, An energy-efficient biomedical signal processing platform. IEEE J. Solid State Circuits 46(7), 1742–1753 (2011)

    Article  Google Scholar 

  3. F. Zhang, Y. Zhang, J. Silver, Y. Shakhsheer, M. Nagaraju, A. Klinefelter, J. Pandey, J. Boley, E. Carlson, A. Shrivastava et al., A batteryless 19μW MICS/ISM-band energy harvesting body area sensor node SoC, in 2012 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, New York, 2012), pp. 298–300

    Google Scholar 

  4. WHO, Cardiovascular diseases (CVDs), Oct 2015

    Google Scholar 

  5. G.D. Clifford, F. Azuaje, P.E. McSharry, Advanced Methods and Tools for ECG Data Analysis (Artech House, Boston, 2006)

    Google Scholar 

  6. P. Kligfield, The centennial of the Einthoven electrocardiogram. J. Electrocardiogr. 35(4), 123–129 (2002)

    Article  Google Scholar 

  7. J. Pan, W.J. Tompkins, A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32(3), 230–236 (1985)

    Article  Google Scholar 

  8. M. Niknazar, B. Rivet, C. Jutten, Fetal ECG extraction by extended state Kalman filtering based on single-channel recordings. IEEE Trans. Biomed. Eng. 60(5), 1345–1352 (2013)

    Article  Google Scholar 

  9. J. Martinez, R. Almeida et al., A wavelet-based ECG delineator: evaluation on standard database. IEEE Trans. Biomed. Eng. 51(4), 570–348 (2004)

    Article  Google Scholar 

  10. S. Banerjee, M. Mitra, Application of cross wavelet transform for ECG pattern analysis and classification. IEEE Trans. Instrum. Meas. 63(2), 326–333 (2014)

    Article  Google Scholar 

  11. I.S. Murthy, G.S. Prasad, Analysis of ECG from pole-zero models. IEEE Trans. Biomed. Eng. 39(7), 741–751 (1992)

    Article  Google Scholar 

  12. S. Pal, M. Mitra, Empirical mode decomposition based ECG enhancement and QRS detection. Comput. Biol. Med. 42(1), 83–92 (2012)

    Article  Google Scholar 

  13. R.J. Oweis, E.W. Abdulhay, Seizure classification in EEG signals utilizing Hilbert-Huang transform. Biomed. Eng. Online 10, 38 (2011)

    Article  Google Scholar 

  14. A. Khawaja, Automatic ECG analysis using principal component analysis and wavelet transformation. University-Verlag Karlsruhe (2006). https://doi.org/10.5445/KSP/1000006642

  15. S.S. Mehta, S.C. Saxena, H.K. Verma, Recognition of P and T waves in electrocardiograms using fuzzy theory, in Engineering in Medicine and Biology Society, IEEE 14th Conference of the Biomedical Engineering Society of India. An International Meeting, Proceedings of the First Regional Conference (IEEE, New York, 1995), pp. 2–54

    Google Scholar 

  16. E. de Azevedo Botter, C.L. Nascimento, T. Yoneyama, A neural network with asymmetric basis functions for feature extraction of ECG P waves. IEEE Trans. Neural Netw. 12(5), 1252–1255 (2001)

    Article  Google Scholar 

  17. G.N. Golpayegani, A.H. Jafari, A novel approach in ECG beat recognition using adaptive neural fuzzy filter. J. Biomed. Sci. Eng. 2, 80–85 (2009)

    Article  Google Scholar 

  18. S.S. Mehta, N.S. Lingayat, Detection of QRS complexes in electrocardiogram using support vector machine. J. Med. Eng. Technol. 32(3), 206–215 (2008)

    Article  Google Scholar 

  19. M.R. Homaeinezhad, S.A. Atyabi, E. Tavakkoli, H.N. Toosi, A. Ghaffari, R. Ebrahimpour, ECG arrhythmia recognition via a Neuro-SVM–KNN hybrid classifier with virtual QRS image-based geometrical features. Expert Syst. Appl. 39(2), 2047–2058 (2012)

