Skip to main content

Towards Development of Climate Smart Mungbean: Challenges and Opportunities

  • Chapter
  • First Online:
Genomic Designing of Climate-Smart Pulse Crops

Abstract

Mungbean is a quantitative short-day plant and grown across environments, locations, and seasons. It has inherent intrinsic tolerance mechanisms to many of the environmental stresses. However, being grown so widely, suffers from high temperatures, terminal moisture stress, soil salinity, and photo-thermo period sensitivity. Significant advancements have been made in the past 3–4 decades towards the development of input responsive, high yielding, disease-resistant, and short-duration varieties in mungbean. However, breeding for abiotic stress resistance has largely remained untouched and consequently, these pose serious constraints to mungbean production. Abiotic stresses such as heat, drought, salinity, etc. have deleterious effects on the morphology, physiology, and reproductive ability of the plants and ultimately reduce their plasticity and adaptation to changing climates, thereby affecting the quality and quantity of the produce significantly. Ample genetic and genomic resources are now available in mungbean and related Vigna crops, which can be exploited for the development of climate smart mungbean cultivars. Through various breeding approaches, climate smart traits can be incorporated in mungbean which will lead them to adapt to changing climate and perform well across environments. This chapter focuses on the development of climate smart mungbean and highlights gaps which need to be filled to this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Alla MH, Vuong TD, Harper JE (1998) Genotypic differences in nitrogen fixation response to NaCl stress in intact and grafted soybean. Crop Sci 38:72

    Google Scholar 

  • Ali M, Kumar S (2004) Prospects of mungbean in rice-wheat cropping systems in Indo-Gangetic plains of India. In: Improving income and nutrition by incorporating mungbean in the cereal fallows of the Indo-Gangetic Plains of South Asia; Proceedings of the final workshop and planning meeting; AVRDC—The World Vegetable Center, Tainan, Taiwan, pp 246–254

    Google Scholar 

  • Alverson AJ, Zhuo S, Rice DW, Sloan DB, Palmer JD (2011) The mitochondrial genome of the legume Vigna radiata and the analysis of recombination across short mitochondrial repeats. PLoS One 6(1)

    Google Scholar 

  • Amutha S, Ganapathi A, Muruganantham M (2003) In vitro organogenesis and plant formation in Vigna radiata (L.) Wilczek. Plant Cell Tiss Org Cult 72:203

    Google Scholar 

  • Araujo SS, Beebe S, Crespi M, Delbreli B, Gonzaliz EM, Gruber V et al (2015) Abiotic stress responses in legumes: strategies used to cope with environmental challenges. Crit Rev Plant Sci 34:237–280

    Article  CAS  Google Scholar 

  • Arulbalachandran D, Sankar GK, Subramani A (2009) Changes in metabolites and antioxidant enzyme activity of three Vigna species induced by NaCl stress. Amer Eur J Agron 2:109–116

    Google Scholar 

  • AVRDC (1987) 1984 Progress report Asian vegetable research and development center, pp 196–199, Shanhua, Taiwan

    Google Scholar 

  • Babu CR, Sharma SK, Chaterjee SR, Abrol YP (1988) Seed protein and amino acid compositions of wild Vigna radiata var. sublobata (Fabaceae) & two cultigens V. mungo and V. radiata. Econ Bot 42:54–61

    Article  CAS  Google Scholar 

  • Baloda A, Madanpotra S, Jaiwal P (2017) Transformation of mungbean plants for salt and drought tolerance by introducing a gene for an osmoprotectant glycine betaine. J Plant Stress Physiol 3:5–11

    Article  Google Scholar 

  • Barnabás B, Jäger K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell Environ 31:11–38

    Google Scholar 

  • Bisht IS, Bhat KV, Lakhanpaul S, Latha M, Jayan PK, Biswas BK, Singh AK (2005) Diversity and genetic resources of wild species in India. Genet Resour Crop Evol 52:53–68

    Article  Google Scholar 

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress tolerant crops. Front Plant Sci 4:273

    Article  PubMed  PubMed Central  Google Scholar 

  • Bose RD (1939) Studies in Indian pulses. IX. Contributions to the genetics of mung (Phaseolus radiatus Linn. Syn. Ph. aureus Roxb.). Indian J Agri Sci 9:575–594

    Google Scholar 

  • Brasileiro AC, Morgante CV, Araujo AC, Leal-Bertioli SC, Silva AK, Martins AC, Vinson CC, Santos CMR, Bonfim O, Togawa RC, Saraiva MAP, Bertioli DJ, Guimaraes PM (2015) Transcriptome profiling of wild Arachis from water-limited environments uncovers drought tolerance candidate genes. Plant Mol Biol Rep 33:1876–1892

    Article  CAS  Google Scholar 

  • Buxton DR (1996) Quality related characteristics of for ages as influenced by plant environment and agronomic factors. Anim Feed Sci Technol 59:37–49

    Article  Google Scholar 

  • Campbell R, Pont SD, Morris JA, McKenzie G, Sharma SK, Hedley PE et al (2014) Genome-wide QTL and bulked transcriptomic analysis reveals new candidate genes for the control of tuber carotenoid content in potato (Solanum tuberosum). Theor Appl Genet 127:1917

    Article  CAS  PubMed  Google Scholar 

  • Canci H, Toker C (2009) Evaluation of annual wild Cicer species for drought and heat resistance under field conditions. Genet Resour Crop Evol 56:1

    Article  Google Scholar 

  • Carberry P (2007) Crop development models. In: Encyclopedia of science encyclopedia of water science, 2nd edn. CRC Press, Boca Raton, FL, pp 121–124

    Google Scholar 

  • Chandra M, Pal A (1995) Differential response of the two cotyledons of Vigna radiata in vitro. Plant cell Rep 15:248–253

    Google Scholar 

  • Chakrabarti N, Mukherji S (2002) Growth regulator mediated changes in leaf area and metabolic activity in mungbean under salt stress condition. Indian J Plant Physiol 7:256–263

    CAS  Google Scholar 

  • Chankaew S, Somta P, Sorajjapinun W, Srinives P (2011) Quantitative trait loci mapping of Cercospora leaf spot resistance in munbean, Vigna radiata (L.) Wilczek. Mol Breed 28(2):255–264

    Google Scholar 

  • Chauhan YS, Williams R (2018) Physiological and agronomic strategies to increase mungbean yield in climatically variable environments of northern Australia. Agron 8(6):83

    Article  Google Scholar 

  • Chauhan YS, Douglas C, Rachaputi RCN, Agius P, Martin W, King K et al (2010) Physiology of mungbean and development of the mungbean crop model. In: Proceedings of the 1st Australian summer grains conference, Australia, Gold Coast, QL, 21–24 June

    Google Scholar 

  • Chen H, Liu X (2001) Inheritance of seed color and lustre in mungbean (Vigna radiata). Agric Sci Technol Hunan 2:812

    Google Scholar 

  • Chen HM, Schafleitner R, Bains TS, Kuo CG, Liu CA, Nair RM (2013) The major quantitative trait locus for mungbean yellow mosaic Indian virus resistance is tightly linked in repulsion phase to the major bruchid resistance locus in a cross between mungbean [Vigna radiata (L.) Wilczek] and its wild relative Vigna radiata ssp. sublobata. Euphytica 192:205–216

    Article  Google Scholar 

  • Chhabra AK (1990) Inheritance of lobed and pentafoliate leaf in mungbean. Indian J Pulses Res 3:69–72

    Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2002) Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol 129:1773–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dasgupta T, Banik A, Das S (1998) Combining ability in mungbean. Indian J Pulses Res 11:28–32

    Google Scholar 

  • Dongre TK, Pawar SE, Thakare RG, Harwalkar MR (1996) Identification of resistant source to cowpea weevil [Callosobruchus maculatus (F.)] in Vigna sp. and inheritance of their resistance in black gram (Vigna mungo var. mungo). J Stored Prod Res 32:201–204

    Article  Google Scholar 

  • Durga KK, Kumar SS (1997) Screening for pre-harvest sprouting in pulses. Legume Res 20:193–197

    Google Scholar 

  • Dwivedi S, Singh DP (2013) Inheritance of purple pigmentation and seed colour in greengram. AGRIS Sci 13(1):63–66

    Google Scholar 

  • Ebert AW (2013) Ex situ conservation of plant genetic resources of major vegetables In: Normah MN, Chin HF, Reed BM (eds) Conservation of tropical plant species, Springer Press, New York, NY, pp 373–417

    Google Scholar 

  • Egawa Y, Takeda H, Suzuki K (1999) Research plan on crop heat tolerance at the crop introduction and cultivation laboratory. Japan International Re-search Center for Agricultural Sciences Working Report 14, pp 103–107

    Google Scholar 

  • Ehlers JD, Hall AE (1997) Cowpea (Vigna unguiculata L. Walp.). Field Crops Res 53:187–204

    Article  Google Scholar 

  • Fatokun CA (1991) Wide hybridization in cowpea: problems and prospects. Euphytica 54:137–140

    Google Scholar 

  • Fatokun CA, Menancio-Hautea D, Danesh D, Young ND (1992) Evidence for orthologous seed weight genes in cowpea and mungbean based on RFLP mapping. Genet 132:841–846

    CAS  Google Scholar 

  • Friedman R, Altman A, Nitsa L (2006) The effect of salt stress on polyamine biosynthesis and content in mung bean plants and in halophytes. Physiol Plant 76:295–302

    Article  Google Scholar 

  • Fujii K, Ishimoto M, Kitamura K (1989) Pattern of resistance to bean weevil Bruchidae in Vigna radiata-mungo-sublobata complex inform the breeding of new resistant varieties. Appl Entomol Zool 24:126–132

    Article  Google Scholar 

  • Gulati A, Jaiwal PK (1992) In vitro induction of multiple shoots and plant regeneration from shoot tips of mung bean (Vigna radiata (L.) Wilczek). Plant Cell Tiss Org Cult 29:199

    Google Scholar 

  • Gulati A, Jaiwal PK (1993) In vitro selection of salt resistant Vigna radiata (L.) Wilczek plants by adventitious shoot formation from cultured cotyledon explants. J Plant Physiol 142:99–102

    Article  CAS  Google Scholar 

  • Gulati A, Jaiwal PK (1994) Plant regeneration from cotyledonary node explants of mungbean (Vigna radiata (L.) Wilczek). Plant Cell Rep 13:523

    Google Scholar 

  • Gupta S, Pratap A (2016) Mungbean-summer cultivation in India (Pocket Guide), AICRP on MULLaRP, Indian Institute of Pulses Research, Kanpur 208024, Extension Bulletin 42

    Google Scholar 

  • Hall E (2004) Breeding for adaptation to drought and heat in cowpea. Eur J Agron 21:447–454

    Article  Google Scholar 

  • HanumanthaRao B, Nair RM, Nayyar H (2016) Salinity and high temperature tolerance in mungbean [Vigna radiata (L.) Wilczek] from a physiological perspective. Front Plant Sci 7:957

    Google Scholar 

  • Harris D, Breese W, Rao JK (2005) The improvement of crop yield in marginal environments using ‘on-farm’ seed priming: nodulation, nitrogen fixation, and disease resistance. Aust J Agri Res 56:1211–1218

    Article  Google Scholar 

  • Hedhly A, Hormaza JI, Herrero M (2009) Global warming and sexual plant reproduction. Trends Plant Sci 14:30–36

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Fujita M (2010) Evidence for a role of exogenous glycine betaine and proline in antioxidant defense and methyl glyoxal detoxification systems in mungbean seedlings under salt stress. Physiol Mol Biol Plants 16:19–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphry ME, Lambrides CJ, Chapman SC, Aitken EAB, Imrie BC, Lawn RJ, McIntyre CL, Liu CJ (2005) Relationships between hard-seededness and seed weight in mungbean (Vigna radiata) assessed by QTL analysis. Plant Breed 124:292–298

    Google Scholar 

  • Ignacimuthu S, Babu CR (1987) Vigna radiata var. sublobata (Fabaceae): Economically useful wild relative of urd and mung beans. Econ Bot 41:418–422

    Article  Google Scholar 

  • Isemura T, Kaga A, Tabata S, Somta P, Srinives P et al (2012) Construction of a genetic linkage map and genetic analysis of domestication related traits in mungbean (Vigna radiata). PLoS ONE 7(8):e41304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagadish B, Craufurd PA, Shi W, Oane AR (2014) A phenotypic marker for quantifying heat stress impact during microsporogenesis in rice (Oryza sativa L.). Funct Plant Biol 41:48–55

    Article  CAS  Google Scholar 

  • Jain HK, Mehra KL (1980) Evaluation, adaptation, relationship and cases of the species of Vigna cultivation in Asia. In: Summerfield RJ, Butnting AH (eds) Advances in legume science, vol 273. Royal Botanical Garden, Kew, London, pp 459–468

    Google Scholar 

  • Jain M, Prasad PVV, Boote KJ, Hartwell JAL, Chourey PS (2007) Effects of season-long high temperature growth conditions on sugar-to-starch metabolism in developing microspores of grain sorghum (Sorghum bicolor L. Moench). Planta 227:67

    Google Scholar 

  • Jaiwal PK, Kumari R, Ignacimuthu S, Potrykus I, Sautter C (2001) Agrobacterium tumefaciens-mediated genetic transformation of mungbean (Vigna radiata L. Wilczek)—a recalcitrant grain legume. Plant Sci 161:239–247

    Article  CAS  PubMed  Google Scholar 

  • Kajonphol T, Sangsiri C, Somta P, Toojinda T, Srinives P (2012) SSR map construction and quantitative trait loci (QTL) identification of major agronomic traits in mungbean (Vigna radiata (l.) Wilczek). SABRAO J Breed Genet 44(1):71–86

    Google Scholar 

  • Kang YJ, Kim SK, Kim MY, Lestari P, Kim KH, Ha B, Jun TH, Hwang WJ, Lee T, Lee J, Shim S, Yoon MY, Jang YE, Han KS, Gwag JG, Moon JK, Lee YH, Park BS, Bombarely A, Doyle JJ, Jackson SA, Schafleitner R, Srinives P, Varshney RK, Lee SH (2014) Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun 5:5443

    Article  CAS  PubMed  Google Scholar 

  • Kasettranan W, Somta P, Srinives P (2010) Mapping of quantitative trait loci controlling powdery mildew resistance in mungbean (Vigna radiata (L.) Wilczek). J Crop Sci Biotechnol 13(3):155–161

    Google Scholar 

  • Kaur R, Bains TS, Bindumadhava H, Nayyar H (2015a) Responses of mungbean (Vigna radiata L.) genotypes to heat stress: effects on reproductive biology, leaf function and yield traits. Sci Hort 197:527–541

    Article  Google Scholar 

  • Kaur A, Shevkani K, Singh N, Sharma P, Kaur S (2015b) Effect of guar gum and xanthan gum on pasting and noodle-making properties of potato, corn and mungbean starches. J Food Sci Technol 52:8113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaushal N, Awasthi R, Gupta K, Gaur P, Siddique KH, Nayyar H (2013) Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Funct Plant Biol 40:1334–1349

    Article  CAS  PubMed  Google Scholar 

  • Khadilkar BT (1963) Inheritance of two characters in green gram (Phaseolus aureus Roxb. Piper). Akola Agri Coll Mag 3:29–32

    Google Scholar 

  • Khattak GSS, Haq MA, Rana SA, Srinives P, Ashraf M (1999) Inheritance of resistance to mungbean yellow mosaic virus (MYMV) in mungbean (Vigna radiata (L.) Wilczek). Thai J Agri Sci 32:49–54

    Google Scholar 

  • Khattak GSS, Maq MA, Ashraf M, Tahir GR (2002) Triple test cross for some morphological traits in mungbean [Vigna radiata (L.) Welczek]. Euthopia 126:413–420

    Google Scholar 

  • Khatun MK, Haque MS, Islam S, Nasiruddin KM (2008) In vitro regeneration of mungbean (Vigna radiata L.) from different explants. Progress Agri 19:2

    Google Scholar 

  • Kitsanachandee R, Somta P, Chatchawankanphanich O, Akhtar KP, Shah TM, Nair RM, Bains TS, Sirari A, Kaur L, Srinives P (2013) Detection of quantitative trait loci for mungbean yellow mosaic India virus (MYMIV) resistance in mungbean (Vigna radiata (L.) Wilczek) in India and Pakisan. Breed Sci 63(4):367–373

    Google Scholar 

  • Konarev AV, Tomooka N, Vaughan DA (2002) Proteinase inhibitor polymorphism in the genus Vigna Savi subgenus Ceratotropis and its biosystematic implications. Euphytica 123:165–177

    Article  CAS  Google Scholar 

  • Kumar J, Kant R, Kumar S, Basu PS, Sarker A, Singh NP (2016) Heat tolerance in lentil under field conditions. Legume Genom Genet 7:1–11

    Google Scholar 

  • Kuo C, Wang L, Cheng A, Chou M (1977) Physiological basis for mungbean yield improvement. In: Proceedings of the International Mungbean Symposium, Los Banos Philippines, 16–19 Aug

    Google Scholar 

  • Lambrides CJ (1996) Breeding for improved seed quality traits in mungbean (Vigna radiata L. Wilczek) using DNA markers. PhD Dissertation, University of Queensland, Brisbane, Australia

    Google Scholar 

  • Lambrides CJ, Godwin ID, Lawn RJ, Imrie BC (2004) Segregation distortion for seed testa color in mungbean (Vigna radiata L. Wilczek). J Hered 95:532–535

    Article  CAS  PubMed  Google Scholar 

  • Lawn R (1982) Response of four grain legumes to water stress in south-eastern Queensland. II. Plant growth and soil water extraction patterns. Aust J Agri Res 33:497–509

    Article  Google Scholar 

  • Lawn R, Williams W, Imrie BC (1988) Potential of wild germplasm as a source of tolerance to environmental stresses in mungbean. In: Proceedings of 2nd international symposium, AVRDC, Taiwan, pp 136–145

