Skip to main content

Renal Medullary Carcinoma

  • Chapter
  • First Online:
Rare Kidney Tumors

Abstract

First described in 1995 [1], renal medullary carcinoma (RMC) predominantly afflicts young adults and adolescents with sickle cell trait and is one of the most aggressive renal cell carcinomas [2, 3]. It arises from the renal papillae or calyceal epithelium of the renal medulla. In the original series by Davis et al. [1], the median overall survival of patients with RMC was only 4 months, and despite therapy it has only improved to 13 months in the most recent series of cases [3]. RMC is very rare, comprising <0.5% of all renal cell carcinomas [4], but its incidence is likely underestimated as it is a challenging diagnosis that can often be mistaken for collecting duct carcinoma or other aggressive kidney malignancies [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davis CJ Jr, Mostofi FK, Sesterhenn IA. Renal medullary carcinoma. The seventh sickle cell nephropathy. Am J Surg Pathol. 1995;19:1–11.

    Article  Google Scholar 

  2. Iacovelli R, Modica D, Palazzo A, Trenta P, Piesco G, Cortesi E. Clinical outcome and prognostic factors in renal medullary carcinoma: a pooled analysis from 18 years of medical literature. Can Urol Assoc J. 2015;9:E172–7.

    Article  Google Scholar 

  3. Shah AY, Karam JA, Malouf GG, et al. Management and outcomes of patients with renal medullary carcinoma: a multicentre collaborative study. BJU Int. 2017;120:782–92.

    Article  Google Scholar 

  4. Shuch B, Amin A, Armstrong AJ, et al. Understanding pathologic variants of renal cell carcinoma: distilling therapeutic opportunities from biologic complexity. Eur Urol. 2015;67:85–97.

    Article  Google Scholar 

  5. Amin MB, Smith SC, Agaimy A, et al. Collecting duct carcinoma versus renal medullary carcinoma: an appeal for nosologic and biological clarity. Am J Surg Pathol. 2014;38:871–4.

    Article  Google Scholar 

  6. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  Google Scholar 

  7. Wright JL, Risk MC, Hotaling J, Lin DW. Effect of collecting duct histology on renal cell cancer outcome. J Urol. 2009;182:2595–9.

    Article  Google Scholar 

  8. Tokuda N, Naito S, Matsuzaki O, et al. Collecting duct (Bellini duct) renal cell carcinoma: a nationwide survey in Japan. J Urol. 2006;176:40–3. discussion 3

    Article  Google Scholar 

  9. Alvarez O, Rodriguez MM, Jordan L, Sarnaik S. Renal medullary carcinoma and sickle cell trait: a systematic review. Pediatr Blood Cancer. 2015;62:1694–9.

    Article  Google Scholar 

  10. Dimashkieh H, Choe J, Mutema G. Renal medullary carcinoma: a report of 2 cases and review of the literature. Arch Pathol Lab Med. 2003;127:e135–8.

    PubMed  Google Scholar 

  11. Marsh A, Golden C, Hoppe C, Quirolo K, Vichinsky E. Renal medullary carcinoma in an adolescent with sickle cell anemia. Pediatr Blood Cancer. 2014;61:567.

    Article  Google Scholar 

  12. Bunn H, Forget B. Hemoglobin: molecular genetic and clinical aspects. Philadelphia: W. B. Saunders Company; 1986. p. 690.

    Google Scholar 

  13. Msaouel P, Tannir NM, Walker CL. A model linking sickle cell hemoglobinopathies and smarcb1 loss in renal medullary carcinoma. Clin Cancer Res. 2018;24(9):2044–9.

    Article  CAS  Google Scholar 

  14. Ojodu J, Hulihan MM, Pope SN, Grant AM. Centers for disease C, prevention. Incidence of sickle cell trait--United States, 2010. MMWR Morb Mortal Wkly Rep. 2014;63:1155–8.

    PubMed  PubMed Central  Google Scholar 

  15. Grant AM, Parker CS, Jordan LB, et al. Public health implications of sickle cell trait: a report of the CDC meeting. Am J Prev Med. 2011;41:S435–9.

    Article  Google Scholar 

  16. Barnicot NA, Allison AC, Blumberg BS, Deliyannis G, Krimbas C, Ballas A. Haemoglobin types in Greek populations. Ann Hum Genet. 1963;26:229–36.