    Article  Google Scholar 

  20. R.N. Khushaba, S. Kodagoda, S. Lal, G. Dissanayake, Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm. IEEE Trans. Biomed. Eng. 58(1), 121–131 (2011)

    Article  Google Scholar 

  21. Y.N. Singh, P. Gupta, ECG to individual identification, in 2nd IEEE International Conference on Biometrics: Theory, Applications and Systems (2008), pp. 1–8

    Google Scholar 

  22. K.F. Tan, K.L. Chan, K. Choi, Detection of the QRS complex, P wave and T wave in electrocardiogram, in IEEE Conference on Medical Signal and Information Processing (2000), pp. 41–47

    Google Scholar 

  23. M. Elgendi, M. Jonkman, F. De Boer, Recognition of T waves in ECG signals, in IEEE Conference on Bioengineering (2009), pp. 1–2

    Google Scholar 

  24. E.B. Mazomenos, T. Chen, A. Acharyya, A. Bhattacharya, J. Rosengarten, K. Maharatna, A time-domain morphology and gradient based algorithm for ECG feature extraction, in 2012 IEEE International Conference on Industrial Technology (ICIT) (IEEE, New York, 2012), pp. 117–122

    Google Scholar 

  25. A.A. Cost, G.G. Cano, QRS detection based on hidden Markov modeling, in Proceedings of the Annual International Conference of the IEEE Engineering in Engineering in Medicine and Biology Society, 1989. Images of the Twenty-First Century (IEEE, New York, 1989), pp. 34–35

    Google Scholar 

  26. C. Lin, C. Mailhes, J.-Y. Tourneret, P- and T-wave delineation in ECG signals using a Bayesian approach and a partially collapsed Gibbs sampler. IEEE Trans. Biomed. Eng. 57(12), 2840–2849 (2010)

    Article  Google Scholar 

  27. S. Mallat, A Wavelet Tour of Signal Processing, 2nd edn. (Academic, New York, 1999)

    MATH  Google Scholar 

  28. Z. Chen, J. Luo, K. Lin, J. Wu, T. Zhu, X. Xiang, J. Meng, An energy-efficient ECG processor with weak-strong hybrid classifier for arrhythmia detection. IEEE Trans. Circuits Syst. Express Briefs (2017). https://doi.org/10.1109/TCSII.2017.2747596

    Google Scholar 

  29. A.H. Khandoker, M.H. Imam, J. Couderc, M. Palaniswami, H.F. Jelinek, QT variability index changes with severity of cardiovascular autonomic neuropathy. IEEE Trans. Inf. Technol. Biomed. 16(5), 900–906 (2012)

    Article  Google Scholar 

  30. D. Jeon, Y.-P. Chen, Y. Lee, Y. Kim, Z. Foo, G. Kruger, H. Oral, O. Berenfeld, Z. Zhang, D. Blaauw, D. Sylvester, An implantable 64nW ECG-monitoring mixed-signal SoC for arrhythmia diagnosis, in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), Feb 2014, pp. 416–417

    Google Scholar 

  31. M. Alioto, Ultra-low power VLSI circuit design demystified and explained: a tutorial. IEEE Trans. Circuits Syst. Regul. Pap. 59(1), 3–29 (2012)

    Article  MathSciNet  Google Scholar 

  32. Y.P. Chen, D. Jeon, Y. Lee, Y. Kim, Z. Foo, I. Lee, N.B. Langhals, G. Kruger, H. Oral, O. Berenfeld, Z. Zhang, D. Blaauw, D. Sylvester, An injectable 64 nW ECG mixed-signal SoC in 65 nm for Arrhythmia monitoring. IEEE J. Solid State Circuits 50(1), 375–390 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tekeste Habte, T., Saleh, H., Mohammad, B., Ismail, M. (2019). Background on ECG Processing. In: Ultra Low Power ECG Processing System for IoT Devices. Analog Circuits and Signal Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-97016-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97016-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97015-8

  • Online ISBN: 978-3-319-97016-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics