Skip to main content

Further Results on a Modified EM Algorithm for Parameter Estimation in Linear Models with Time-Dependent Autoregressive and t-Distributed Errors

  • Conference paper
  • First Online:
Time Series Analysis and Forecasting (ITISE 2017)

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

Included in the following conference series:

Abstract

In this contribution, we consider an expectation conditional maximization either (ECME) algorithm for the purpose of estimating the parameters of a linear observation model with time-dependent autoregressive (AR) errors. The degree of freedom (d.o.f.) of the underlying family of scaled t-distributions, which is used to account for outliers and heavy-tailedness of the white noise components, is adapted to the data, resulting in a self-tuning robust estimator. The time variability of the AR coefficients is described by a second linear model. We improve the estimation of the d.o.f. in a previous version of the ECME algorithm, which involves a zero search, by using an interval Newton method. We model the transient oscillations of a shaker table measured by a high-accuracy accelerometer, and we analyze various criteria for selecting a simultaneously parsimonious and realistic time-variability model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuhlmann, H.: Importance of autocorrelation for parameter estimation in regression models. In: 10th FIG International Symposium on Deformation Measurements, pp. 354–361. FIG (2001)

    Google Scholar 

  2. Brockmann, J.M., Kargoll, B., Krasbutter, I., Schuh, W.D., Wermuth M.: GOCE data analysis: from calibrated measurements to the global Earth gravity field. In: Flechtner, F., Gruber, T., Gntner A., Mandea, M., Rothacher, M., Schne, T., Wickert, J. (eds.) Advanced Technologies in Earth Sciences System Earth via Geodetic-Geophysical Space Techniques, pp. 213–229. Springer, Berlin (2010)

    Google Scholar 

  3. Kargoll, B., Omidalizarandi, M., Loth, I., Paffenholz, J.A., Alkhatib, H.: An iteratively reweighted least-squares approach to adaptive robust adjustment of parameters in linear regression models with autoregressive and t-distributed deviations. J. Geod. (2017). https://doi.org/10.1007/s00190-017-1062-6

    Article  Google Scholar 

  4. Krasbutter, I., Brockmann, J.M., Kargoll, B., Schuh, W.D., Goiginger, H., Pail, R.: Refinement of the stochastic model of GOCE scientific data in a long time series. In: Ouwehand, L. (ed.) 4th International GOCE User Workshop. ESA Publication SP-696, ESA/ESTEC (2011). ISBN: 978-92-9092-260-5

    Google Scholar 

  5. Kargoll, B., Omidalizarandi, M., Alkhatib, H., Schuh, W.D.: A modified EM algorithm for parameter estimation in linear models with time-dependent autoregressive and t-distributed errors. In: Valenzuela, O., Rojas, F., Pomares, H., Rojas, I. (eds.) Proceedings ITISE 2017–International work-conference on Time Series, vol. 2, pp. 1132–1145 (2017). ISBN 978-84-17293-01-7

    Google Scholar 

  6. Subba Rao, T.: The fitting of non-stationary time-series models with time-dependent parameters. J. Roy. Stat. Soc. B Met. 32(2), 312–322 (1970)

    MathSciNet  MATH  Google Scholar 

  7. Azrak, R., Mélard, G.: AR models with time-dependent coefficients—a comparison between several approaches. Technical Report 0642, IAP Statistics Network, Interuniversity Attraction Pole (2006)

    Google Scholar 

  8. Dahlhaus, R.: Fitting time series models to nonstationary processes. Ann. Statist. 25(1), 1–37 (1997). https://doi.org/10.1214/aos/1034276620

    Article  MathSciNet  MATH  Google Scholar 

  9. Rudoy, D., Quatieri, T.F., Wolfe, P.J.: Time-varying autoregressions in speech: detection theory and applications. IEEE Trans. Audio Speech Lang. Process. 19(4), 977–989 (2011). https://doi.org/10.1109/TASL.2010.2073704

    Article  Google Scholar 

  10. Schuh, W.D., Brockmann, J.M.: Refinement of the stochastic model for GOCE gravity gradients by non-stationary decorrelation filters. In: ESA Living Planet Symposium 2016, Prag, Poster 2382 (2016)

    Google Scholar 

  11. Tsatsanis, M.K., Giannakis, G.B.: Time-varying system identification and model validation using wavelets. IEEE Trans. Sign. Process. 41, 3512–3523 (1993). https://doi.org/10.1109/78.258089

    Article  MATH  Google Scholar 

  12. Eom, K.B.: Analysis of acoustic signatures from moving vehicles using time-varying autoregressive models. Multidim. Sys. Sign. Process. 10(4), 357–378 (1999). https://doi.org/10.1023/A:1008475713345

    Article  MATH  Google Scholar 

  13. Härmä, A., Juntunen, M., Kaipio, J.P.: Time-varying autoregressive modeling of audio and speech signals. In: 10th European Signal Processing Conference. IEEE (2000)

    Google Scholar 

  14. Grenier, Y.: Time-dependent ARMA modeling of nonstationary signals. IEEE Trans. Acoust. Speech Sign. Process. 31(4), 899–911 (1983)

    Article  Google Scholar 

  15. Pierce, D.A.: Least squares estimation in the regression model with autoregressive-moving average errors. Biometrika 58(2), 299–312 (1971). https://doi.org/10.2307/2334518

    Article  MathSciNet  MATH  Google Scholar 

  16. McDonald, J.B., Newey, W.K.: Partially adaptive estimation of regression models via the generalized t distribution. Econom. Theor. 4(3), 428–457 (1988)

    Article  MathSciNet  Google Scholar 

  17. Parzen, E.: A density-quantile function perspective on robust estimation. In: Launer, L., Wilkinson, G.N. (eds.) Robustness in Statistics, pp. 237–258. Academic Press, New York (1979). https://doi.org/10.1016/B978-0-12-438150-6.50019-4

    Chapter  Google Scholar 

  18. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. B Met. 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  19. Lange, K.L., Little, R.J.A., Taylor, J.M.G.: Robust statistical modeling using the t-distribution. J. Am. Stat. Assoc. 84, 881–896 (1989). https://doi.org/10.2307/2290063

    Article  MathSciNet  Google Scholar 

  20. Liu, C.H., Rubin, D.B.: ML estimation of the t distribution using EM and its extensions. ECM ECME. Stat. Sin. 5, 19–39 (1995)

    MathSciNet  MATH  Google Scholar 

  21. Hamilton, J.D.: Time Series Analysis. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  22. Schuh, W.D.: The processing of band-limited measurements; filtering techniques in the least squares context and in the presence of data gaps. Space Sci. Rev. 108(1), 67–78 (2003). https://doi.org/10.1023/A:1026121814042

    Article  Google Scholar 

  23. Hargreaves, G.I.: Interval Analysis in MATLAB. Numerical Analysis Report No. 416, Manchester Centre for Computational Mathematics, The University of Manchester (2002). ISSN 1360-1725

    Google Scholar 

  24. Neitzel, F., Niemeier, W., Weisbrich, S., Lehmann, M.: Investigation of low-cost accelerometer, terrestrial laser scanner and ground-based radar interferometer for vibration monitoring of bridges. In: 6th European Workshop on Structural Health Monitoring (2012). http://www.ndt.net/?id=14063

  25. Schlittgen, R., Streitberg, B.H.J.: Zeitreihenanalyse, 9th edn. R. Oldenbourg Verlag, Munich (2001)

    MATH  Google Scholar 

  26. Tary, J.B., Herrera, R.H., van der Baan, M.: Time-varying autoregressive model for spectral analysis of microseismic experiments and long-period volcanic events. Geophys. J. Int. 196(1), 600–611 (2014). https://doi.org/10.1093/gji/ggt400

    Article  Google Scholar 

Download references

Acknowledgements

The presented application of the PCB Piezotronics accelerometer within the vibration analysis experiment was performed as a part of the collaborative project “Spatio-temporal monitoring of bridge structures using low cost sensors” with ALLSAT GmbH, which is funded by the German Federal Ministry for Economic Affairs and Energy (BMWi) and the Central Innovation Programme for SMEs (ZIM Kooperationsprojekt, ZF4081803DB6). In addition, the authors acknowledge the Institute of Concrete Construction (Leibniz Universität Hannover) for providing the shaker table and the reference accelerometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Kargoll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kargoll, B., Omidalizarandi, M., Alkhatib, H., Schuh, WD. (2018). Further Results on a Modified EM Algorithm for Parameter Estimation in Linear Models with Time-Dependent Autoregressive and t-Distributed Errors. In: Rojas, I., Pomares, H., Valenzuela, O. (eds) Time Series Analysis and Forecasting. ITISE 2017. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-96944-2_22

Download citation

Publish with us

Policies and ethics