    Article  CAS  Google Scholar 

  17. Curuk MA, Zeren F, Genc A, Ozavci-Aygun S, Kilinc Y, Aksoy K. Prenatal diagnosis of sickle cell anemia and beta-thalassemia in southern Turkey. Hemoglobin. 2008;32:525–30.

    Article  CAS  Google Scholar 

  18. Shrikhande AV, Arjunan A, Agarwal A, et al. Prevalence of the beta(S) gene among scheduled castes, scheduled tribes and other backward class groups in Central India. Hemoglobin. 2014;38:230–5.

    Article  CAS  Google Scholar 

  19. Salamah MM, Mallouh AA, Hamdan JA. Acute splenic sequestration crises in Saudi children with sickle cell disease. Ann Trop Paediatr. 1989;9:115–7.

    Article  CAS  Google Scholar 

  20. Sickle-cell anaemia: report by the Secretariat. 59th world health assembly, 2 April 2006.

    Google Scholar 

  21. Abbud-Filho M. Comments on renal abnormalities of sickle cell disease. Rev Bras Hematol Hemoter. 2013;35:311–2.

    Article  Google Scholar 

  22. Merklin R, Michels N. The variant renal and suprarenal blood supply with data on the interior phrenic, ureteral and gonadal arteries: a statistical analysis based on 185 dissections and a review of the literature. J Int Coll Surg. 1958:41–76.

    Google Scholar 

  23. Gladwin MT, Schechter AN, Ognibene FP, et al. Divergent nitric oxide bioavailability in men and women with sickle cell disease. Circulation. 2003;107:271–8.

    Article  CAS  Google Scholar 

  24. Platt OS, Brambilla DJ, Rosse WF, et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med. 1994;330:1639–44.

    Article  CAS  Google Scholar 

  25. Margol AS, Judkins AR. Pathology and diagnosis of SMARCB1-deficient tumors. Cancer Genet. 2014;207:358–64.

    Article  CAS  Google Scholar 

  26. Cheng JX, Tretiakova M, Gong C, Mandal S, Krausz T, Taxy JB. Renal medullary carcinoma: rhabdoid features and the absence of INI1 expression as markers of aggressive behavior. Mod Pathol. 2008;21:647–52.

    Article  CAS  Google Scholar 

  27. Kadoch C, Crabtree GR. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci Adv. 2015;1:e1500447.

    Article  Google Scholar 

  28. Hollmann TJ, Hornick JL. INI1-deficient tumors: diagnostic features and molecular genetics. Am J Surg Pathol. 2011;35:e47–63.

    Article  Google Scholar 

  29. Calderaro J, Masliah-Planchon J, Richer W, et al. Balanced translocations disrupting SMARCB1 are Hallmark recurrent genetic alterations in renal medullary carcinomas. Eur Urol. 2016;69:1055–61.

    Article  CAS  Google Scholar 

  30. Carlo M, Chen Y, Chaim J, et al. Medullary renal cell carcinoma (RCC): genomics and treatment outcomes. J Clin Oncol. 2016;34:4556. suppl; abstr 4556

    Article  Google Scholar 

  31. Wang X, Sansam CG, Thom CS, et al. Oncogenesis caused by loss of the SNF5 tumor suppressor is dependent on activity of BRG1, the ATPase of the SWI/SNF chromatin remodeling complex. Cancer Res. 2009;69:8094–101.

    Article  CAS  Google Scholar 

  32. Wang X, Lee RS, Alver BH, et al. SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation. Nat Genet. 2017;49(2):289–95.

    Article  CAS  Google Scholar 

  33. Vries RG, Bezrookove V, Zuijderduijn LM, et al. Cancer-associated mutations in chromatin remodeler hSNF5 promote chromosomal instability by compromising the mitotic checkpoint. Genes Dev. 2005;19:665–70.

    Article  CAS  Google Scholar 

  34. Kim KH, Roberts CW. Targeting EZH2 in cancer. Nat Med. 2016;22:128–34.

    Article  CAS  Google Scholar 

  35. Knutson SK, Warholic NM, Wigle TJ, et al. Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. Proc Natl Acad Sci U S A. 2013;110:7922–7.

    Article  CAS  Google Scholar 

  36. Jagani Z, Mora-Blanco EL, Sansam CG, et al. Loss of the tumor suppressor Snf5 leads to aberrant activation of the hedgehog-Gli pathway. Nat Med. 2010;16:1429–33.

