Skip to main content

Breeding and Genomics Approaches for Improving Productivity Gains in Chickpea Under Changing Climate

  • Chapter
  • First Online:
Genomic Designing of Climate-Smart Pulse Crops

Abstract

Chickpea is a well-recognized global grain legume that plays an important role for providing plant-based protein security to global human population. Given the rising uncertainties in global climate coupled with growing occurrence of various pests and diseases and a range of abiotic stresses, global chickpea production is seriously challenged. Therefore, conventional breeding approaches are not adequate to meet the rising demand for chickpea. Evolving genomic technologies have yielded considerable success in accelerating molecular breeding program in various crops. To this end, unprecedented advances in genome sequencing technologies facilitated largely by next-generation sequencing (NGS) technologies have allowed decoding of whole genome sequences of both cultivated and wild species of chickpea. These developments have opened up great opportunity to improve the efficiency of chickpea breeding programs through deployment of large-scale genomic tools. Efforts are underway to re-sequence multiple genomes for identifying new haplotypes of traits of breeding importance in the crop from wider germplasm resources such as the core collection and reference sets. Taken together, these massive genomic resources including the high-density genotyping assays have allowed chickpea breeders to embrace modern breeding techniques like genomic selection (GS) for enhancing genetic gain. This chapter focuses on the genomics-assisted improvement of chickpea, with an emphasis on the traits that impart resilience to changing climate. In addition to genomics, we highlight progress and possibilities of transgenic research for improving tolerance against biotic and abiotic stress resistance in chickpea. Moreover, the introduction of novel breeding schemes such as “speed breeding”, CRISPR/Cas9-based genome editing holds great promise for accelerating the genetic gains projected to meet the ever-increasing demand for plant-based proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbo S, Jens Berger J, Turner NC (2003a) Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation. Funct Plant Biol 30:1081–1087

    Article  PubMed  Google Scholar 

  • Abbo S, Shtienberg D, Lichtenzveig J, Lev-Yadun S, Gopher A (2003b) The chickpea, summer cropping, and a new model for pulse domestication in the ancient near east. Q Rev Biol 78:435–448

    Article  PubMed  Google Scholar 

  • Acharjee S, Sarmah BK (2013) Transgenic Bacillus thuringiensis (Bt) chickpea: India’s most wanted genetically modified (GM) pulse crop. Afr J Biotechnol 12:5709–5713

    Google Scholar 

  • Acharjee S, Sarmah BK, Ananda Kumar P, Olsen K, Mahon R, Moar WJ, Moore A, Higgins TVJ (2010) Transgenic chickpeas (Cicer arietinum L.) expressing a sequence-modified cry2Aa gene. Plant Sci 178:333–339

    Article  CAS  Google Scholar 

  • Agarwal G, Garg V, Kudapa H, Doddamani D, Pazhamala LT, Khan AW, Thudi M, Lee SH, Varshney RK (2016) Genome-wide dissection of AP2/ERF and HSP90 gene families in five legumes and expression profiles in chickpea and pigeonpea. Plant Biotechnol J 14:1563–1577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD (2012) The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu Rev Plant Biol 63:637–661

    Article  CAS  PubMed  Google Scholar 

  • Ainsworth EA (2017) Understanding and improving global crop response to ozone pollution. Plant J 90:886–897

    Article  CAS  PubMed  Google Scholar 

  • Ali MY, Krishnamurthy L, Saxena NP, Rupela OP, Kumar J, Johansen C (2002) Scope for genetic manipulation of mineral acquisition in chickpea. Plant Soil 245:123–134

    Article  CAS  Google Scholar 

  • Anbazhagan K, Bhatnagar-Mathur P, Vadez V, Dumbala SR, Kavi Kishor PB, Sharma KK (2015) DREB1A overexpression in transgenic chickpea alters key traits influencing plant water budget across water regimes. Plant Cell Rep 34:199–210

    Article  CAS  PubMed  Google Scholar 

  • Anbessa Y, Tara`n B, Warkentin TD, Tullu A, Vandenberg A (2009) Genetic analyses and conservation of QTL for Ascochyta blight resistance in chickpea (Cicer arietinum L.). Theor Appl Genet 4:757–765

    Google Scholar 

  • Arslan O, Eyidogan F, Ekmekci Y (2018) Freezing tolerance of chickpea: biochemical and molecular changes at vegetative stage. Biol Plant 62:140–148

    Article  CAS  Google Scholar 

  • Aryamanesh N, Nelson MN, Yan G, Clarke HJ, Siddique KHM (2010) Mapping a major gene for growth habit and QTLs for Ascochyta blight resistance and flowering time in a population between chickpea and Cicer reticulatum. Euphytica 173:307–319

    Article  Google Scholar 

  • Badhan S, Kole P, Ball A, Mantri N (2018) RNA sequencing of leaf tissues from two contrasting chickpea genotypes reveals mechanisms for drought tolerance. Plant Physiol Biochem 129:295–304

    Article  CAS  PubMed  Google Scholar 

  • Bandillo N, Raghavan C, Muyco PA, Sevilla MAL, Lobina IT, Dilla-Ermita J, Singh RK (2013) Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice 6:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Berger JD, Turner NC, Siddique KHM, Knights EJ, Brinsmead RB, Mock I, Edmondson C, Khan TN (2004) Genotype by environment studies across Australia reveal the importance of phenology for chickpea (Cicer arietinum L.) improvement. Aust J Agri Res 55:1071–1084

    Article  Google Scholar 

  • Berger JD, Ali M, Basu PS, Chaudhary BD, Chaturvedi SK, Deshmukh PS, Kumar J (2006) Genotype by environment studies demonstrate the critical role of phenology in adaptation of chickpea (Cicer arietinum L.) to high and low yielding environments of India. Field Crops Res 98:230–244

    Article  Google Scholar 

  • Bhandari K, Siddique KH, Turner NC, Kaur J, Singh S, Agrawal SK, Nayyar H (2016) Heat stress at reproductive stage disrupts leaf carbohydrate metabolism, impairs reproductive function, and severely reduces seed yield in lentil. J Crop Improv 30:118–151

    Article  CAS  Google Scholar 

  • Bohra A, Jha UC, Singh B, Soren KR, Singh IP, Chaturvedi SK, Nadarajan N, Barh D (2013) Omics approaches in pulses. In: Barh D (ed) OMICS applications in crop science. Taylor & Francis, London, pp 102–138

    Google Scholar 

  • Bohra A (2013) Emerging paradigms in genomics-based crop improvement. Sci World J 2013:585467

    Article  CAS  Google Scholar 

  • Bohra A, Pandey MK, Jha UC, Singh B, Singh IP, Datta D, Chaturvedi SK, Nadarajan N, Varshney RK (2014) Genomics assisted breeding in four major pulse crops of developing countries: present status and prospects. Theor Appl Genet 127:1263–1291

    Article  PubMed  PubMed Central  Google Scholar 

  • Bohra A, Singh NP (2015) Whole genome sequences in pulse crops: a global community resource to expedite translational genomics and knowledge-based crop improvement. Biotechnol Lett 37:1529–1539

    Article  CAS  PubMed  Google Scholar 

  • Bohra A, Sahrawat KL, Kumar S, Joshi R, Parihar AK, Singh U, Singh D, Singh NP (2015) Genetics- and genomics-based interventions for nutritional enhancement of grain legume crops: status and outlook. J Appl Genet 56:151–161

    Google Scholar 

  • Bhardwaj R, Sandhu JS, Kaur L, Gupta SK, Gaur PM, Varshney RK (2010) Genetics of Ascochyta blight resistance in chickpea. Euphytica 171:337–343

    Article  Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, M Devi J, Lavanya M, Vani G, Sharma KK (2009) Genetic engineering of chickpea (Cicer arietinum L.) with the P5CSF129A gene for osmoregulation with implications on drought tolerance. Mol Breed 23:591–606

    Google Scholar 

  • Brinda S, Ravikumar RL (2005) Inheritance of wilt resistance in chickpea: a molecular marker analysis. Curr Sci 88:12–19

    Google Scholar 

  • Canci H, Toker C (2009) Evaluation of yield criteria for drought and heat resistance in chickpea (Cicer arietinum L.). J Agron Crop Sci 19:47–54

    Article  Google Scholar 

  • Clarke HJ, Siddique KHM (2004) Response of chickpea genotypes to low temperature stress during reproductive development. Field Crops Res 90:323–334

    Article  Google Scholar 

  • Clarke HJ, Khan TN, Siddique KHM (2004) Pollen selection for chilling tolerance at hybridisation leads to improved chickpea cultivars. Euphytica 139:65–74

    Article  Google Scholar 

  • Cobos MJ, Ferna`ndez MJ, Rubio J, Kharrat M, Moreno MT, Gil J, Milla`n T (2005) A linkage map of chickpea (Cicer arietinum L.) based on populations from Kabuli x Desi crosses: location of genes for resistance to Fusarium wilt race 0. Theor Appl Genet 110:1347–1353

    Google Scholar 

  • Cobos MJ, Winter P, Kharrat M, Cubero JI, Gil J, Millan T, Rubio J (2009) Genetic analysis of agronomic traits in a wide cross of chickpea. Field Crops Res 111:130–136

    Article  Google Scholar 

  • Daba K, Deokar A, Banniza S, Warkentin TD, Tar’an B (2016) QTL mapping of early flowering and resistance to ascochyta blight in chickpea. Genome 59:413–425

    Article  CAS  PubMed  Google Scholar 

  • Das S, Upadhyaya HD, Bajaj D, Kujur A, Badoni S, Kumar V, Tripathi S, Gowda CL, Sharma S, Singh S, Tyagi AK, Parida SK (2015) Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea. DNA Res 22:193–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Singh M, Srivastava R, Bajaj D, Saxena MS, Rana JC, Bansal KC, Tyagi AK, Parida SK (2016) mQTL-seq delineates functionally relevant candidate gene harbouring a major QTL regulating pod number in chickpea. DNA Res 23:53–65

    CAS  PubMed  Google Scholar 

  • del Mar Jiménez-Gasco M, Jiménez-Díaz RM (2003) Development of a specific polymerase chain reaction-based assay for the identification of Fusarium oxysporum f. sp. ciceris and its pathogenic races 0, 1A, 5, and 6. Phytopathology 93(2):200–209

    Google Scholar 

  • Diapari M, Sindhu A, Bett K, Deokar A, Wartkentin TD, Taran B (2014) Genetic diversity and association mapping of iron and zinc concentrations in chickpea (Cicer arietinum L.). Genome 57:459–468

    Article  CAS  PubMed  Google Scholar 

  • Doddamani D, Mohan AVSK, Katta MAVSK, Khan AW, Agarwal G, Shah TM, Varshney RK (2014) CicArMiSatDB: the chickpea microsatellite database. BMC Bioinformatics 15:212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doddamani D, Khan AW, Katta MAVSK, Agarwal G, Thudi M, Ruperao P, Edwards D, Varshney RK (2015) CicArVarDB: SNP and InDel database for advancing genetics research and breeding applications in chickpea. Database (Oxford) 19:2015

    Google Scholar 

  • Deokar AA, Kondawar V, Jain PK, Karuppayil M, Raju NL, Vadez V, Varshney RK, Srinivasan R (2011) Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress. BMC Plant Biol 11:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deokar A, Sagi M, Daba K, Tar’an B (2018) QTL sequencing strategy to map genomic regions associated with resistance to ascochyta blight in chickpea. Plant Biotechnol J. https://doi.org/10.1111/pbi.12964

  • Devasirvatham V, Gaur PM, Mallikarjuna N, Raju TN, Trethowan RM, Tan DKY (2012) Effect of high temperature on the reproductive development of chickpea genotypes under controlled environments. Funct Plant Biol 39:1009–1018

    Article  PubMed  Google Scholar 

  • Devasirvatham V, Gaur P, Mallikarjuna N, Raju TN, Trethowan RM, Tan DKY (2013) Reproductive biology of chickpea response to heat stress in the field is associated with the performance in controlled environments. Field Crops Res 142:9–19

    Article  Google Scholar 

  • Devasirvatham V, Tan DKY, Trethowan RM, Gaur PM, Mallikarjuna N (2010) Impact of high temperature on the reproductive stage of chickpea. In: Food Security from Sustainable Agriculture. Proceedings of the 15th Australian Society of Agronomy Conference. Lincoln, New Zealand, pp 15–18

    Google Scholar 

  • Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096

    Article  CAS  PubMed  Google Scholar 

  • Dua RP, Sharma PC (1995) Salinity tolerance of kabuli and desi chickpea genotypes. Intl Chickpea Pigeonpea Newsl 2:19–22

    Google Scholar 

  • Food and Agriculture Organization of the United Nations, FAOSTAT. Rome, Italy. FAO (2016). Available at: http://fao.org/faostat/en/#data/QC(Accessed13Jan2018)

  • Flandez-Galvez H, Ades PK, Ford R, Pang ECK, Tayler PWJ (2003) QTL analysis for Ascochyta blight resistance in an intraspecific population of chickpea (Cicer arietinum L.). Theor Appl Genet 107:1257–1265

    Article  CAS  PubMed  Google Scholar 

  • Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Expt Bot 61:3211–3222

    Article  CAS  Google Scholar 

  • Ganguly M, Molla KA, Karmakar S, Datta K, Datta SK (2014) Development of pod borer-resistant transgenic chickpea using a pod-specific and a constitutive promoter-driven fused cry1Ab/Ac gene. Theor Appl Genet 127:2555–2565

    Article  CAS  PubMed  Google Scholar 

  • Garg R, Bhattacharjee A, Jain M (2015) Genome-scale transcriptomic insights into molecular aspects of abiotic stress responses in chickpea. Plant Mol Biol Rep 33:388–400

    Article  CAS  Google Scholar 

  • Garg R, Shankar R, Thakkar B, Kudapa H, Krishnamurthy L, Mantri N, Varshney RK, Bhatia S, Jain M (2016) Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Sci Rep 6:19228

    Google Scholar 

  • Garg T, Mallikarjuna BP, Thudi M, Samineni S, Singh S, Sandhu JS, Kaur L, Singh I, Sirari A, Basandrai AK, Basandrai D, Varshney RK, Gaur PM (2018) Identification of QTLs for resistance to Fusarium wilt and Ascochyta blight in a recombinant inbred population of chickpea (Cicer arietinum L.). Euphytica 214:1–11

    Article  Google Scholar 

  • Gaur PM, Krishnamurty L, Kashiwagi J (2008) Improvement drought-avoidance root traits in chickpea (Cicer arietinum L.)-current status of research at ICRISAT. Plant Prod Sci 3—11

    Google Scholar 

  • Gaur PM, Jukanti AK, Varshney RK (2012) Impact of genomic technologies on chickpea breeding strategies. Agronomy 2:199–221