    Google Scholar 

  • Lee YS, Lee JY, Kim DK, Yoon CY, Bak GC, Park IJ, Bang GP, Moon JK, Oh YJ, Min KS (2004) A new high-yielding mungbean cultivar, Samgang” with lobed leaflet. Kor Breed J 36:183–184

    Google Scholar 

  • Liu C, Fan B, Cao Z, Su Q, Wang Y, Zhang Z, Wu J, Tian J (2016) A deep sequencing analysis of transcriptomes and the development of EST-SSR markers in mungbean (Vigna radiata). J Genet 95:527

    Article  CAS  PubMed  Google Scholar 

  • Maas EV (1986) Salt tolerance of plants. Appl Agri Res 1:12–26

    Google Scholar 

  • Mahalakshmi SL, Leela T, Kumar MS (2006) Enhanced genetic efficiency of mungbean by use of primary leaf explants. Curr Sci 91:93–98

    CAS  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nat 437(7057):376–380

    Article  Google Scholar 

  • Misra N, Dwivedi UN (1995) Carbohydrate metabolism during seed germination and seedling growth in green gram under saline stress. Plant Physiol Biochem 33:33–38

    CAS  Google Scholar 

  • Misra N, Dwivedi UN (2004) Genotypic difference in salinity tolerance of green gram cultivars. Plant Sci 166:1135–1142

    Article  CAS  Google Scholar 

  • Mookkan M, Andy G (2014) AgNO3 boosted high-frequency shoot regeneration in Vigna mungo (L.) Hepper. Plant Signal Behav 9(10)

    Google Scholar 

  • Morrison MJ, Stewart DW (2002) Heat stress during flowering in summer Brassica. Crop Sci 42:797–803

    Article  Google Scholar 

  • Morton F, Smith RE, Poelman JM (1982) The mungbean. College of Agricultural Sciences, Department of Agronomy and Soils. Puerto Rico, Spec. Publ

    Google Scholar 

  • Muchow R, Charles-Edwards D (1982) An analysis of the growth of mungbeans at a range of plant densities in tropical Australia. I. Dry matter production. Aust J Agri Res 33:41–51

    Article  Google Scholar 

  • Mudgal V, Madaan N, Mudgal A (2010) Biochemical mechanisms of salt tolerance in plants: a review. Intl J Bot 6:136–143

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Murty BK, Patel GJ (1973) Inheritance of some morphological characters in mungbean. Bansilal Amrital Coll Agri Mag 25:1–9

    Google Scholar 

  • Nagaraj NC, Muniyappa V, Satyan BA, Shanmugam N, Jayarajan R, Vidhyasekaran P (1981) Resistance source for mungbean yellow mosaic virus. In: Proceedings of the national seminar on disease resistance in crop plants, pp 69–72

    Google Scholar 

  • Pal SS, Singh JJ, Singh I (2000) Transfer of YMV resistance in cultivar SML32 of Vigna radiata from other related Vigna species. Plant Dis Res 15:67–69

    Google Scholar 

  • Pandiyan M, Ramamoorthi N, Ganesh SK, Jebraj S, Pagarajan P, Balasubramanian P (2008) Broadening the genetic base and introgression of MYMY resistance and yield improvement through unexplored genes from wild relatives in mungbean. Plant Mutat Rep 2:33–38

    Google Scholar 

  • Pathak GN, Singh B (1963) Inheritance studies in greengram. Indian J Genet 23:215–218

    Google Scholar 

  • Pookpakdi A, Pataradilok H (1993) Response of genotypes of mungbean and blackgram to planting dates and plant population densities. Kasetsart J Nat Sci 27:395–400

    Google Scholar 

  • Poolsawat O, Katiavat C, Arsakit K, Tantasawat PA (2017) Identification of quantitative trait loci associated with powdery mildew resistance in mungbean using ISSR and ISSR-RGA markers. Mol Breed 37(12):150

    Article  CAS  Google Scholar 

  • Pratap A, Gupta DS, Rajan N (2012a) Mungbean. In: Bharadwaj D (ed) Breeding Indian field crops. Agrobios Publishers, New Delhi, India, pp 208–227

    Google Scholar 

  • Pratap A, Gupta SK, Kumar J, Solanki RK (2012b) Soybean. In: Gupta SK (ed) Technological innovations in major world oil crops, vol I. Breeding. Springer Science + Business Media, New York, pp 293–321

    Chapter  Google Scholar 

  • Pratap A, Gupta DS, Singh BB, Kumar S (2013a) Development of super early genotypes in greengram [Vigna radiata (L.) Wilczek]. Legume Res 36:105–110

    Google Scholar 

  • Pratap A, Gupta DS, Singh BB, Kumar S (2013b) IPM 205-7 (IC0589309-IC0589310; INGR11043-INGR11044), a mungbean (Vigna radiata (L.) Wilczek) germplasm with super early maturity. Indian J Plant Genet Resour 26:89–90

    Google Scholar 

  • Pratap A, Basu PS, Gupta S, Malviya N, Rajan N, Tomar R, Latha M, Nadarajan N, Singh NP (2014) Identification and characterization of sources for photo- and thermo-insensitivity in Vigna species. Plant Breed 133:756–764

    Article  Google Scholar 

  • Pratap A, Gupta S, Malviya N, Tomar R, Maurya R, Joseph JK, Singh NP (2015a) Genome scanning of Indian Vigna species through microsatellite variation for genetic diversity and population structure analysis. Mol Breed 35:1–3

    Article  Google Scholar 

  • Pratap A, Gupta S, Malviya N, Rajan N, Tomar R, Latha M, John JK, Singh NP (2015b) Genome scanning of Asiatic Vigna species for discerning population genetic structure based on microsatellite variation. Mol Breed 35:178

    Article  Google Scholar 

  • Pratap A, Chaturvedi SK, Tomar R, Rajan N, Malviya N, Thudi M, Saabale PR, Prajapati U, Varshney RK, Singh NP (2017) Marker-assisted introgression of resistance to fusarium wilt race 2 in Pusa 256, an elite cultivar of desi chickpea. Mol Genet Genom 137–1245. https://doi.org/10.1007/s00438-017-1343-z.292

  • Pratap A, Prajapati U, Singh CM, Gupta S, Rathore M, Malviya N, Tomar R, Gupta AK, Tripathi S, Singh NP (2018) Potential, constraints and applications of in vitro methods in improving grain legumes. Plant Breed 137:235–249

    Article  Google Scholar 

  • Project Coordinators Report (2018) All India coordinated research project on MULLaRP (Mungbean, Urdbean, Lentil, Lathyrus, Rajmash, Fieldpea). ICAR-Indian Institute of Pulses Research, Kalyanpur, Kanpur, p. 46

    Google Scholar 

  • Promila K, Kumar S (2000) Vigna radiata seed germination under salinity. Biol Plant 43:423–426

    Article  CAS  Google Scholar 

  • Rachaputi RC, Chauhan Y, Douglas C, Martin W, Krosch S, Agius P, King K (2015) Physiological basis of yield variation in response to row spacing and plant density of mungbean grown in subtropical environments. Field Crops Res 183:14–22

    Article  Google Scholar 

  • Rainey KM, Griffiths PD (2005) Differential responses of common bean genotypes to high temperatures. J Amer Soc Hort Sci 130:18–23

    Article  Google Scholar 

  • Reddy KR, Singh DP (1990) The variation and transgressive segregation in the wide and varietal crosses of mungbean. Madras Agri J 77:12–14

    Google Scholar 

  • Reddy MV, Singh KB (1993) Rate reducing resistance to Ascochyta blight in chickpeas. Plant Dis 77:231–233

    Article  Google Scholar 

  • Ribaut JM, Betran J (1999) Single large-scale marker-assisted selection (SLS-MAS). Mol Breed 5:531–541

    Google Scholar 

  • Saha P, Chatterjee P, Biswas AK (2010) NaCl pre treatment alleviates salt stress by enhancement of antioxidant defense and osmolyte accumulation in mungbean (Vigna radiata L. Wilczek). Indian J Exp Biol 48:593–600

    CAS  PubMed  Google Scholar 

  • Sahoo DP, Kumar S, Mishra S, Kobayashi Y, Panda S, Sahoo L (2016) Enhanced salinity tolerance in transgenic mungbean overexpressing Arabidopsis antiporter (NHX1) gene. Mol Breed 36(10):144

    Google Scholar 

  • Sakata T, Oshino T, Miura S, Tomabechi M, Tsunaga Y, Higashitani N (2010) Auxins reverse plant male sterility caused by high temperatures. Proc Natl Acad Sci USA 107:8569–8574

    Article  PubMed  PubMed Central  Google Scholar 

  • Sareen PK (1985) Further genetic analysis of the trilobate leaf mutants in mungbean (Vigna radiata var. aureus (L.) Wilczek). Curr Sci 54:930–931

    Google Scholar 

  • Sarkar S, Bhattacharyya S (2014) Inheritance of bruchid resistance and morphological traits in greengram. Indian J Genet 74:98–102

    Google Scholar 

  • Sehrawat N, Bhat KV, Sairam RK, Jaiwal PK (2013a) Screening of mungbean (Vignaradiata L. Wilczek) genotypes for salt tolerance. Intl J Plant Anim Environ Sci 4:36–43

    Google Scholar 

  • Sehrawat N, Bhat KV, Sairam RK, Jaiwal PK (2013b) Identification of salt resistant wild relatives of mungbean (Vigna radiata L. Wilczek). Asian J Plant Sci Res 3:41–49

    Google Scholar 

  • Sehrawat N, Bhat KV, Sairam RK, Tomooka N, Kaga A, Shu Y et al (2013c) Diversity analysis and confirmation of intra-specific hybrids for salt tolerance in mungbean (Vigna radiata L. Wilczek). Inlt J Integr Biol 14:65–73

    CAS  Google Scholar 

  • Sehrawat N, Jaiwal PK, Yadav M, Bhat KV, Sairam RK (2013d) Salinity stress restraining mungbean (Vigna radiata L.Wilczek) production: gateway for genetic improvement. Intl J Agri Crop Sci 6:505–509

    Google Scholar 

  • Sen NK, Ghosh AK (1959) Genetic studies in green gram. Indian J Genet 19:210–227

    Google Scholar 

  • Sen NK, Murty ASN (1960) Inheritance of seed weight in green gram (Phaseolus aurcus Roxb.). Genet 45:1559–1562

    CAS  Google Scholar 

  • Shukla GP, Pandya BP (1985) Resistance to yellow mosaic in greengram. SABRAO J Breed Genet 17:165–171

    Google Scholar 

  • Singh DP (1990) Distant hybridization in hybrid genus Vigna: a review. Indian J Genet 50:268–276

    Google Scholar 

  • Singh BV, Ahuja MR (1977) Phaseolus sublobatus Roxb. A source of resistance to yellow mosaic virus for cultivated mung. Indian J Genet 37:130–132

    Google Scholar 

  • Singh TP, Singh KB (1970) Inheritance of clusters per node in mungbean (Phaseolus aureus Roxb.). Curr Sci 39:265

    Google Scholar 

  • Singh BB, Singh DP (1995) Inheritance of a small leaf mutant in mungbean. Indian J Genet 55:69–70

    Google Scholar 

  • Singh BB, Singh SR, Adjadi O (1985) Bruchid resistance in cowpea. Crop Sci 25:736–739

    Article  Google Scholar 

  • Singh KP, Monika, Sareen PK, Kumar A (2003) Interspecific hybridization studies in Vigna radiata L. Wilczek and Vigna umbellata L. Natl J Plant Improv 5:16–18

    Google Scholar 

  • Singh BB, Pratap A, Basu PS (2013) Development of climate resilient pulse varieties. In: Proceedings of national conference of plant physiology on current trends in plant biology research. Directorate of Groundnut Research, Junagadh and Junagadh Agricultural University, Junagadh, India, pp 118–129, 13–16 Dec

    Google Scholar 

  • Singh DP, Singh BB, Pratap A (2017) Genetic improvement of mungbean and urdbean and their role in enhancing pulse production in India. Indian J Genet 76:550–567

    Google Scholar 

  • Sita K, Sehgal A, Kumar J, Kumar S, Singh S, Siddique KHM, Nayyar H (2017) Identification of high-temperature tolerant lentil (Lens culinaris Medik.) genotypes through leaf and pollen traits. Front Plant Sci 8:744

    Google Scholar 

  • Snider JL, Oosterhuis DM, Skulman BW, Kawakami EM (2009) Heat stress-induced limitations to reproductive success in Gossypium hirsutum. Physiol Plant 137:125–138

    Article  CAS  PubMed  Google Scholar 

  • Sonia SR, Singh RP, Jaiwal PK (2007) Agrobacterium tumefaciens mediated transfer of Phaseolus vulgaris α-amylase inhibitor-1 gene into mungbean Vigna radiata (L.) Wilczek using bar as selectable marker. Plant Cell Rep 26:187–198

    Google Scholar 

  • Suzuki K, Takeda H, Tsukaguchi T, Egawa Y (2001) Ultrastructural study on degeneration of tapetum in anther of snap bean (Phaseolus vulgaris L.) under heat stress. Sex Plant Reprod 13:293–299

    Article  Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43

    Article  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2006) Stress physiology. In: Taiz L, Zeiger E (eds) Plant physiology. Sinauer Associates, Sunderland, pp 671–681

    Google Scholar 

  • Talukdar T, Talukdar D (2003) Inheritance of growth habit and leaf-shape in mungbean [Vigna radiata (L.) Wilczek.]. Indian J Genet 63:165–166

