Skip to main content

Microbial Genetic Resources: Status, Conservation, and Access and Benefit-Sharing Regulations

  • Chapter
  • First Online:
Microbial Resource Conservation

Part of the book series: Soil Biology ((SOILBIOL,volume 54))

Abstract

Majority of the biomass and biodiversity of life on the earth are accounted by microbes, and so far about 10% of the earth’s microbial diversity has been characterized. They play a significant role in biogeochemical cycles and extend various ecosystem services. Many microorganisms are rich and serve as untapped reservoirs of metabolic products and, hence, they are potentially important for scientific, industrial and economic purposes. The uninterrupted availability of such microbes for modern scientific security and their ultimate utilization for academia and industry are of paramount importance. Despite countless facts about the role of microorganisms in the biosphere, they have largely been ignored by conservation efforts and never considered part of conservation biology and thus leave number of questions unanswered. Notwithstanding, there are many factors including climate change and habitat destruction affect microbial structure and diversity calls for a consistent environmental ethics for parallel support and protection of microbes and their long-term conservation. It is needless to mention that microbial resources play important roles in developing bio-economy. However, long-term success in conservation strategies requires thorough understanding of basic biology of microorganisms and their application through state-of-the-art modern tools leading to longer viability and unaltered genome of microbes. In this regard, specialized training and laboratory infrastructures are required to be extended for significant contributions in protection and successful conservation of microbial gene pool in repositories and natural habitats. Therefore, conservation biologists now are bound to realize that the microbial system on which our livelihoods depend is at a risk of extinction, and this requires serious attention to ensure their sustainability in nature for continuous biogeochemical processes, diversity and abundance. In this way, we are becoming more concerned with the broader aspects of microbial conservation. This review attempts to bring together various aspects with regard to the status of conserved microbes, conservation strategies, methodologies and challenges. Further, this chapter will also appraise about the regulatory mechanisms on sharing of microorganisms at global level under the ambit of Nagoya Protocol of Convention of Biological Diversity (CBD) and Biological Diversity (BD) Act 2002 and Rules 2004 of India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alain K, Querellou J (2009) Cultivating the uncultured: limits, advances and future challenges. Extremophiles 13:583–594

    Article  PubMed  Google Scholar 

  • Arora DK, Saikia R, Dwievdi R, Smith D (2005) Current status, strategy and future prospects of microbial resource collections. Curr Sci 89:488–495

    Google Scholar 

  • Berner D, Viernstein H (2006) Effects of protective agents on the viability of Lactococcus latis subjected to freeze-thawing and freezing drying. Sci Pharm 74:137–149

    Article  CAS  Google Scholar 

  • Branduardi P, Longo V, Berterame NM, Rossi G, Porro D (2013) A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae. Biotechnol Biofuels 6:68. https://doi.org/10.1186/1754-6834-6-68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bull AT (2004) Microbial diversity and bioprospecting. Washington, DC, American Society for Microbiology Press

    Book  Google Scholar 

  • Camejo PY, Santo Domingo J, McMahon KD, Noguera DR (2017) Genome enabled insights into the ecophysiology of the comammox bacterium “Candidatus Nitrospira nitrosa”. mSystems 2:e00059-17. https://doi.org/10.1128/mSystems.00059-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrion O, Curson ARJ, Kumaresan D, Fu Y, Lang AS, Mercade E, Todd JD (2014) A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments. Nat Commun 6:6579. https://doi.org/10.1038/ncomms7579

    Article  CAS  Google Scholar 

  • Cartagena Protocol on Biosafety (2000) Convention on biological diversity: text and annexes. Secretariat of the Convention on Biological Diversity, Montreal, p 30

    Google Scholar 

  • CBD (Convention on Biological Diversity) (1992) Convention on biological diversity Article 2. Use of terms. Secretariat of the Convention on Biological Diversity, Montreal, p 25

    Google Scholar 

  • Challis GL (2008) Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology 154:1555–1569

    Article  CAS  PubMed  Google Scholar 

  • Cockell CS, Jones HL (2009) Advancing the case for microbial conservation. Oryx 43:520–526

    Article  Google Scholar 

  • Curtis T (2006) Microbial ecologists: it’s time to ‘go large’. Nat Rev. Microbiol 4:488

    Article  CAS  PubMed  Google Scholar 

  • Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A, Kirkegaard RH, von Bergen M, Rattei T, Bendinger B, Nielsen PH, Wagner M (2015) Complete nitrification by Nitrospira bacteria. Nature 582:504–509. https://doi.org/10.1038/nature16461

    Article  CAS  Google Scholar 

  • Danovaro R, Canals M, Tangherlini M, Dell’Anno A, Gambi C, Lastras G, Amblas D, Sanchez-Vidal A, Frigola J, Calafat AM, Pedrosa-Pamies R, Rivera J, Rayo X, Corinaldesi C (2017) A submarine volcanic eruption leads to a novel microbial habitat. Nat Ecol Evol 1:0144. https://doi.org/10.1038/s41559-017-0144

    Article  Google Scholar 

  • Dedeurwaerdere T (2010) Self-governance and international regulation of the global microbial commons: introduction to the special issue on the microbial commons. Int J Commons 4:390–403

    Article  Google Scholar 

  • Duplessis S, Cuomo CA, Lin YC, Aerts A, Tisserant E, Veneault-Fourrey C, Joly DL, Hacquard S, Amselem J, Cantarel BL, Chiu R (2011) Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc Natl Acad Sci U S A 108:9166–9171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAO (2010) The state of in situ management. In: FAO (ed) Second Rep. State world’s plant genetic resources for food and agriculture. Food and Agriculture Organisation of the United Nations, Rome, pp. 30–51

    Google Scholar 

  • Fu N, Chen XD (2011) Towards a maximal cell survival in convective thermal drying processes. Food Res Int 44:1127–1149

    Article  CAS  Google Scholar 

  • Garcia AH (2011) Anhydrobiosis in bacteria: from physiology to applications. J Biosci 36:939–950

    Article  CAS  PubMed  Google Scholar 

  • Garcia EO, Casagrande MV, Rago AM, Massola NS Jr (2007) Preservation of uredospores of Puccinia melanocephala, the causal agent of sugarcane rust. Summa Phytopathol 33(2):152–156

    Article  CAS  Google Scholar 

  • García-García M, Rocha-Zavaleta L, Valdez-Cruz NA, Trujillo-Roldán MA (2014) Conservation of the mycelia of the medicinal mushroom Humphreya coffeata (Berk.) Stey. in sterile distilled water. Methods X 1:19–22

    Google Scholar 

  • Gorman R, Adley CCN (2004) An evolution of five preservation techniques and conventional freezing temperatures of −20 °C and − 85 °C for long term preservation of Campylobacter jejuni. Lett Appl Microbiol 38:306–310

    Article  CAS  PubMed  Google Scholar 

  • Heywood VH, Dulloo ME (2005) In situ conservation of wild plant species a critical global review of good practices. Food and Agriculture Organisation, Rome

    Google Scholar 

  • Kalyuzhnaya MG, Yang S, Rozova ON, Smalley NE, Clubb J, Limb A, Nagna Gowda GA, Raftey D, Fu Y, Bringle F, Vuilleumier A, Beck DAC, Trotsenko YA, Khmelenina VN, Lidstrom ME (2013) Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat Commun 4:278. https://doi.org/10.1038/ncomms3785

    Article  CAS  Google Scholar 

  • Kerckhof FM, Courtens EN, Geirnaert A, Hoefman S, Ho A, Vilchez-Vargas R, Vandamme P (2014) Optimized cryopreservation of mixed microbial communities for conserved functionality and diversity. PLoS One 9:e99517

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirsop B, Hawksworth DL (eds) (1994) The Biodiversity of microorganisms and the role of microbial resource centres. World Federation for Culture Collections

    Google Scholar 

  • Koch H, Lucker S, Albertsen M, Kitzinger K, Hebold C, Spieck E, Nielsen PH, Wagner M, Diams H (2015) Expanded metabolic versatility of ubiquitous nitrite-oxidising bacteria from the genus Nitrospira. Proc Natl Acad Sci 112:11371–11376. https://doi.org/10.1073/pnas.1506533112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuenen JG, Jetten MSM (2001) Extraordinary anaerobic ammonium oxidising bacteria. ASM News 67:456–463

    Google Scholar 

  • Lacy R (2010) Re-thinking ex situ vs in situ species conservation. In: Proceedings of the 65th World Association Zoos Aquariums Gland, Switzerland. WAZA, pp. 25–29

    Google Scholar 

  • Lowson CE, Lucker S (2018) Complete ammonia oxidation: an important control on nitrification in engineered ecosystems? Curr Opin Biotechnol 50:158–165

    Article  Google Scholar 

  • Martin SM (1964) Conservation of microorganisms. Annu Rev. Microbiol 18:1–16

    Article  CAS  PubMed  Google Scholar 

  • Morgan CA, Herman N, White PA, Vesey G (2006) Preservation of microorganisms by drying; a review. J Microbiol Methods 66:183–193

    Article  CAS  PubMed  Google Scholar 

  • Mutlu BR, Hirschey K, Wackett LP, Aksan A (2015) Long-term preservation of silica gel-encapsulated bacterial biocatalysts by desiccation. J Sol-Gel Sci Technol 74:823–833

    Article  CAS  Google Scholar 

  • Ndeh D, Rogowski A, Cartmell A, Luis AS, Basle A, Gary J, Venditto I, Briggs J, Zhang X, Labourel A, Terrapon N, Buffetto F, Nepogodiev S, Xiao Y, Field RA, Zhu Y, O’Neil MA, Urbanowicz BR, York WS, Davies GJ, Abott DW, Ralet MC, Martens EC, Henrissat B, Gilbert HJ (2017) Complex pectin metabolism by gut bacteria reveals novel catalytic functions. Nature 544(7648):65–70. https://doi.org/10.1038/nature21725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • OECD (2001) Biological resource centres: underpinning the future of life sciences and biotechnology. Organisation for Economic Cooperation and Development (OECD), Directorate for Science, Technology and Industry, Committee for Scientific and Technological Policy. http://www.oecd.org/dataoecd/55/48/2487422.pdf

  • OECD (2007) OECD best practices guidelines for biological resource centers. Organization for Economic Cooperation and Development (OECD), Paris. Available at: http://www.oecd.org/dataoecd/7/13/38777417.pdf

  • Overmann J (2015) Significance and future role of microbial resource centers. Syst Appl Microbiol 38:258–265

    Article  PubMed  Google Scholar 

  • Pinto AJ, Marcus DN, Liaz UZ, Baustista-de-lose Santos QM, Dick GJ, Raskin L (2015) Metagenomic evidence for the presence of comammox Nitrospira-like bacteria in a drinking water system. mSphere 1(1):e00054–e00015. https://doi.org/10.1128/mSphere.00054-15

    Article  PubMed  PubMed Central  Google Scholar 

  • Rothrock MJ Jr, Vanotti MB, Szögi AA, Garcia Gonzalez MC, Fujii T (2011) Long-term preservation of anammox bacteria. Appl Microbiol Biotechnol 92:147–157. https://doi.org/10.1007/s00253-011-3316-1

    Article  CAS  PubMed  Google Scholar 

  • Ryan MJ, Ellison CA (2003) Development of cryopreservation protocol for the microcyclic rust-fungus Puccinia spegazzinii. Cryo Letters 24:43–48

    PubMed  Google Scholar 

  • Salafsky N, Margoluis R, Redford KH, Robinson JG (2002) Improving the practice of conservation: a conceptual framework and research agenda for conservation science. Conserv Biol 16:1469–1479

    Article  Google Scholar 

  • Salustiano ME, Pozza EA, Ferraz Filho AC, Castro HA (2008) Viability of urediniospores stored in different environment. Trop Plant Pathol 33:313–316

    Google Scholar 

  • Sharma SK, Gupta AK, Shukla AK, Ahmad E, Sharma MP, Ramesh A (2016) Microbial conservation strategies and methodologies: status and challenges. Indian J Plant Genet Resour 29:340–342

    Article  Google Scholar 

  • Sigler L (2004) Culture collections in Canada: perspectives and problems. Can J Plant Pathol 26:39–47

    Article  Google Scholar 

  • Singh SK, Baghela A (2017) Cryopreservation of microorganisms. In: Varma A, Sharma AK (eds) Modern tools and techniques to understand microbes. Springer, New York, pp 321–333

    Chapter  Google Scholar 

  • Sly LI (2010) Biodiversity and the role of microbial resource centres. In: Presented in biodiversity and world food security: nourishing the planet and its people, conference, Canberra, Australia, pp. 60–67

    Google Scholar 

  • Smith D, Ryan M (2012) Implementing best practices and validation of cryopreservation techniques for microorganisms. Sci World J 1–2:805659

    Google Scholar 

  • Smith D, Ryan J, Stackebrandt E (2008) The ex situ conservation of microorganisms: aiming at a certified quality management. In: Doelle HW, EJ DS (eds) Biotechnology. Encyclopedia of life support systems (EOLSS), Developed under the auspices of UNESCO. EOLSS, Oxford

    Google Scholar 

  • Stewart EJ (2012) Growing unculturable bacteria. J Bacteriol 194:4151–4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatangelo V, Franzetti A, Gandolfi I, Bestetti G, Ambrosini R (2014) Effect of preservation method on the assessment of bacterial community structure in soil and water samples. FEMS Microbiol Lett 356:32–38

    Article  CAS  PubMed  Google Scholar 

  • Tibolla F, Sumida CH, Peitl DC, Canteri MG, Castro AMC (2012) In vitro preservation methods of Puccinia kuehnii urediniospores. Summa Phytopathol 38:198–203

    Article  Google Scholar 

  • Uzunova-Doneva T, Donev T (2005) Anabiosis and conservation of microorganisms. J Cult Collect 4:17–28

    Google Scholar 

  • Vaishnav A, Sharma SK, Choudhary DK, Sharma KP, Ahmad E, Sharma MP, Ramesh A, Saxena AK (2018) Nitric oxide as a signalling molecule in plant-bacterial interactions. In: Egamberdieva D, Ahmad P (eds) Plant microbiome: stress response under series microorganisms for sustainability, vol 5. Springer Nature Singapore, Singapore, pp 183–199

    Chapter  Google Scholar 

  • Van Kessel MAHJ, Speth DR, Albertsen M, Nielsen PH, Op den Camp HJM, Kartal B, Jetten MSM, Lücker S (2015) Complete nitrification by a single microorganism. Nature 28:555–559. https://doi.org/10.1038/nature16459

    Article  CAS  Google Scholar 

  • Weghoff MC, Bertsch J, Müller V (2014) A novel mode of lactate metabolism in strictly anaerobic bacteria. Environ Microbiol 17:670–677. https://doi.org/10.1111/1462-2920.12493

    Article  CAS  PubMed  Google Scholar 

  • Weißbecker C, Buscot F, Wubet T (2017) Preservation of nucleic acids by freeze-drying for next generation sequencing analysis of soil microbial communities. J Plant Ecol 10:81–90. https://doi.org/10.1093/jpe/rtw042

    Article  Google Scholar 

  • Winter S, Adam G (2001) Pathogen collections, present situations and future challenges. J Plant Pathol 83:83–88

    Google Scholar 

  • Winters RD, Winn WC Jr (2010) A simple effective method for bacterial culture storage: a brief technical report. J Bacteriol Virol 40:99–101

    Article  Google Scholar 

  • Wynberg RP, Laird SA (2018) Fast science and sluggish policy: the herculean task of regulating biodiscovery. Trends Biotechnol 36:1–3. https://doi.org/10.1016/j.tibtech.2017.09.002

    Article  CAS  PubMed  Google Scholar 

  • Xiong W, Lin PP, Magnusson L, Warner L, Liao JC, Maness PC, Chou KJ (2016) CO2-fixing one-carbon metabolism in a cellulose-degrading bacterium Clostridium thermocellum. PNAS USA 113:13180–13185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu C, Reddy AP, Simmons CW, Simmons BA, Singer SW, Vander Gheynst JS (2015) Preservation of microbial communities enriched on lignocellulose under thermophilic and high-solid conditions. Biotechnol Biofuels 8:206. https://doi.org/10.1186/s13068-015-0392-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Takaya N, Nakamura A, Yamaguchi M, Takeo K, Shoun H (2002) Ammonia fermentation, a novel anoxic metabolism of nitrate by fungi. J Biol Chem 277:1892–1896

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Indian Council of Agricultural Research (ICAR), New Delhi, India, through fragship programme, ‘NAIMCC’ and a project entitled ‘Microbial diversity analysis of extreme/unique ecological niches’. Dr. S.K. Singh thanks Director, MACS-Agharkar Research Institute, Pune, for extending facilities. We thank Mr. Alok Upadhyay, Technical Assistant, NAIMCC, who helped us in literature search to achieve the task of this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil K. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, S.K. et al. (2018). Microbial Genetic Resources: Status, Conservation, and Access and Benefit-Sharing Regulations. In: Sharma, S., Varma, A. (eds) Microbial Resource Conservation. Soil Biology, vol 54. Springer, Cham. https://doi.org/10.1007/978-3-319-96971-8_1

Download citation

Publish with us

Policies and ethics