    Article  Google Scholar 

  • Gaur PM, Samineni S, Thudi M, Tripathi S, Sajja SB, Jayalakshmi V, Fikre A (2018) Integrated breeding approaches for improving drought and heat adaptation in chickpea (Cicer arietinum L.). Plant Breed. https://doi.org/10.1111/pbr.12641

  • Gayali S, Acharya S, Lande NV, Pandey A, Chakraborty S, Chakraborty N (2016) CicerTransDB 1.0: a resource for expression and functional study of chickpea transcription factors. BMC Plant Biol 16:169

    Google Scholar 

  • Gaur PM, Thudi M, Srinivasan S, Varshney RK (2014) Advances in chickpea genomics. In: Gupta S, Nadarajan N, Gupta DS (eds) Legumes in the Omic Era. Springer, New York, pp 73–94

    Chapter  Google Scholar 

  • Gaur PM, Samineni S, Tripathi S, Varshney RK, Gowda CLL (2015) Allelic relationships of flowering time genes in chickpea. Euphytica 203:295–308

    Article  CAS  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gowda SJM, Radhika P, Kadoo NY, Mhase LB, Gupta VS (2009) Molecular mapping of wilt resistance genes in chickpea. Mol Breed 24:177–183

    Article  CAS  Google Scholar 

  • Gupta S, Kumar T, Verma S, Bharadwaj C, Bhatia S (2015) Development of gene-based markers for use in construction of the chickpea (Cicer arietinum L.) genetic linkage map and identification of QTLs associated with seed weight and plant height. Mol Biol Rep 42:1571–1580

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Nawaz K, Parween S, Roy R, Sahu K, Kumar Pole A, Khandal H, Srivastava R, Parida SK, Chattopadhyay D (2017) Draft genome sequence of Cicer reticulatum L., the wild progenitor of chickpea provides a resource for agronomic trait improvement. DNA Res 24:1–10

    PubMed  Google Scholar 

  • Halila MH, Strange RN (1996) Identification of the causal agent of wilt of chickpea in Tunisia as Fusarium oxysporum f. sp. ciceri race 0. Phytopathol Mediterr 35:67–74

    Google Scholar 

  • Hamwieh A, Imtiaz M, Malhotra RS (2013) Multi-environment QTL analyses for drought-related traits in a recombinant inbred population of chickpea (Cicer arietinum L.) Theor Appl Genet 126:1025–1038

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Intl J Mol Sci 14:9643–9684

    Article  CAS  Google Scholar 

  • Hegde VS (2010) Genetics of flowering time in chickpea in a semi-arid environment. Plant Breed 129:683–687

    Article  CAS  Google Scholar 

  • Hidoto L, Tar’an B, Worku W, Mohammed H (2017) Towards Zinc Biofortification in chickpea: performance of chickpea cultivars in response to soil zinc application. Agronomy 7:11

    Google Scholar 

  • Hiremath PJ, Farmer A, Cannon SB, Woodward J, Kudapa H, Tuteja R et al. (2011) Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnol J 9:922–931

    Google Scholar 

  • Huang BE, Verbyla KL, Verbyla AP, Raghavan C, Singh VK, Gaur PM, Cavanagh CR (2015) MAGIC populations in crops: current status and future prospects. Theor Appl Genet 128:999–1017

    Article  PubMed  Google Scholar 

  • Indurker S, Misra HS, Eapen S (2007) Genetic transformation of chickpea (Cicer arietinum L.) with insecticidal crystal protein gene using particle gun bombardment. Plant Cell Rep 26:755–763

    Article  CAS  PubMed  Google Scholar 

  • Iruela M, Rubio J, Barro F, Cubero JI, Milla´n T, Gil J (2006) Detection of two quantitative trait loci for resistance to Ascochyta blight in an intra-specific cross of chickpea (Cicer arietinum L.): development of SCAR markers associated with resistance. Theor Appl Genet 112:278–287

    Google Scholar 

  • Iruela M, Castro P, Rubio J, Cubero JI, Jacinto C, Milla´n T, Gil J (2007) Validation of a QTL for resistance to Ascochyta blight linked to resistance to Fusarium wilt race 5 in chickpea (Cicer arietinum L.). Eur J Plant Pathol 119:29–37

    Google Scholar 

  • Jadhav AA, Rayate SJ, Mhase LB, Thudi M, Chitikineni A, Harer PN, Jadhav AS, Varshney RK, Kulwal PL (2015) Marker-trait association study for protein content in chickpea (Cicer arietinum L.). J Genet 94:279–286

    Article  CAS  PubMed  Google Scholar 

  • Jaganathan D, Thudi M, Kale S, Azam S, Roorkiwal M, Gaur PM, Kishor PB, Nguyen H, Sutton T, Varshney RK (2015) Genotyping-by-sequencing based intra-specific genetic map refines a “QTL-hotspot” region for drought tolerance in chickpea. Mol Genet Genom 290:559–571

    Article  CAS  Google Scholar 

  • Jain D, Chattopadhyay D (2010) Analysis of gene expression in response to water deficit of chickpea (Cicer arietinum L.) varieties differing in drought tolerance. BMC Plant Biol 10:24

    Google Scholar 

  • Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, Shah N, Singh VK, Garg R, Jeena G, Yadav M, Kant C, Sharma P, Yadav G, Bhatia S, Tyagi AK, Chattopadhyay D (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74:715–729

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Chevala VV, Garg R (2014) Genome-wide discovery and differential regulation of conserved and novel microRNAs in chickpea via deep sequencing. J Exp Bot 65:5945–5958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain M, Pole AK, Singh VK, Ravikumar RL, Garg R (2015) Discovery of molecular markers for Fusarium wilt via transcriptome sequencing of chickpea cultivars. Mol Breed 35:198

    Article  CAS  Google Scholar 

  • Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genom 9:166–177

    Article  CAS  Google Scholar 

  • Jayashree B, Buhariwalla HK, Shinde S, Crouch JH (2005) A legume genomics resource: the chickpea root expressed sequence tag database. Elec J Biotechnol 8:128–133

    Article  CAS  Google Scholar 

  • Jha UC, Chaturvedi SK, Bohra A, Basu PS, Khan MS, Barh D (2014a) Abiotic stresses, constraints and improvement strategies in chickpea. Plant Breed 133:163–178

    Article  Google Scholar 

  • Jha UC, Bohra A, Singh NP (2014b) Heat stress in crop plants: its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breed 133:679–701

    Article  Google Scholar 

  • Jha UC, Shil S (2015) Association analysis of yield contributing traits of chickpea genotypes under high temperature condition. Trends Biosci 8:2335–2341

    Google Scholar 

  • Jha UC, Basu PS, Singh DK (2015) Genetic variation and diversity analysis of chickpea genotypes based on quantitative traits under high temperature stress. Intl J Bio-Resour Stress Manage 6:700–706

    Google Scholar 

  • Jha UC, Bohra A, Jha R, Parida S (2017) Integrated ‘omics’ approaches to sustain major global grain legume productivity under heat stress. Plant Breed 136:437–459

    Article  CAS  Google Scholar 

  • Jha UC (2018) Current advances in chickpea genomics: applications and future perspectives. Plant Cell Rep 37:947–965

    Google Scholar 

  • Jha UC, Jha R, Singh NP, Shil S, Kole PC (2018a) Heat tolerance indices and their role in selection of heat stress tolerant chickpea (Cicer arietinum L) genotypes. Indian J Agri Sci 88(2):260–267

    Google Scholar 

  • Jha UC, Jha R, Bohra A, Parida SK, Kole PC, Thakro V, Singh D, Singh NP (2018b) Population structure and association analysis of heat stress relevant traits in chickpea (Cicer arietinum L.). 3 Biotech 8:43

    Google Scholar 

  • Jha UC, Kole PC, Singh NP (2018c) Genetic variability and marker trait association analysis of various phenological and yield Related traits for heat tolerance in chickpea (Cicer arietinum L.). Intl J Bioresour Stress Manage 9:345–352

    Article  Google Scholar 

  • Jha UC, Bohra A, Jha R, Parida SK (2019) Salinity stress response and ‘omics’ approaches for improving salinity stress tolerance in major grain legumes. Plant Cell Rep 38:255–277

    Google Scholar 

  • Jimenez-Diaz RM, Trapero-Casas A, Cabrera de la, Colina J (1989) Races of Fusarium oxysporum f. sp. ciceris infecting chickpea in Southern Spain. In: Tjamos EC, Beckman CH (eds) Vascular Wilt Diseases of Plants. NATO ASI Series, vol H28. Springer, Berlin, pp 515–520

    Google Scholar 

  • Jingade P, Ravikumar RL (2015) Development of molecular map and identification of QTLs linked to Fusarium wilt resistance in chickpea. J Genet 94:723–729

    Article  CAS  PubMed  Google Scholar 

  • Jukanti AK, Gaur PM, Gowda CL, Chibbar RN (2012) Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. Br J Nutr 1:S11–S26

    Article  CAS  Google Scholar 

  • Kale SM, Jaganathan D, Ruperao P, Chen C, Punna R, Kudapa H, Thudi M, Roorkiwal M, Katta MA, Doddamani D, Garg V, Kishor PB, Gaur PM, Nguyen HT, Batley J, Edwards D, Sutton T, Varshney RK (2015) Prioritization of candidate genes in “QTL-hotspot” region for drought tolerance in chickpea (Cicer arietinum L.). Sci Rep 5:15296

    Google Scholar 

  • Kashiwagi J, Krishnamurty L, Gaur PM, Chandra S, Upadhyaya HD (2008) Estimation of gene effects of the drought avoidance root characteristics in chickpea (C. arietinum L.). Field Crops Res 105:64–69

    Article  Google Scholar 

  • Kaashyap M, Ford R, Bohra A, Kuvalekar, Mantri N (2017) Improving salt tolerance of chickpea using modern genomics tools and molecular breelding. Curr Genom 18:557–567

    Google Scholar 

  • Katerji N, van Hoorn JW, Hamdy A, Mastrorilli M, Oweis T (2005) Salt tolerance analysis of chickpea, faba bean and durum wheat varieties. I. chickpea and faba bean. Agri Water Manag 72:177–194

    Article  Google Scholar 

  • Kaushal N, Awasthi R, Gupta K, Gaur PM, Siddique KHM, Nayyar H (2013) Heat-stress-induced reproductive failures in chickpea (Cicer arietinum) are associated with impaired sucrose metabolism in leaves and anthers. Funct Plant Biol 40:1334–1349

    Article  CAS  PubMed  Google Scholar 

  • Khandal H, Parween S, Roy R, Meena MK, Chattopadhyay D (2017) MicroRNA profiling provides insights into post-transcriptional regulation of gene expression in chickpea root apex under salinity and water deficiency. Sci Rep 7:4632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khemka N, Singh VK, Garg R, Jain M (2016) Genome-wide analysis of long intergenic non-coding RNAs in chickpea and their potential role in flower development. Sci Rep 6:33297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiran Kumar Ghanti S, Sujata KG, Vijay Kumar BM, Nataraja Karba N, Janardhan Reddy K, Srinath Rao M, Kavi Kishor PB (2011) Heterologous expression of P5CS gene in chickpea enhances salt tolerance without affecting yield. Biol Plant 55:634–640

    Article  CAS  Google Scholar 

  • Kohli D, Joshi G, Deokar AA, Bhardwaj AR, Agarwal M, Katiyar Agarwal S, Srinivasan R, Jain PK (2014) Identification and characterization of wilt and salt stress-responsive microRNAs in chickpea through high-throughput sequencing. PLoS ONE 9:e108851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kottapalli P, Gaur PM, Katiyar SK, Crouch JH, Buhariwalla HK, Pande S, Gali KK (2009) Mapping and validation of QTLs for resistance to an Indian isolate of Ascochyta blight pathogen in chickpea. Euphytica 165:79–88

    Article  Google Scholar 

  • Krishnamurthy L, Gaur PM, Basu PS, Chaturvedi SK, Tripathi S, Vadez V, Rathore A, Varshney RK, Gowda CLL (2011) Large genetic variation for heat tolerance in the reference collection of chickpea (Cicer arietinum L.) germplasm. Plant Genet Res 9(01):59–69

    Google Scholar 

  • Kudapa H, Azam S, Sharpe AG, Taran B, Li R, Deonovic B et al. (2014) Comprehensive transcriptome assembly of chickpea (Cicer arietinum L.) using sanger and next generation sequencing platforms: development and applications. PLoS One 9:e86039

    Google Scholar 

  • Kudapa H, Garg V, Chitikineni A, Varshney RK (2018) The RNA-Seq-based high resolution gene expression atlas of chickpea (Cicer arietinum L.) reveals dynamic spatio-temporal changes associated with growth and development. Plant Cell Environ 2018 Apr 10. https://doi.org/10.1111/pce.13210

  • Kumar J, Abbo S (2001) Genetics of flowering time in chickpea and its bearing on productivity in semi arid environments. Adv Agron 72:107–138

    Article  CAS  Google Scholar 

  • Kumar J, Rao BV (1996) Super early chickpea developed at ICRISAT Asia center. Intl Chickpea Pigeonpea Newsl 3:17–18

    Google Scholar 

  • Kumar J, van Rheenen HA (2000) A major gene for time of flowering in chickpea. J Hered 91:67–68

    Article  CAS  PubMed  Google Scholar 

  • Kumar K, Purayannur S, Kaladhar VC, Parida SK, Verma PK (2018) mQTL-seq and classical mapping implicates the role of an AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED (AHL) family gene in Ascochyta blight resistance of chickpea. Plant Cell Environ. https://doi.org/10.1111/pce.13177

  • Lawo NC, Mahon RJ, Milner RJ, Sarmah BK, Higgins TJ, Romeis J (2008) Effectiveness of Bacillus thuringiensis-Transgenic Chickpeas and the Entomopathogenic Fungus Metarhizium anisopliae in Controlling Helicoverpa armigera (Lepidoptera: Noctuidae). Appl Environ Microbiol 74:4381–4389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemmon ZH, Reem NT, Dalrymple J, Soyk S, Swartwood KE, Rodriguez-Leal D, Eck JV, Lippman ZB (2018) Rapid improvement of domestication traits in an orphan crop by genome editing. Nat Plants 766–770

    Google Scholar 

  • Leo AE, Linde CC, Ford R (2016) Defence gene expression profiling to Ascochyta rabiei aggressiveness in chickpea. Theor Appl Genet 129:1333–1345

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Ruperao P, Batley J, Edwards D, Davidson J, Hobson K, Sutton T (2017) Genome analysis identified novel candidate genes for ascochyta blight resistance in chickpea using whole genome re-sequencing data. Front Plant Sci 8:1–13

    Google Scholar 

  • Li H, Rasheed A, Hickey LT, He Z (2018a) Fast-forwarding genetic gain. Trends Plant Sci 23:183–186

    Article  Google Scholar 

  • Li Y, Ruperao P, Batley J, Edwards D, Khan T, Colmer TD, Pang J, Siddique KH, Sutton T (2018b) Investigating drought tolerance in chickpea using genome-wide association mapping and genomic selection based on whole-genome resequencing data. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00190

  • Madrid E, Chen W, Rajesh PN, Castro P, Milla´n T, Gil J (2013) Allele-specific amplification for the detection of ascochyta blight resistance in chickpea. Euphytica 189:183–190

    Google Scholar 

  • Mahdavi Mashaki K, Garg V, Nasrollahnezhad Ghomi AA, Kudapa H, Chitikineni A, Zaynali, Nezhad K et al. (2018) RNA-Seq analysis revealed genes associated with drought stress response in kabuli chickpea (Cicer arietinum L.). PLoS One 13:e0199774

    Google Scholar 

  • Malhotra RS, Singh KB, Vito M, Greco N, Saxena, MC (2002) Registration of ILC 10765 and ILC 10766 chickpea germplasm lines resistant to cyst nematode. Crop Sci 42:1756. https://doi.org/10.2135/crop-sci2002.1756

  • Mallikarjuna BP, Samineni S, Thudi M, Sajja SB, Khan AW (2017) Molecular mapping of flowering time major genes and QTLs in chickpea (Cicer arietinum L.). Front Plant Sci 8:1140

    Google Scholar 

  • Mantri NL, Ford R, Coram TE, Pang ECK (2007) Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought. BMC Genom 8:303

    Article  CAS  Google Scholar 

  • Meuwissen THE, Goddard ME (2007) Multipoint identity-bydescent prediction using dense markers to map quantitative trait loci and estimate effective population size. Genetics 176:2551–2560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Millan T, Rubio J, Iruela M, Daly K, Cubero JI, Gil J (2003) Markers associated with Ascochyta blight resistance in chickpea and their potential in marker-assisted selection. Field Crops Res 84:373–384

    Article  Google Scholar 

  • Misra G, Priya P, Bandhiwal N, Bareja N, Jain M, Bhatia S, Chattopadhyay D, Tyagi AK, Yadav G (2014) The chickpea genomic web resource: visualization and analysis of the desi-type Cicer arietinum nuclear genome for comparative exploration of legumes. BMC Plant Biol 14:315

    Article  PubMed  PubMed Central  Google Scholar 

  • Molina C, Rotter B, Horres R, Udupa SM, Besser B, Bellarmino L, Baum M, Matsumura H, Terauchi R, Kahl G, Winter P (2008) SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genom 9:553

    Article  CAS  Google Scholar 

  • Molina C, Zaman-Allah M, Khan F, Fatnassi N, Horres R, Rotter B, Steinhauer D, Amenc L, Drevon JJ, Winter P, Kahl G (2011) The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE. BMC Plant Biol 11:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nayyar H, Bains T, Kumar S (2005) Low temperature induced floral abortion in chickpea: relationship to abscisic acid and cryoprotectants in reproductive organs. Env Exp Bot 53:39–47

    Article  CAS  Google Scholar 

  • Or E, Hovav R, Abbo S (1999) A major gene for flowering time in chickpea. Crop Sci 39:315–322

    Google Scholar 

  • Pennisi E (2013) The CRISPR craze. Science 341:833–836

    Article  CAS  PubMed  Google Scholar 

  • Pande S, Siddique KHM, Kishore GK, Baya B, Gaur PM, Gowda CLL, Bretag T, Crouch JH (2005) Ascochyta blight of chickpea: biology, pathogenicity, and disease management. Aust J Agri Res 56:317–332

    Article  Google Scholar 

  • Parveen S, Gupta DB, Dass S, Kumar A, Pandey A, Chakraborty S, Chakraborty N (2016) Chickpea ferritin CaFer1 participates in oxidative stress response, and promotes growth and development. Sci Rep 6:31218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil BS, Ravikumar RL, Bhat JS, Soregaon D (2014) Molecular mapping of QTLs for resistance to early and late Fusarium wilt in chickpea. Czech J Genet Plant Breed 50:171–176

    Article  CAS  Google Scholar 

  • Paul PJ, Samineni S, Sajja SB, Rathore A, Das RR, Chaturvedi S K, Gaur PM (2018a) Capturing genetic variability and selection of traits for heat tolerance in a chickpea recombinant inbred line (RIL) population under field conditions. Euphytica 214:27

    Google Scholar 

  • Paul PJ, Samineni S, Thudi M, Sajja SB, Rathore A, Das RR, Khan AW, Chaturvedi SK, Lavanya GR, Varshney RK, Gaur PM (2018b) Molecular mapping of QTLs for heat tolerance in chickpea. Intl J Mol Sci 19(8) pii:E2166