    Article  CAS  Google Scholar 

  37. McKenna ES, Tamayo P, Cho YJ, et al. Epigenetic inactivation of the tumor suppressor BIN1 drives proliferation of SNF5-deficient tumors. Cell Cycle. 2012;11:1956–65.

    Article  CAS  Google Scholar 

  38. Wilson BG, Wang X, Shen X, et al. Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell. 2010;18:316–28.

    Article  CAS  Google Scholar 

  39. Tsikitis M, Zhang Z, Edelman W, Zagzag D, Kalpana GV. Genetic ablation of Cyclin D1 abrogates genesis of rhabdoid tumors resulting from Ini1 loss. Proc Natl Acad Sci U S A. 2005;102:12129–34.

    Article  CAS  Google Scholar 

  40. Mora-Blanco EL, Mishina Y, Tillman EJ, et al. Activation of beta-catenin/TCF targets following loss of the tumor suppressor SNF5. Oncogene. 2014;33:933–8.

    Article  CAS  Google Scholar 

  41. Schaeffer EM, Guzzo TJ, Furge KA, et al. Renal medullary carcinoma: molecular, pathological and clinical evidence for treatment with topoisomerase-inhibiting therapy. BJU Int. 2010;106:62–5.

    Article  Google Scholar 

  42. Albadine R, Wang W, Brownlee NA, et al. Topoisomerase II alpha status in renal medullary carcinoma: immuno-expression and gene copy alterations of a potential target of therapy. J Urol. 2009;182:735–40.

    Article  CAS  Google Scholar 

  43. Smith NE, Deyrup AT, Marino-Enriquez A, et al. VCL-ALK renal cell carcinoma in children with sickle-cell trait: the eighth sickle-cell nephropathy? Am J Surg Pathol. 2014;38:858–63.

    Article  Google Scholar 

  44. Rao P, Tannir NM, Tamboli P. Expression of OCT3/4 in renal medullary carcinoma represents a potential diagnostic pitfall. Am J Surg Pathol. 2012;36:583–8.

    Article  Google Scholar 

  45. Shi Z, Zhuang Q, You R, Li Y, Li J, Cao D. Clinical and computed tomography imaging features of renal medullary carcinoma: a report of six cases. Oncol Lett. 2016;11:261–6.

    Article  Google Scholar 

  46. Elwood H, Chaux A, Schultz L, et al. Immunohistochemical analysis of SMARCB1/INI-1 expression in collecting duct carcinoma. Urology. 2011;78:474 e1–5.

    Article  Google Scholar 

  47. Beckermann KE, Sharma D, Chaturvedi S, et al. Renal medullary carcinoma: establishing standards in practice. J Oncol Pract. 2017;13:414–21.

    Article  Google Scholar 

  48. Ronnen EA, Kondagunta GV, Motzer RJ. Medullary renal cell carcinoma and response to therapy with Bortezomib. J Clin Oncol. 2006;24:e14.

    Article  Google Scholar 

  49. Rathmell WK, Monk JP. High-dose-intensity MVAC for advanced renal medullary carcinoma: report of three cases and literature review. Urology. 2008;72:659–63.

    Article  Google Scholar 

  50. Carden MA, Smith S, Meany H, Yin H, Alazraki A, Rapkin LB. Platinum plus bortezomib for the treatment of pediatric renal medullary carcinoma: two cases. Pediatr Blood Cancer. 2017;64:7.

    Article  Google Scholar 

  51. Choueiri TK, Escudier B, Powles T, et al. Cabozantinib versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373:1814–23.

    Article  CAS  Google Scholar 

  52. Motzer RJ, Hutson TE, Glen H, et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol. 2015;16:1473–82.

    Article  CAS  Google Scholar 

  53. Motzer RJ, Escudier B, McDermott DF, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373:1803–13.

    Article  CAS  Google Scholar 

  54. Beckermann KE, Jolly PC, Kim JY, et al. Clinical and immunologic correlates of response to PD-1 blockade in a patient with metastatic renal medullary carcinoma. J Immunother Cancer. 2017;5(1)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nizar M. Tannir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Msaouel, P., Rao, P., Tannir, N.M. (2019). Renal Medullary Carcinoma. In: Malouf, G., Tannir, N. (eds) Rare Kidney Tumors. Springer, Cham. https://doi.org/10.1007/978-3-319-96989-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96989-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96988-6

  • Online ISBN: 978-3-319-96989-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics