Skip to main content

Urban Trees and Their Relationship with Air Pollution by Particulate Matter and Ozone in Santiago, Chile

  • Chapter
  • First Online:
Urban Climates in Latin America

Abstract

Most Latin American cities have air quality problems owing to high levels of particulate matter and ozone. By 2050, it is expected that more than 80% of Latin Americans will live in urban areas, leading to an increment in pollution problems. Santiago, Chile shows a high level of pollution from PM10 and PM2.5, especially during the autumn–winter period and from ozone (O3) during the spring–summer period owing to natural and anthropogenic causes. Information for this chapter was obtained from the official monitoring system of pollutants, but also from scientific papers and experimental work developed in our laboratory. The chapter contains a general description of the particulate matter, some analytical methods of studying it, and their officially reported sources; also, some new findings are included. For tropospheric ozone, a similar procedure was followed. The result is essentially focused on considering the ability of urban trees in capturing PM, while at the same time emitting minimal amounts of biogenic volatile organic compounds (BVOCs) that can potentially generate ozone. Available information shows that native species and a few exotic species were the most frequently appropriated to accomplish both requirements. As the vegetation of Santiago is mainly composed of exotic tree species that lose their leaves during the winter and produce high quantities of BVOCs during spring–summer, it does not contribute to the improvement of air quality; on the contrary. This situation should be remedied as soon as possible through the correct choice of trees and urban planning measures. The chapter also includes some similar variables reported in the literature from other countries of Latin America.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar-Reyes, B., Cejudo Ruiz, R., Martínez-Cruz, J., Bautista, F., Goguitchaichvili, A., Carvallo, C., & Morales, J. (2012). Ficus benjamina leaves as indicator of atmospheric pollution: A reconaissance study. Studia Geophysica et Geodaetica, 56(3), 879–887. https://doi.org/10.1007/s11200-011-0265-1.

    Article  Google Scholar 

  • Aguilar-Reyes, B., Mejía, V., Goguitchaichvili, A., Escobar, J., Bayona, G., Bautista, F., Morales, J., & Ihl, T. (2013). Reconnaissance environmental magnetic study of urban soils, dust and leaves from Bogotá, Colombia. Studia Geophysica et Geodaetica, 57(4), 741–754. https://doi.org/10.1007/s11200-012-0682-9.

    Article  Google Scholar 

  • Albertine, J. M., Manning, W. J., Da Costa, M., Stinson, K. A., Muilenberg, M. L., & Rogers, C. A. (2014). Projected carbon dioxide to increase grass pollen and allergen exposure despite higher ozone levels. PLoS One, 9(11), e111712.

    Google Scholar 

  • Almeida, S. M., Freitas, M. C., Reis, M., Pinheiro, T., Felix, P. M., & Pio, C. A. (2013). Fifteen years of nuclear techniques application to suspended particulate matter studies. Journal of Radioanalytical and Nuclear Chemistry, 297(3), 347–356.

    CAS  Google Scholar 

  • Altimir, N., Tuovinen, J. P., Vesala, T., Kulmala, M., & Hari, P. (2004). Measurements of ozone removal by Scots pine shoots: Calibration of a stomatal uptake model including the non-stomatal component. Atmospheric Environment, 38(15), 2387–2398.

    CAS  Google Scholar 

  • Alvarado, A., Baldini, A., & Guajardo, F. (Eds.). (2013). Programa de arborización: Un chileno, un árbol: Árboles urbanos de Chile. Gobierno de Chile: Guía de Reconocimiento.

    Google Scholar 

  • ANAC. (2016). Retrieved 31 January 2017, from http://www.anac.cl/uploads/web/Conferencia%20de%20Prensa%20-%20Enero%202017.pdf

  • Arneth, A., Monson, R. K., Schurgers, G., Niinemets, U., & Palmer, P. I. (2008). Why are estimates of global terrestrial isoprene emissions so similar (and why in this not so for monoterpenes). Atmospheric Chemistry and Physics, 8(16), 4605–4620.

    CAS  Google Scholar 

  • Artaxo, P., Oyola, P., & Martínez, R. (1999). Aerosol composition and source apportionment in Santiago de Chile. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 150(1), 409–416.

    CAS  Google Scholar 

  • Astudillo, P., Mancilla, P., Olmos, C., & Reyes, Á. (2012). Epidemiology of pediatric respiratory consultations in Santiago de Chile, from 1993 to 2009. Revista Panamericana de Salud Pública, 32, 56–61.

    Google Scholar 

  • Atkinson, R. (1990). Gas-phase tropospheric chemistry of organic compounds: A review. Atmospheric Environment Part A. General Topics, 24(1), 1–41.

    Google Scholar 

  • Avolio, M. L., Pataki, D. E., Pincetl, S., Gillespie, T. W., Jenerette, G. D., & McCarthy, H. R. (2015). Understanding preferences for tree attributes: The relative effects of socio-economic and local environmental factors. Urban Ecosystems, 18(1), 73–86.

    Google Scholar 

  • Badiu, D. L., Ioja, C. I., Patroescua, M., Breuste, J., Artmann, M., Nita, M. R., Gradinarua, S. R., Hossu, C. A., & Onose, D. A. (2016). Is urban green space per capita a valuable target to achieve cities’sustainability goals? Romania as a case study. Ecological Indicators, 70, 53–66.

    Google Scholar 

  • Barrios, S., Peña-Cortés, F., & Osses, S. (2004). Efectos de la contaminación atmosférica por material particulado en las enfermedades respiratorias agudas en menores de 5 años. Ciencia y enfermería, 10(2), 21–29.

    Google Scholar 

  • Bell, M., McDermott, A., Zeger, S., Samet, J., & Dominici, F. (2004). Ozone and short-term mortality in 95 US urban communities, 1987–2000. JAMA, 292(19), 2372–2378.

    CAS  Google Scholar 

  • Bon, D., Ulbrich, I., Gouw, J., Warneke, C., Kuster, W., Alexander, M., Baker, A., Beyersdorf, A., Blake, D., Fall, R., Jiménez, J., Herndon, S., Huey, L., Knighton, O., Springston, J., & Vargas, O. (2011). Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: Measurement comparison, emission ratios, and source attribution. Atmospheric Chemistry and Physic, 11, 2399–2421.

    CAS  Google Scholar 

  • Bowman, F. M., & Seinfeld, J. H. (1994). Ozone productivity of atmospheric organics. Journal of Geophysical Research, 99(D3), 5309–5324.

    CAS  Google Scholar 

  • Burnett, R., Smith-Doiron, M., Stieb, D., Raizenne, M., Brook, J., Dales, R., Leech, J., Cakmak, S., & Krewski, D. (2001). Association between ozone and hospitalization for acute respiratory diseases in children less than 2 years of age. American Journal of Epidemiology, 153(5), 444–452.

    CAS  Google Scholar 

  • Cakmak, S., Dales, R. E., & Vidal, C. B. (2007). Air pollution and mortality in Chile: Susceptibility among the elderly. Environmental Health Perspectives, 115, 524–527.

    Google Scholar 

  • Calfapietra, C., Mugnozza, G. S., Karnosky, D. F., Loreto, F., & Sharkey, T. D. (2008). Isoprene emission rates under elevated CO2 and O3 en two field-grown aspen clones differing in their sensitivity to O3. New Phytologist, 179(1), 55–61.

    CAS  Google Scholar 

  • Calfapietra, C., Fares, S., & Loreto, F. (2009). Volatile organic compounds from Italian vegetation and their interaction with ozone. Environmental Pollution, 157(5), 1478–1486.

    CAS  Google Scholar 

  • Calzolai, G., Lucarelli, F., Chiari, M., Nava, S., Giannoni, M., Carraresi, L., & Vecchi, R. (2015). Improvements in PIXE analysis of hourly particulate matter samples. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 363, 99–104.

    CAS  Google Scholar 

  • Castañeda-Miranda, A. G., Chaparro, M. A., Chaparro, M. A., & Böhnel, H. N. (2016). Magnetic properties of Tillandsia recurvata L. and its use for biomonitoring a Mexican metropolitan area. Ecological Indicators, 60, 125–136.

    Google Scholar 

  • CEPAL/OCDE. (2016). Evaluaciones del desempeño ambiental: Chile 2016. Santiago. Retrieved 20 January 2017, from http://repositorio.cepal.org/bitstream/handle/11362/40308/S1600413_es.pdf

  • Chameides, W. L., Fehsenfeld, F., Rodgers, M. O., Cardelino, C., Martínez, J., Parrish, D., Lonneman, W., Lawson, D. R., Rasmussen, R. A., Zimmerman, P., Greenberg, J., Middleton, P., & Wang, T. (1992). Ozone precursor relationships in the ambient atmosphere. Journal of Geophysical Research: Atmospheres, 97(D5), 6037–6055.

    CAS  Google Scholar 

  • Chen, T. Y., & Jang, M. (2012). Secondary organic aerosol formation from photooxidation of a mixture of dimethyl sulfide and isoprene. Atmospheric Environment, 46, 271–278.

    CAS  Google Scholar 

  • Cheung, K., Daher, N., Kam, W., Shafer, M., Ning, Z., Schauer, J., & Sioutas, C. (2011). Spatial and temporal variation of chemical composition and mass closure of ambient coarse particulate matter (PM10–2.5) in the Los Angeles area. Atmospheric Environment, 45(16), 2651–2662.

    CAS  Google Scholar 

  • CONAMA. (1997). Inventario de Emisiones Atmosféricas de la Región Metropolitana para 1997 y Proyecciones al 2005. Chile: Centro Nacional del Medio Ambiente, CENMA.

    Google Scholar 

  • Corchnoy, S. B., Arey, J., & Atkinson, R. (1992). Hydrocarbon emissions from twelve urban shade trees of the Los Angeles, California, Air Basin. Atmospheric Environment. Part B. Urban Atmosphere, 26(3), 339–348.

    Google Scholar 

  • Costanza, R., Fisher, B., Mulder, K., Liu, S., & Christopher, T. (2007). Biodiversity and ecosystem services: A multi-scale empirical study of the relationship between species richness and net primary production. Ecological Economics, 61(2), 478–491.

    Google Scholar 

  • Criollo, C., Assar, R., Cáceres, D., & Préndez, M. (2016). Urban trees, air quality and respiratory diseases in six communes of the province of Santiago, Chile. Revista chilena de enfermedades respiratorias, 32(2), 77–86.

    Google Scholar 

  • D N° 198. (2006). Decree 198/06 Regulation of Law 1356 of Buenos Aires, Agency of Environmental Protection Argentina. Quarterly report on air quality, Matanza-Riachuelo basin, period December 2010 – January – February 2011. Retrieved 2 January 2017, from www.acumar.gov.ar/Informes/Control/CalAmb/Abril2011/AIRE/INFORMES/Informe%20CABA/Informe%20GCABA_DIC-ENE-FEB%20ACUMAR%202011.pdf

  • D N° 59113. (2013). State Decree No. 59113 of 04/23/2013, Establishes new air quality standards and provides related measures. Retrieved 2 January 2017, from http://www.al.sp.gov.br/repositorio/legislacao/decreto/2013/decreto-59113-23.04.2013.html

  • Das, S., & Prasad, P. (2010). Seasonal variation in air pollution tolerance indices and selection of plant species for industrial areas of Rourkela. International Journal of Environmental Protection, 30, 978–988.

    CAS  Google Scholar 

  • Sienra, M., Rosazza, N. G., & Préndez, M. (2005). Polycyclic aromatic hydrocarbons and their molecular diagnostic ratios in urban atmospheric respirable particulate matter. Atmospheric Research, 75(4), 267–281.

    Google Scholar 

  • Derwent, R. G., Jenkin, M. E., Passant, N. R., & Pilling, M. J. (2007). Photochemical ozone creation potentials (POCPs) for different emission sources of organic compounds under European conditions estimated with a master chemical mechanism. Atmospheric Environment, 41(12), 2570–2579.

    CAS  Google Scholar 

  • Díaz-Robles, L. A., Fu, J. S., Vergara-Fernández, A., Etcharren, P., Schiappacasse, L. N., Reed, G. D., & Silva, M. P. (2014). Health risks caused by short term exposure to ultrafine particles generated by residential wood combustion: A case study of Temuco, Chile. Environment International, 66, 174–181.

    Google Scholar 

  • Dineva, S. B. (2006). Development of the leaf blades of Acer platanoides in industrially contaminated environment. Dendrobiology, 55, 25–32.

    CAS  Google Scholar 

  • Donoso, C. (Ed.). (2005). Las especies arbóreas de los bosques templados de Chile y Argentina. Autoecología. Valdivia: Marisa Cúneo Ediciones.

    Google Scholar 

  • DS 112/02. (2002). DS 112/02 Decreto Supremo. Ministerio Secretaría General de la Presidencia de la República (MSGPR). Chile. Norma de Calidad Primaria de Aire para Ozono. Retrieved 19 January 2017, from https://www.leychile.cl/Navegar?idNorma=208198.

  • DS 12. (2011). Primary environmental air quality standard for respirable fine particulate matter PM2.5 [On-line]. Retrieved from https://www.leychile.cl/Navegar?idNorma=135826. (in Spanish).

  • DS 59. (1998). Primary air quality standard for PM10. Retrieved from https://www.leychile.cl/Navegar?idNorma=99434

  • DS 74-2001-PCM. (2001). Reglamento de Estándares Nacionales de Calidad Ambiental del Aire. Ministerio del Ambiente, Perú. Retrieved 19 January 2017, from http://www.minam.gob.pe/calidadambiental/estandares-de-calidad-ambiental/

  • EC Ozone Directive. (2016). The current ozone directive and other relevant legislation, 2016. Retrieved from http://www.eea.europa.eu/publications/TOP08-98/page006.html. Accessed 19 January 2017.

  • Egas, C. (2017). Características biológicas del arbolado urbano para contribuir con criterios de selección de especies arbóreas (Tesis de Magíster en Gestión y Planificación Ambiental). Programa Interfacultades, Universidad de Chile.

    Google Scholar 

  • Escobedo, F., Nowak, D. J., Wagner, J. E., De la Maza, C. L., Rodríguez, M., Crane, D. E., & Hernández, J. (2006). The socioeconomics and management of Santiago de Chile’s public urban forests. Urban Forestry & Urban Greening, 4(3), 105–114.

    Google Scholar 

  • Escobedo, F. J., Wagner, J., Nowak, D. J., De la Maza, C. L., Rodríguez, M., & Crane, D. (2008). Analyzing the cost-effectiveness of Santiago, Chile’s policy of using urban forests to improve air quality. Journal of Environmental Management, 86, 148–157.

    Google Scholar 

  • Escobedo, F. J., Kroeger, T., & Wagner, J. E. (2011). Urban forests and pollution mitigation: Analyzing ecosystem services and disservices. Environmental Pollution, 159(8), 2078–2087.

    CAS  Google Scholar 

  • EU. (2008). Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Retrieved 19 January 2017, from http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32008L0050

  • European Economic Commission. (1991). Protocol to the 1979 convention on long-range transboundary air pollution concerning the control of emissions of volatile organic compounds or their transboundary fluxes. Article 1. Definitions: point 9. Retrieved in October 2017, from http://www.unece.org/fileadmin/DAM/env/lrtap/full%20text/1991.VOC.e.pdf

  • Evans, R. C., Tingey, D. T., Gumpertz, M. L., & Burns, W. F. (1982). Estimates of isoprene and monoterpene emission rates in plants. Botanical Gazette, 143(3), 304–310.

    CAS  Google Scholar 

  • Figueroa, J. A., Teillier, S., Guerrero-Leiva, N., Ray-Bobadilla, C., Rivano, S., Saavedra, D., & Castro, S. (2016). Vascular flora in public spaces of Santiago, Chile. Flora vascular en el espacio público de Santiago, Chile. Gayana Botanica, 73(1), 85.

    Google Scholar 

  • Finlayson-Pitts, B., & Pitts, J. N. (1997). Tropospheric air pollution: Ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles. Science, 276(5315), 1045–1051.

    CAS  Google Scholar 

  • Franck, U., Leitte, A. M., & Suppan, P. (2015). Multifactorial airborne exposures and respiratory hospital admissions-the example of Santiago de Chile. Science of the Total Environment, 502, 114–121.

    CAS  Google Scholar 

  • Fuentealba, R. (2015). Estudio diurno y nocturno del material particulado MP2,5 y MP10 en la Comuna de Independencia, Santiago, Chile (Memoria para optar al Título de Químico). Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile.

    Google Scholar 

  • Fuentealba, R. (2017). Estudio de métodos no destructivos nucleares y atómicos de análisis multielemental. Aplicación al material particulado resuspendido en comunas de la Ciudad de Santiago, Chile. (Diplomado en Tecnología Nuclear). Universidad Tecnológica Metropolitana.

    Google Scholar 

  • Gastelum, S. L., Mejía-Velázquez, G. M., & Lozano-García, D. F. (2016). Remote sensing estimation of isoprene and monoterpene emissions generated by natural vegetation in Monterrey, Mexico. Environmental Monitoring and Assessment, 188(6), 1–16.

    CAS  Google Scholar 

  • Gazley, M. F., & Fisher, L. A. (2014). A review of the reliability and validity of portable X-ray fluorescence spectrometry (pXRF) data. In Mineral resource and ore reserve estimation–The AusIMM guide to good practice (pp. 69–82).

    Google Scholar 

  • Geron, C., Guenther, A., Greenberg, J., Loescher, H. W., Clark, D., & Baker, B. (2002). Biogenic volatile organic compound emissions from a lowland tropical wet forest in Costa Rica. Atmospheric Environment, 36, 3793–3802.

    CAS  Google Scholar 

  • Gostin, I. N. (2009). Air pollution effects on the leaf structure of some Fabaceae species. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(2), 57.

    Google Scholar 

  • Gramsch, E., Caceres, D., Oyola, P., Reyes, F., Vásquez, Y., Rubio, M. A., & Sánchez, G. (2014). Influence of surface and subsidence thermal inversion on PM2.5 and black carbon concentration. Atmospheric Environment, 98, 290–298.

    CAS  Google Scholar 

  • Guéguen, F., Stille, P., & Millet, M. (2011). Air quality assessment by tree bark biomonitoring in urban, industrial and rural environments of the Rhine Valley: PCDD/Fs, PCBs and trace metal evidence. Chemosphere, 85(2), 195–202.

    Google Scholar 

  • Guenther, A., Zimmerman, P., & Harley, P. (1993). Isoprene and monoterpene variability: Model evaluations and sensitivity analysis. Journal of Geophysical Research, 98, 609–617.

    Google Scholar 

  • Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., & Zimmerman, P. (1995). A global model of natural volatile organic compound emissions. Journal of Geophysical Research, 100, 8873–8892.

    CAS  Google Scholar 

  • Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., & Wang, X. (2012). The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5, 1471–1492. https://doi.org/10.5194/gmd-5-1471-2012.

    Article  CAS  Google Scholar 

  • Guerrero-Leiva, N., Castro, S. A., Rubio, M. A., & Ortiz-Calderón, C. (2016). Retention of atmospheric particulate by three Woody ornamental species in Santiago, Chile. Water, Air, and Soil Pollution, 227, 435. https://doi.org/10.1007/s11270-016-3124-4.

    Article  CAS  Google Scholar 

  • Gutiérrez, P. (2005). 84 árboles para las ciudades de Chile. Escuela de Ingeniería Forestal. Santiago: Ediciones Universidad Mayor.

    Google Scholar 

  • Heath, R. L., & Taylor, G. E. (1997). Physiological processes and plant responses to ozone exposure. In H. Sandermann (Ed.), Forest decline and ozone: A comparison of controlled chamber and field experiments, Ecological studies (Vol. 127, pp. 317–368). Heidelberg: Springer.

    Google Scholar 

  • Hebbert, M., & Webb, B. (2012). Towards a liveable urban climate – Lessons from Stuttgart. In C. Gossop (Ed.), Liveable cities: Urbanising world (ISOCARP 07) (pp. 132–150). London/New York: Routledge.

    Google Scholar 

  • Hernández, H. J. (2016). Estructura y composición del arbolado de Santiago: actualización al 2014. Informe de Proyecto Fondecyt 1140319: Vegetation Knowledge-based Indicators for Urban Sustainable Planning. Retrieved from: http://www.gep.uchile.cl/ecourbe

  • Hitzenberger, R., Berner, A., Galambos, Z., Maenhaut, W., Cafmeyer, J., Schwarz, J., Müller, K., Spindler, G., Wieprecht, W., Acker, K., Hillamo, R., & Mäkelä, T. (2004). Intercomparison of methods to measure the mass concentration of the atmospheric aerosol during INTERCOMP2000 – Influences of instrumentation and size cuts. Atmospheric Environment, 38, 6467–6476.

    CAS  Google Scholar 

  • Hoffmann, A. (1998a). El Árbol Urbano en Chile. Santiago: Ediciones Fundación Claudio Gay.

    Google Scholar 

  • Hoffmann, A. (1998b). Flora Silvestre de Chile, Zona Central. Santiago: Ediciones Fundación Claudio Gay.

    Google Scholar 

  • IDEAM. (2016). Informe del Estado de la Calidad del Aire en Colombia 2011–2015, 2016. Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). Retrieved 23 January 2017, from http://www.ideam.gov.co/web/atencion-y-participacion-ciudadana/publicaciones-ideam#

  • INE. (2016). Anuarios Parque de Vehículos en Circulación. Retrieved from http://www.ine.cl/canales/chile_estadistico/estadisticas_economicas/transporte_y_comunicaciones/parquevehiculos.php Accessed 30 January 2017

  • International Federation of Parks and Recreation Administration (IFPRA). (2010). World Congress, Hong Kong, City Hall, Aldous DE Greening South East Asian Capital Cities. In Paper of the 22nd 15–18 November 2010.

    Google Scholar 

  • Kabisch, N., Strohbach, M. & Haase, D. (2015). Internal project report on inventory of urban green space demand for the two scale levels, ULLS and European urban atlas cities (Milestone report MS 24).

    Google Scholar 

  • Kampa, M., & Castanas, E. (2008). Human health effects of air pollution. Environmental Pollution, 151, 362–367.

    CAS  Google Scholar 

  • Kesselmeier, J., & Staudt, M. (1999). Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology. Journal of Atmospheric Chemistry, 33(1), 23–88.

    CAS  Google Scholar 

  • Khalil, R. (2014). Quantitative evaluation of distribution and accessibility of urban green spaces (Case study: City of Jeddah). International Journal of Geomatics and Geosciences, 4(3), 526–535.

    Google Scholar 

  • Kim, H., Barkey, B., & Paulson, S. E. (2012). Real refractive indices and formation yields of secondary organic aerosol generated from photooxidation of limonene and alpha-pinene: The effect of the HC/NOx ratio. The Journal of Physical Chemistry A, 116(24), 6059–6067.

    CAS  Google Scholar 

  • Kim, H., Liu, S., Russell, L. M., & Paulson, S. E. (2014). Dependence of real refractive indices on O:C, H:C and mass fragments of secondary organic aerosol generated from ozonolysis and photooxidation of limonene and alpha-pinene. Aerosol Science and Technology, 48(5), 498–507.

    CAS  Google Scholar 

  • Kim, K. H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136–143.

    CAS  Google Scholar 

  • Koeser, A. K., Gilman, E. F., Paz, M., & Harchick, C. (2014). Factors influencing urban tree planting program growth and survival in Florida, United States. Urban Forestry & Urban Greening, 13, 655–661.

    Google Scholar 

  • Leiva, M., Santibañez, D., Ibarra, S., Matus, P., & Seguel, R. (2013). A five-year study of particulate matter (PM2.5) and cerebrovascular diseases. Environmental Pollution, 181, 1–6.

    Google Scholar 

  • Liu, L., Yu, L. Y., Mu, H. J., Xing, L. Y., Li, Y. X., & Pan, G. W. (2014). Shape of concentration-response curves between long-term particulate matter exposure and morbidities of chronic bronchitis: A review of epidemiological evidence. Journal of Thoracic Disease, 6(7), S720.

    Google Scholar 

  • Lukjanova, A., & Mandre, M. (2010). Effects of alkalization of the environment on the anatomy of scots pine (Pinus sylvestris) needles. Water, Air, and Soil Pollution, 206, 13–22.

    CAS  Google Scholar 

  • Machler, F., Wasescha, M. R., Krieg, F., & Oertli, J. J. (1995). Damage by ozone and protection by ascorbic acid in barley leaves. Journal of Plant Physiology, 147, 469–473.

    Google Scholar 

  • Maenhaut, W., Raes, N., & Wang, W. (2011). Analysis of atmospheric aerosols by particle-induced X-ray emission, instrumental neutron activation analysis, and ion chromatography. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 269(22), 2693–2698.

    CAS  Google Scholar 

  • Marié, D. C., Chaparro, M. A., Irurzun, M. A., Lavornia, J. M., Marinelli, C., Cepeda, R., Böhnel, H., Castañeda, A. G., & Sinito, A. M. (2016). Magnetic mapping of air pollution in Tandil city (Argentina) using the lichen Parmotrema pilosum as biomonitor. Atmospheric Pollution Research, 7(3), 513–520.

    Google Scholar 

  • Matus, P., & Lucero, R. (2002). Norma Primaria de Calidad del Aire. Revista Chilena de Enfermedades Respiratorias, 18(2), 112–122.

    Google Scholar 

  • Mauderly, J. L., & Samet, J. M. (2009). Is there evidence for synergy among air pollutants in causing health effects? Environmental Health Perspectives, 117(1), 1–6.

    CAS  Google Scholar 

  • McConnell, R., Berhane, K., Gilliland, F., London, S., Islam, T., Gauderman, J., Avol, E., Margolis, H., & Peters, J. (2002). Asthma in exercising children exposed to ozone: A cohort study. The Lancet, 359, 386–391.

    CAS  Google Scholar 

  • Mesquita, P. R., Nunes, E. C., dos Santos, F. N., Bastos, L. P., Costa, M. A., Rodrígues, F., & de Andrade, J. (2017). Discrimination of Eugenia uniflora L. biotypes based on volatile compounds in leaves using HS-SPME/GC–MS and chemometric analysis. Microchemical Journal, 130, 79–87.

    CAS  Google Scholar 

  • Millward, A. A., & Sabir, S. (2011). Benefits of a forested urban park: What is the value of Allan Gardens to the city of Toronto, Canada? Landscape and Urban Planning, 100, 177–188.

    Google Scholar 

  • MMA. (2013). First annual report on the environment status. Ministerio del Medio Ambiente. Gobierno de Chile. Retrieved from http://www.mma.gob.cl/1304/w3-article-55917.html

  • MMA. (2014). Planes de Descontaminación Atmosférica Estrategia 2014–2018. Ministerio del Medio Ambiente. Gobierno de Chile. Retrieved 20 January 2017, from http://www.mma.gob.cl/1304/w3-article-55917.html

  • MMA. (2016). Informe Final para la Gestión de Episodios Críticos de Contaminación Atmosférica por Material Particulado Respirable (MP10), Periodo 2016. Secretaria Regional Ministerial (SEREMI) del Medio Ambiente, Región Metropolitana. Ministerio del Medio Ambiente. Gobierno de Chile. Retrieved from http://portal.mma.gob.cl/wp-content/uploads/2017/01/INFORME-_GEC_Fin-2016_EFA.pdf

  • MMAYA. (2015). Informe Nacional de Calidad del Aire de Bolivia 2014–2015. Ministerio de Medio Ambiente y Agua (MMAYA). Estado Plurinacional de Bolivia. Retrieved 23 January 2017, from http://snia.mmaya.gob.bo/modulos/pngca/#

  • Morani, A., Nowak, D. J., Hirabayashi, S., & Calfapietra, C. (2011). How to select the best tree planting locations to enhance air pollution removal in the million trees NYC initiative. Environmental Pollution, 159(5), 1040–1047.

    CAS  Google Scholar 

  • Morar, T., Radoslav, R., Spiridon, L., & Păcurar, L. (2014). Assessing pedestrian accessibility to green space using GIS Transylvanian. Review of Administrative Sciences, 42, 116–139.

    Google Scholar 

  • Muñoz, D., Aguilar, B., Fuentealba, R., & Préndez, M. (2017). Environmental studies in two communes of Santiago de Chile by the analysis of magnetic properties of particulate matter deposited on leaves of roadside trees. Atmospheric Environment, 152, 617–627.

    Google Scholar 

  • Myhre, G., Shindell, D., Bréon, F. M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J. F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., & Zhang, H. (2013). Anthropogenic and natural radiative forcing. In T. F. Stocker (Ed.), Climate change 2013: The physical science base, contribution of working group 1 to the fifth assessment report of the intergovernmental panel on climate change (pp. 659–740). Cambridge/New York: Cambridge University Press.

    Google Scholar 

  • NA-AI-001. (2003). Ministry of the Environment, Dominican Republic. In Environmental standards for air quality and emission control. Retrieved from http://www.ambiente.gob.do/transparencia/wp-content/uploads/2015/06/Normas-Ambientales-de-Calidad-Aire-y-Control-de-Emisiones.pdf

  • NCAA. (2011). Norma Ecuatoriana de Calidad de Aire Ambiental. Ministerio del Medio Ambiente. Gobierno Nacional de la República del Ecuador. Retrieved 23 January 2017, from http://www.quitoambiente.gob.ec/ambiente/index.php/informes#norma-ecuatoriana-de-la-calidad-del-aire

  • Nilo, C. (2003). Plan Verde: Un instrumento para la gestión y el fomento de áreas verdes en el Gran Santiago. Urbano, 6(8), 10–15.

