Advertisement

Cryptanalysis of a Random Number Generator Based on a Chaotic Ring Oscillator

  • Salih ErgünEmail author
Conference paper
  • 1.1k Downloads
Part of the Contributions to Statistics book series (CONTRIB.STAT.)

Abstract

This paper introduces cryptanalysis of a random number generator (RNG) based on a chaotic ring oscillator. An attack system is proposed to discover the security weaknesses of the chaos-based RNG. Convergence of the attack system is proved using master–slave synchronization scheme. Future evaluation of the RNG is obtained from a scalar time series where the only information available are the structure of the RNG and a scalar time series observed from the chaotic ring oscillator. Simulation and numerical results verifying the feasibility of the attack system are given. It is verified that deterministic chaos itself cannot be pointed out as the source of randomness.

Keywords

Cryptanalysis Random number generator Chaotic ring oscillator Continuous-time chaos Synchronization of chaotic systems 

References

  1. 1.
    Jun, B., Kocher, P.: The Intel Random Number Generator, Cryptography Research, Inc., white paper prepared for Inter Corp. Apr 1999. http://www.cryptography.com/resources/whitepapers/IntelRNG.pdf
  2. 2.
    Menezes, A., Van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptology. CRC Press (1996)Google Scholar
  3. 3.
    Schrift, A.W., Shamir, A.: On the universality of the next bit test. In: Proceeding of the CRYPTO, pp. 394–408 (1990)Google Scholar
  4. 4.
    Schneier, B.: Applied Cryptography 2th edn. Wiley (1996)Google Scholar
  5. 5.
    Petrie, C.S., Connelly, J.A.: A noise-based IC random number generator for applications in cryptography. IEEE Trans. Circuits Syst. I 47(5), 615–621 (2000)CrossRefGoogle Scholar
  6. 6.
    Göv, N.C., Mıhçak, M.K., Ergün, S.: True random number generation via sampling from flat band-limited Gaussian processes. IEEE Trans. Circuits Syst. I 58(5), 1044–1051 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bucci, M., Germani, L., Luzzi, R., Trifiletti, A., Varanonuovo, M.: A high speed oscillator-based truly random number source for cryptographic applications on a smartcard IC. IEEE Trans. Comput. 52, 403–409 (2003)CrossRefGoogle Scholar
  8. 8.
    Stojanovski, T., Kocarev, L.: Chaos-based random number generators-Part I: Analysis. IEEE Trans. Circuits Syst. I 48(3), 281–288 (2001)CrossRefGoogle Scholar
  9. 9.
    Callegari, S., Rovatti, R., Setti, G.: Embeddable ADC-based true random number generator for cryptographic applications exploiting nonlinear signal processing and chaos. IEEE Trans. Signal Process. 53(2), 793–805 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Stojanovski, T., Pihl, J., Kocarev, L.: Chaos-based random number generators-Part II: Practical realization. IEEE Trans. Circuits Syst. I 48(3), 382–385 (2001)CrossRefGoogle Scholar
  11. 11.
    Çicek, İ., Dündar, G.: A hardware efficient chaotic ring oscillator based true random number generator. In: Proceedings of IEEE International Conference on Electronics, Circuits and Systems, pp. 430–433 (2011)Google Scholar
  12. 12.
    Ergün, S., Güler, Ü., Asada, K.: A high speed IC truly random number generator based on chaotic sampling of regular waveform. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E94-A(1) 180–190 (2011)CrossRefGoogle Scholar
  13. 13.
    National Institute of Standard and Technology, FIPS PUB 140-2, Security Requirements for Cryptographic Modules, NIST, Gaithersburg, MD 20899 (2001)Google Scholar
  14. 14.
    L’Ecuyer, P.: Universit’e de Montr’eal., “Empirical Testing of Random Number Generators” (2002). http://www.iro.umontreal.ca/~lecuyer/
  15. 15.
    Marsalgia, G.: Diehard: a battery of tests of randomness (1997). http://stat.fsu.edu/~geo/diehard.htm
  16. 16.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hasler, M.: Synchronization principles and applications. In: Toumazou, C. (ed.) Tutorials IEEE International Symposium on Circuits and Systems (ISCAS ’94), pp. 314–327. London, England (1994)Google Scholar
  18. 18.
    National Institute of Standard and Technology, “A Statistical Test Suite for Random and Pseudo Random Number Generators for Cryptographic Applications”. http://csrc.nist.gov/groups/ST/toolkit/rng

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.TÜBİTAK-Informatics and Information Security Research CenterGebzeTurkey

Personalised recommendations