On Generalized Additive Models with Dependent Time Series Covariates

  • Márton IspányEmail author
  • Valdério A. Reisen
  • Glaura C. Franco
  • Pascal Bondon
  • Higor H. A. Cotta
  • Paulo R. P. Filho
  • Faradiba S. Serpa
Conference paper
Part of the Contributions to Statistics book series (CONTRIB.STAT.)


The generalized additive model (GAM) is a standard statistical methodology and is frequently used in various fields of applied data analysis where the response variable is non-normal, e.g., integer-valued, and the explanatory variables are continuous, typically normally distributed. Standard assumptions of this model, among others, are that the explanatory variables are independent and identically distributed vectors which are not multicollinear. To handle the multicollinearity and serial dependence together a new hybrid model, called GAM-PCA-VAR model, was proposed in [17] (de Souza et al., J Roy Stat Soc C-Appl 2018) which is the combination of GAM with the principal component analysis (PCA) and the vector autoregressive (VAR) model. In this paper, some properties of the GAM-PCA-VAR model are discussed theoretically and verified by simulation. A real data set is also analyzed with the aim to describe the association between respiratory disease and air pollution concentrations.


Air pollution Generalized additive model Multicollinearity Principal component analysis Time series Vector autoregressive model 



The authors thank the following agencies for their support: the National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq), the Brazilian Federal Agency for the Support and Evaluation of Graduate Education (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES), Espírito Santo State Research Foundation (Fundação de Amparo à Pesquisa do Espírito Santo—FAPES) and Minas Gerais State Research Foundation (Fundação de Amparo à Pesquisa do estado de Minas Gerais—FAPEMIG). Márton Ispány was supported by the EFOP-3.6.1-16-2016-00022 project. The project is co-financed by the European Union and the European Social Fund. Pascal Bondon thanks to the Institute for Control and Decision of the Université Paris-Saclay.


  1. 1.
    Al-Osh, M.A., Alzaid, A.A.: First-order integer valued autoregressive (INAR(1)) process. J. Time Ser. Anal. 8, 261–275 (1987)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Barczy, M., Ispány, M., Pap, G., Scotto, M.G., Silva, M.E.: Additive outliers in INAR(1) models. Stat. Pap. 53, 935–949 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Benjamin, M.A., Rigby, R.A., Stasinopoulos, D.M.: Generalized autoregressive moving average models. J. Amer. Statist. Assoc. 98, 214–223 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods. Springer Series in Statistics. Springer-Verlag, New York (1991)CrossRefGoogle Scholar
  5. 5.
    Chen, R.J., Chu, C., Tan, J., Cao, J., Song, W., Xu, X., Jiang, C., Ma, W., Yang, C., Chen, B., Gui, Y., Kan, H.: Ambient air pollution and hospital admission in Shanghai. China. J. Hazard. Mater. 181, 234–240 (2010)CrossRefGoogle Scholar
  6. 6.
    Davis, R.A., Dunsmuir, W.T.M., Streett, S.B.: Observation-driven models for Poisson counts. Biometrika 90, 777–790 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dionisio, K.L., Chang, H.H., Baxter, L.K.: A simulation study to quantify the impacts of exposure measurement error on air pollution health risk estimates in copollutant time-series models. Environ. Health 15, 114 (2016)CrossRefGoogle Scholar
  8. 8.
    Durbin, J., Koopman, S.J.: Time series analysis of non-Gaussian observations based on state space models from both classical and Bayesian perspectives. J. Roy. Stat. Soc. B 62, 3–56 (2000)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ferland, R., Latour, A., Oraichi, D.: Integer-valued GARCH process. J. Time Ser. Anal. 27(6), 923–942 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gamerman, D., Santos, T.R., Franco, G.C.: A non-Gaussian family of state-space models with exact marginal likelihood. J. Time Ser. Anal. 34, 625–645 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hastie, T.J., Tibshirani, R.J.: Generalized Additive Models. Chapman and Hall, London (1990)zbMATHGoogle Scholar
  12. 12.
    Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, New York (2002)zbMATHGoogle Scholar
  13. 13.
    Nascimento, A.P., Santos, J.M., Mil, J.G., de Souza, J.B., Reis Júnior, N.C., Reisen, V.A.: Association between the concentration of fine particles in the atmosphere and acute respiratory diseases in children. Rev. Saude Publ. 51, 3 (2017)Google Scholar
  14. 14.
    Ostro, B.D., Eskeland, G.S., Sánchez, J.M., Feyzioglu, T.: Air pollution and health effects: a study of medical visits among children in Santiago. Chile. Environ. Health Persp. 107, 69–73 (1999)CrossRefGoogle Scholar
  15. 15.
    Roberts, S., Martin, M.: Using supervised principal components analysis to assess multiple pollutant effects. Environ. Health Persp. 114(12), 1877–1882 (2006)CrossRefGoogle Scholar
  16. 16.
    Schwartz, J.: Harvesting and long term exposure effects in the relationship between air pollution and mortality. Am. J. Epidemiol. 151, 440–448 (2000)CrossRefGoogle Scholar
  17. 17.
    de Souza, J.B., Reisen, V.A., Franco, G.C., Ispány, M., Bondon, P., Santos, J.M.: Generalized additive models with principal component analysis: an application to time series of respiratory disease and air pollution data. J. Roy. Stat. Soc. C-Appl. 67(2), 453–480 (2018)Google Scholar
  18. 18.
    de Souza, J.B., Reisen, V.A., Santos, J.M., Franco, G.C.: Principal components and generalized linear modeling in the correlation between hospital admissions and air pollution. Rev. Saude Publ. 48(3), 451–8 (2014)CrossRefGoogle Scholar
  19. 19.
    Wang, Y., Pham, H.: Analyzing the effects of air pollution and mortality by generalized additive models with robust principal components. Int. J. Syst. Assur. Eng. Manag. 2, 253–259 (2011)CrossRefGoogle Scholar
  20. 20.
    Wood, S.N.: Generalized Additive Models: An Introduction with R. 2nd edn. Chapman and Hall/CRC (2017)Google Scholar
  21. 21.
    Zamprogno, B.: PCA in time series with short and long-memory time series. Ph.D. Thesis at the Programa de Pós-Graduação em Engenharia Ambiental do Centro Tecnológico, UFES, Vitória, Brazil (2013)Google Scholar
  22. 22.
    Zhao, J., Cao, J., Tian, S., Chen, Y., Zhang, S., Wang, Z., Zhou, X.: A comparison between two GAM models in quantifying relationships of environmental variables with fish richness and diversity indices. Aquat. Ecol. 48, 297–312 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Márton Ispány
    • 1
    Email author
  • Valdério A. Reisen
    • 2
    • 4
  • Glaura C. Franco
    • 3
  • Pascal Bondon
    • 4
  • Higor H. A. Cotta
    • 4
  • Paulo R. P. Filho
    • 2
    • 4
  • Faradiba S. Serpa
    • 2
  1. 1.University of DebrecenDebrecenHungary
  2. 2.Federal University of Espírito SantoVitóriaBrazil
  3. 3.Federal University of Minas GeraisBelo HorizonteBrazil
  4. 4.Laboratoire des Signaux et Systèmes (L2S)CNRS-CentraleSupélec-Université Paris-SudGif-sur-YvetteFrance

Personalised recommendations