    Google Scholar 

  • NOM-020-SSA1. (2014). Norma Oficial Mexicana, Salud ambiental. Valores límite permisibles para la concentración de partículas suspendidas PM10 y PM2.5 en el aire ambiente y criterios para su evaluación. Retrieved October 30, 2018, from http://www.dof.gob.mx/nota_detalle.php?codigo=5357042&fecha=20/08/2014

  • OECD. (2016). Retrieved from http://www.oecdbetterlifeindex.org/en/countries/chile-es/

  • Ortiz, J., Apablaza, N., Campos, C., Zolezzi, S., & Préndez, M. (1993). Tropospheric aerosols above the thermal inversion layer of Santiago, Chile: Size distribution of elemental concentration. Atmospheric Environment. Part A. General Topics, 27(3), 397–399.

    Google Scholar 

  • Ostro, B., Sánchez, J. M., Aranda, C., & Eskeland, G. S. (1996). Air pollution and mortality: Results from Santiago, Chile. Journal of Exposure Analysis and Environmental Epidemiology, 6, 97–114.

    CAS  Google Scholar 

  • Oyarzún, M. (2010). Contaminación aérea y sus efectos en la salud. Revista Chilena de Enfermedades Respiratorias, 26(1), 16–25.

    Google Scholar 

  • Pafi, M., Siragusa, A., Ferri, S., & Halkia, M. (2016). A comparison of the green ESM with other datasets in four European cities. Measuring the accessibility of urban green areas. Technical report, joint research centre, European Commission. JRC science hub. Retrieved 31 March 2017, from https://www.ec.europa.eu/jrc

  • Paoletti, E. (2009). Ozone and urban forests in Italy. Environmental Pollution, 157, 1506–1512.

    CAS  Google Scholar 

  • Peñuelas, J., & Lluisà, J. (2002). Linking photorespiration, monoterpenes and thermotolerance in Quercus. New Phytologist, 155, 227–237.

    Google Scholar 

  • Peñuelas, J., & Staudt, M. (2010). BVOCs and global change. Trends in Plant Science, 15(3), 133–144.

    Google Scholar 

  • Pichersky, E., & Gershenzon, J. (2002). The formation and function of plant volatiles: Perfumes for pollinator attraction and defense. Current Opinion in Plant Biology, 5, 237–243.

    CAS  Google Scholar 

  • Pope, C., Renlund, D., Kfoury, A., May, H., & Horne, B. (2008). Relation of heart failure hospitalization to exposure to fine particulate air pollution. The American Journal of Cardiology, 102(9), 1230–1234.

    Google Scholar 

  • Prajapati, S. K., & Tripathi, B. D. (2008). Seasonal variation of leaf dust accumulation and pigment content in plant species exposed to urban particulates pollution. Journal of Environmental Quality, 37(3), 865–870.

    CAS  Google Scholar 

  • Préndez, M. (1993). Características de los Contaminantes Atmosféricos. In H. Sandoval (Ed.), Contaminación Atmosférica de Santiago: Estado Actual y Soluciones. Santiago: Universidad de Chile y Comisión Especial de Descontaminación de la Región Metropolitana.

    Google Scholar 

  • Préndez, M., Ortiz, J. L., Cortés, E., & Cassorla, V. (1984). Elemental composition of airborne particulate matter from Santiago City, Chile, 1976. Journal of the Air Pollution Control Association, 34(1), 54–56.

    Google Scholar 

  • Préndez, M., Ortiz, J., Zolezzi, S., Campos, C., & Apablaza, N. (1991). Aerosoles atmosféricos de naturaleza inorgánica. Contaminación en Santiago de Chile. Revista Chilena de Enfermedades Respiratorias, 7(4), 224–237.

    Google Scholar 

  • Préndez, M., Egido, M., Tomas, M., Seco, J., Calvo, A. R., & Romero, H. (1995). Correlation between solar radiation and total suspended particulate matter in Santiago, Chile. Atmospheric Environment, 29, 1543–1551.

    Google Scholar 

  • Préndez, M., Punta, A., Sepúlveda, J., & Medina, P. (2007, September 5–7). Vehículos diesel livianos y medianos de tecnologías nuevas como fuente de material particulado (Paper presented at the V Congreso Interamericano de la Calidad del Aire, Santiago).

    Google Scholar 

  • Préndez, M., Alvarado, G., & Serey, I. (2011). Some guidelines to improve air quality management in Santiago, Chile: From commune to basin level. In N. Mazzeo (Ed.), Air quality monitoring, assessment and management (pp. 305–328). Rijeka: Intech.

    Google Scholar 

  • Préndez, M., Carvajal, V., Corada, K., Morales, J., Alarcón, F., & Peralta, H. (2013a). Biogenic volatile organic compounds from the urban forest of the metropolitan region, Chile. Environmental Pollution, 183, 143–150.

    Google Scholar 

  • Préndez, M., Corada, K., & Morales, J. (2013b). Emission factors of biogenic volatile organic compounds in various stages of growth present in the urban forest of the metropolitan region, Chile. Research Journal of Chemistry and Environment, 17(11), 108–116.

    Google Scholar 

  • Préndez, M., Corada, K., & Morales, J. (2014). Natural organic compounds from the urban forest of the metropolitan region, Chile: Impact on air quality. In K. Chetehouna (Ed.), Volatile organic compounds (pp. 103–142). New York: Nova Sciences Publishers Inc..

    Google Scholar 

  • Raynor, P., Leith, D., Lee, K., & Mukund, R. (2011). Sampling and analysis using filters. In P. Kulkarni (Ed.), Aerosol Measurements. Principles Techniques and Applications (pp. 107–128). Hoboken: Wiley.

    Google Scholar 

  • Reyes-Päcke, S., & Figueroa-Aldunce, I. M. (2010). Distribución, superficie y accesibilidad de las áreas verdes en Santiago de Chile. EURE (Santiago), 36(109), 89–110.

    Google Scholar 

  • Richter, P., Griño, P., Ahumada, I., & Giordano, A. (2007). Total element concentration and chemical fractionation in airborne particulate matter from Santiago, Chile. Atmospheric Environment, 41(32), 6729–6738.

    CAS  Google Scholar 

  • Riedemann, P., & Aldunate, G. (2004). Flora nativa de valor ornamental, identificación y propagación, Chile, Zona centro. Santiago: Editorial Andrés Bello.

    Google Scholar 

  • Rinne, H. J., Guenther, A., Greenberg, J., & Harley, P. C. (2002). Isoprene and monoterpene fluxes measured above Amazonian rainforest and their dependence on light and temperature. Atmospheric Environment, 36, 2421–2426.

    CAS  Google Scholar 

  • Román, O., Prieto, M., Mancilla, P., Astudillo, P., Dussaubat, A., Miguel, C., & Lara, J. (2009). Daño cardiovascular por material particulado del aire. Puesta al día 2008. Revista Médica de Chile, 137(9), 1217–1224.

    Google Scholar 

  • Romieu, I., Gouveia, N., Cifuentes, L. A., de León, A. P., Junger, W., Vera, J., Strappa, V., Hurtado-Díaz, M., Miranda-Soberanis, V., Rojas-Bracho, L., Carbajal-Arroyo, L., Tzintzun-Cervantes, G., & HEI Health Review Committee. (2012). Multicity study of air pollution and mortality in Latin America (the ESCALA study). Research Report (Health Effects Institute), 171, 5–86.

    Google Scholar 

  • Rouillon, M., & Taylor, M. P. (2016). Canfield portable X-ray fluorescence (pXRF) produces high quality data for application in environmental contamination research? Environmental Pollution, 214, 255–264.

    CAS  Google Scholar 

  • Rubio, M. A., Zamorano, N., Lissi, E., Rojas, A., Gutierrez, L., & von Baer, D. (2006). Volatile carbonylic compounds in downtown Santiago, Chile. Chemosphere, 62, 1011–1020.

    CAS  Google Scholar 

  • Saadabi, A. M. (2011). Effects of auto-exhaust pollution on the micro-morphology and leaf epidermal features of ornamental plants in Khartoum, Sudan. Journal of Applied Sciences Research, 7, 270–273.

    CAS  Google Scholar 

  • Samet, J. M., Gruskin, S., & Grp, F. I. (2015). Air pollution, health, and human rights. The Lancet Respiratory Medicine, 3, 98–100.

    Google Scholar 

  • Sánchez-Duque, A., Bautista, F., Goguitchaichvili, A., Cejudo-Ruiz, R., Reyes-López, J. A., Solís-Domínguez, F. A., & Morales-Contreras, J. J. (2015). Evaluación de la contaminación ambiental a partir del aumento magnético en polvos urbanos-Caso de estudio para la ciudad de Mexicali, México. Revista Mexicana de Ciencias Geológicas, 32(3), 501–513.

    Google Scholar 

  • Seguel, R., Morales, R., & Leiva, M. (2009). Estimations of primary and secondary organic carbon formation in PM2.5 aerosols of Santiago City, Chile. Atmospheric Environment, 43, 2125–2131.

    Google Scholar 

  • Seguel, R. J., Morales, R. G., & Leiva, M. A. (2012). Ozone weekend effect in Santiago, Chile. Environmental Pollution, 162, 72–79.

    CAS  Google Scholar 

  • Sigman, R., Hilderink, H., Delrue, N., Braathen, N. A. & Leflaive, X. (2012). Health and environment. In OECD (Ed.), OECD environmental outlook to 2050: The consequences of inaction. Paris: OECD Publishing. Retrieved from https://doi.org/10.1787/env_outlook-2012-9.

  • SINCA. (2016). Sistema de Información Nacional de Calidad del Aire (SINCA). Ministerio del Medio Ambiente (MMA). Gobierno de Chile. Retrieved 29 December 2016, from http://sinca.mma.gob.cl/index.php/region/index/id/M

  • SINCA. (2017). Sistema Nacional de Calidad del Aire (SINCA). Ministerio del Medio Ambiente (MMA). Gobierno de Chile. Retrieved 20 January 2017, from http://sinca.mma.gob.cl/index.php/pagina/index/id/glosario

  • Sitch, S., Cox, P. M., Collins, W. J., & Huntingford, C. (2007). Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature, 448, 791–794. https://doi.org/10.1038/nature06059.

    Article  CAS  Google Scholar 

  • Soja, G., & Soja, A. M. (1995). Ozone effects on dry matter partitioning and chlorophyll fluorescence during plant development of wheat. Water, Air and Soil Pollution, 85, 1461–1466.

    CAS  Google Scholar 

  • Solomon, P., & Sioutas, C. (2008). Continuous and semi-continuous monitoring techniques for particulate matter mass and chemical components: A synthesis of findings from EPA’s particulate matter supersites program and related studies. Journal of the Air & Waste Management Association, 58, 164–195.

    CAS  Google Scholar 

  • Speer, J. H. (2010). Fundamentals of tree-ring research. Tucson: University of Arizona Press.

    Google Scholar 

  • Srimuruganandam, B., & Nagendra, S. S. (2012). Source characterization of PM 10 and PM 2.5 mass using a chemical mass balance model at urban roadside. Science of the Total Environment, 433, 8–19.

    CAS  Google Scholar 

  • Stewart, I. D., & Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879–1900.

    Google Scholar 

  • Thaiutsa, B., Puangchit, L., Kjelgren, R., & Arunpraparut, W. (2008). Urban green space, street tree and heritage large tree assessment in Bangkok, Thailand. Urban Forestry & Urban Greening, 7, 219–229.

    Google Scholar 

  • Tiwary, A., Sinnett, D., Peachey, C., Chalabi, Z., Vardoulakis, S., Fletcher, T., Leonardi, G., Grundy, C., Azapagic, A., & Hutchings, T. R. (2009). An integrated tool to assess the role of new planting in PM10 capture and the human health benefits: A case study in London. Environmental Pollution, 157, 2645–2653.