    Google Scholar 

  • Tangphatsornruang S, Somta P, Uthaipaisanwong P, Chanprasert J, Sangsrakru D, Seehalak W, Sommanas W, Tragoonrung S, Srinives P (2009) Characterization of microsatellites and gene contents from genome shotgun sequences of mungbean (Vigna radiata (L.) Wilczek). BMC Plant Biol 9:137

    Google Scholar 

  • Tangphatsornruang S, Sangsrakru D, Chanprasert J, Uthaipaisanwong P, Yoocha T, Jomchai N, Tragoonrung S (2010) The chloroplast genome sequence of mungbean (Vigna radiata) determined by high-throughput pyrosequencing: structural organization and phylogenetic relationships. DNA Res 17:11–22

    Article  CAS  PubMed  Google Scholar 

  • Tazeen S, Mirza B (2004) Factors affecting Agrobacterium tumefaciens mediated genetic transformation of Vigna radiata (L.) Wilczek. Pakistan J Bot 36:887–896

    Google Scholar 

  • TeKrony DM, Egli DB (1991) Relationship of seed vigor to crop yield: a review. Crop Sci 31:816–822

    Article  Google Scholar 

  • Tickoo JL, Grajraj R, Matho M, Manji C (1996) Plant type in mungbean. In: Asthana AN, Kum H (eds) Proceedings of recent advances in mungbean. Indian Society of Pulses Research, Kanpur, India, pp 197–213

    Google Scholar 

  • Tomooka N, Lairungruang C, Nakeeraks P, Egawa Y, Thavarasook C (1992) Development of bruchid resistant mungbean using wild mungbean germplasm in Thail. Plant Breed 109:60–66

    Article  Google Scholar 

  • Tomooka N, Vaughan DA, Xu RQ, Kashiwaba K, Kaga A (2001) Japanese native Vigna genetic resources. Jpn Agri Res Q 35:1–9

    Article  Google Scholar 

  • Tzudir L, Bera PS, Chakraborty PK (2014) Impact of temperature on the reproductive development in mungbean (Vigna radiata) varieties under different dates of sowing. Intl J Bioresour Stress Manage 5:194–199

    Article  Google Scholar 

  • Verma SNP, Krishi JN (1969) Inheritance of some qualitative characters in greengram (Phaseolus aureus Roxb.). Indian J Hered 1:105–106

    Google Scholar 

  • Vijayan S, Kirti PB (2012) Mungbean plants expressing BjNPR1 exhibit enhanced resistance against the seedling rot pathogen, Rhizoctonia solani. Transgen Res 21:193

    Article  CAS  Google Scholar 

  • Wahid A, Ejaz MHR (2004) Salt injury symptom, changes in nutrient and pigment composition and yield characteristics of mungbean. Intl J Agri Biol 6:1143–1152

    CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf MR, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wassmann R, Jagadish S, Sumfleth K, Pathak H, Howell G, Ismail A (2009) Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Adv Agron 102:91–133

    Article  Google Scholar 

  • Witcombe JR, Virk DS (2001) Number of crosses and population size for participatory and classical plant breeding. Euphytica 122:451–462

    Google Scholar 

  • Yadav M, Chaudhary D, Sainger M, Jaiwal PK (2010a) Agrobacterium tumefaciens-mediated genetic transformation of sesame (Sesamum indicum L.). Plant Cell Tiss Org Cult 103:377

    Google Scholar 

  • Yadav SP, Ibaraki Y, Dutta Gupta S (2010b) Estimation of the chlorophyll content of micropropagated potato plants using RGB based image analysis. Plant Cell Tiss Org Cult 100:183

    Article  CAS  Google Scholar 

  • Yadav SK, Katikala S, Yellisetty V, Kannepalle A, Narayana VM, Shanker AK, Bandi V, Bharadwaja KP (2012) Optimization of Agrobacterium mediated genetic transformation of cotyledonary node explants of Vigna radiata. Springer Plus 1:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young ND, Kumar L, Menancio-Hautea D, Danesh D, Talekar NS, Shanmugasundarum, Kim DH (1992) RFLP mapping of a major bruchid resistance gene in munbean (Vigna radiata, L. Wilczek). Theor and Appl Genet 84(7–8):839–844

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya Pratap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pratap, A. et al. (2019). Towards Development of Climate Smart Mungbean: Challenges and Opportunities. In: Kole, C. (eds) Genomic Designing of Climate-Smart Pulse Crops. Springer, Cham. https://doi.org/10.1007/978-3-319-96932-9_5

Download citation

Publish with us

Policies and ethics