    CAS  Google Scholar 

  • Toro, R., Flocchini, R., Morales, R. G., & Leiva, M. A. (2014). Carbonaceous aerosols in fine particulate matter of Santiago Metropolitan Area, Chile. The Scientific World Journal, 2014(794590), 12.

    Google Scholar 

  • UN. (2016). Reporte de las Ciudades del Mundo, Conferencia ONU Hábitat III.

    Google Scholar 

  • UNA. (2016). Universidad Nacional (UNA). In Informe de Calidad del Aire del Área Metropolitana de Costa Rica: Años 2013–2015, 2016. Retrieved from http://www.nacion.com/vivir/ambiente/VI-INFORME-ANUAL-CALIDAD-AIRE_LNCFIL20160603_0001.pdf

  • USACH. (2014). Actualización y sistematización del inventario de emisiones de contaminantes atmosféricos en la Región Metropolitana Santiago de Chile (pp. 34–40). Santiago.

    Google Scholar 

  • USEPA. (1998). Environmental technology verification report, field portable X-ray fluorescence analyzer. Metorex X-MET 920-P. United States Environmental Protection Agency (USEPA). Retrieved 28 January 2017, from, http://nepis.epa.gov/Adobe/PDF/30003LR0.pdf

  • USEPA. (2008). Draft EPA SW-848 Method 6200. Field portable X-ray fluorescence spectrometry for the determination of elemental concentration in soil and sediment’, EPA office of solid waste. United States Environmental Protection Agency (USEPA).

    Google Scholar 

  • USEPA. (2009). Integrated science assessment for particulate matter (Final Report). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-08/139F, 2009.

    Google Scholar 

  • USEPA. (2015) National ambient air quality standards for ozone; Final rule. Retrieved 19 January 2017, from https://www.epa.gov/criteria-air-pollutants/naaqs-table

  • Valdés, A., Zanobetti, A., Halonen, J. I., Cifuentes, L., Morata, D., & Schwartz, J. (2012). Elemental concentrations of ambient particles and cause specific mortality in Santiago, Chile: A time series study. Environmental Health, 11(1), 82.

    Google Scholar 

  • Villalobos, A. M., Barraza, F., Jorquera, H., & Schauer, J. J. (2015). Chemical speciation and source apportionment of fine particulate matter in Santiago, Chile, 2013. Science of the Total Environment, 512, 133–142.

    Google Scholar 

  • Wang, L., Aleme, H., Passador, M., Furtado, E., Alves, F., Poppia, R., & Augusto, F. (2013a). Determination of disease biomarkers in eucalyptus by comprehensive two-dimensional gas chromatography and multivariate data analysis. Journal of Chromatography A, 1279, 86–91.

    Google Scholar 

  • Wang, L., Toledo, B., Alves, F., Pizetta, M., Geraldi, C., Furtado, E., & Augusto, F. (2013b). Comprehensive two-dimensional gas chromatography combined to multivariate data analysis for detection of disease-resistant clones of Eucalyptus. Talanta, 116, 1079–1084.

    Google Scholar 

  • Weindorf, D. C., Bakr, N., & Zhu, Y. (2014). Advances in portable X-ray fluorescence (PXRF) for environmental, pedological, and agronomic applications. Advances in Agronomy, 128, 1–45.

    Google Scholar 

  • WHO. (2000). Air quality guidelines for Europe. WHO Regional Publications, European Series 91, Copenhagen.

    Google Scholar 

  • WHO. (2003). Health aspects of air pollution with particulate matter, ozone and nitrogen dioxide. Bonn.

    Google Scholar 

  • WHO. (2005). World Health Organization air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global update 2005. Summary of risk assessment. Geneva: World Health Organization.

    Google Scholar 

  • WHO. (2014). Ambient (Outdoor) air pollution in cities database 2014 http://www.who.int/phe/health_topics/outdoorair/databases/cities/en/

  • Winer, A. M., Fitz, D. R., & Miller, P. R. (1983). Investigation of the role of natural hydrocarbons in photochemical smog formation in California. Contract No. AO-056-32, prepared for the California Air Resources Board, by the Statewide Air Pollution Research Center. Los Angeles: Riverside.

    Google Scholar 

  • WMO/IGAC. (2012). The impacts of megacities on air quality and climate change: An IGAC perspective. WMO/IGAC.

    Google Scholar 

  • World Bank. (1994). Chile-managing environmental problems: Economic analysis of selected issues, Report No.13061-CH. P 115. Washington, DC: The World Bank.

    Google Scholar 

  • Yang, J., McBride, J., Zhou, J., & Sun, Z. (2005). The urban forest in Beijing and its role in air pollution reduction. Urban Forestry & Urban Greening, 3, 65–78.

    Google Scholar 

  • Yang, J., Yu, Q., & Gong, P. (2008). Quantifying air pollution removal by green roofs in Chicago. Atmospheric Environment, 42, 7266–7273.

    CAS  Google Scholar 

  • Zereini, F., & Wiseman, C. L. (2010). Urban airborne particulate matter: Origin, chemistry, fate, and health impacts. Heidelberg: Springer.

    Google Scholar 

  • Zimmerman, P. R. (1979). Determination of emission rates of hydrocarbons from indigenous species of vegetation in the Tampa/St Petersburg, Florida Area. EPA Contract 904/9-77-0282.

    Google Scholar 

Download references

Acknowledgments

Projects REDES-Conicyt 140176 and 170074, and the undergraduate student of Chemistry Nathaly Godoy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Préndez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Préndez, M. et al. (2019). Urban Trees and Their Relationship with Air Pollution by Particulate Matter and Ozone in Santiago, Chile. In: Henríquez, C., Romero, H. (eds) Urban Climates in Latin America. Springer, Cham. https://doi.org/10.1007/978-3-319-97013-4_8

Download citation

Publish with us

Policies and ethics