    Google Scholar 

  • Pushpavalli R, Krishnamurthy L, Thudi M, Gaur PM, Rao MV, Siddique KH, Colmer TD, Turner NC, Varshney RK, Vadez V (2015) Two key genomic regions harbour QTLs for salinity tolerance in ICCV 2 × JG 11 derived chickpea (Cicer arietinum L.) recombinant inbred lines. BMC Plant Biol 15:124

    Google Scholar 

  • Pushpavalli R, Quealy J, Colmer TD, Turner NC, Siddique KHM, Rao MV, Vadez V (2016) Salt stress delayed flowering and reduced reproductive success of chickpea (Cicer arietinum L.), a response associated with Na+ accumulation in leaves. J Agron Crop Sci 202:125–138

    Article  CAS  Google Scholar 

  • Ramgopal D, Srivastava RK, Pande S, Rathore A, Jadhav DR, Sharma M et al. (2012) Introgression of Botrytis gray mold resistance gene from Cicer reticulatum (bgmr1cr) and C. echinospermum (bgmr1ce) to chickpea. Plant Genet Resour 1–6

    Google Scholar 

  • Rao DLN, Giller KE, Yeo AR, Flowers TJ (2002) The effects of salinity and sodicity upon nodulation and nitrogen fixation in chickpea (Cicer arietinum). Ann Bot 89:563–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehman AU, Malhotra RS, Bett K, Taran B, Bueckert R, Warkentin TD (2011) Mapping QTL associated with traits affecting grain yield in chickpea (Cicer arietinum L.) under terminal drought stress. Crop Sci 51:450–463

    Article  Google Scholar 

  • Rezaei MK, Deokar A, Tar’an B (2016) Identification and expression analysis of candidate genes involved in carotenoid biosynthesis in chickpea seeds. Front Plant Sci 7:1867

    Google Scholar 

  • Ridge S, Deokar A, Lee R, Daba K, Macknight RC, Weller JL, Tar’an B (2017) The chickpea early flowering 1 (Efl1) locus is an ortholog of arabidopsis ELF3. Plant Physiol 175:802–815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roorkiwal M, Rathore A, Das RR, Singh MK, Jain A, Srinivasan S, Gaur PM, Chellapilla B, Tripathi S, Li Y, Hickey JM, Lorenz A, Sutton T, Crossa J, Jannink JL, Varshney RK (2016) Genome enabled prediction models for yield related traits in chickpea. Front Plant Sci 7:1666

    Article  PubMed  PubMed Central  Google Scholar 

  • Roorkiwal M, Jarquin D, Singh MK, Gaur PM, Bharadwaj C, Rathore A, Howard R, Srinivasan S, Jain A, Garg V, Kale S, Chitikineni A, Tripathi S, Jones E, Robbins KR, Crossa J, Varshney RK (2018) Genomic-enabled prediction models using multi-environment trials to estimate the effect of genotype × environment interaction on prediction accuracy in chickpea. Sci Rep 8:11701

    Google Scholar 

  • Sabbavarapu MM, Sharma M, Chamarthi SK, Swapna N, Rathore A, Thudi M et al (2013) Molecular mapping of QTLs for resistance to Fusarium wilt (race 1) and Ascochyta blight in chickpea (Cicer arietinum L.). Euphytica 193:121–138

    Article  Google Scholar 

  • Sabaghpour SH, Mahmodi AA, Kamel SM, Malhotra RS (2006) Study on chickpea drought tolerance lines under dryland condition of Iran. Indian J Crop Sci 1:70–73

    Google Scholar 

  • Sagi MS, Deokar AA, Tar’an B (2017) Genetic analysis of NBS-LRR gene family in chickpea and their expression profiles in response to ascochyta blight infection. Front Plant Sci 8:838

    Article  PubMed  PubMed Central  Google Scholar 

  • Saha S, Chakraborty D, Sehgal VK, Pal M (2015a) Rising atmospheric CO2: potential impacts on chickpea seed quality. Agri Ecosyst Environ 203:140–146

    Article  CAS  Google Scholar 

  • Saha S, Chakraborty D, Sehgal VK, Pal M (2015b) Potential impact of rising atmospheric CO2 on quality of grains in chickpea (Cicer arietinum L.). Food Chem 187:431–436

    Article  CAS  PubMed  Google Scholar 

  • Sandhu JS, Bains TS, Sidhu PS (2002) Evaluation of super early chickpea genotypes for vegetable purpose as a catch crop. Int Chickpea Pigeonpea Newsl 9:10–12

    Google Scholar 

  • Sanyal I, Singh AK, Kaushik M, Amla DV (2005) Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) with Bacillus thuringiensis cry1Ac gene for resistance against pod borer insect Helicoverpa armigera. Plant Sci 168:1135–1146

    Article  CAS  Google Scholar 

  • Sarmah BK, Moore A, Tate W, Molvig L, Morton RL, Rees DP, Chiaiese P, Chrispeels MJ, Tabe LM, Higgins TJV (2004) Transgenic chickpea seeds expressing high levels of a bean alpha-amylase inhibitor. Mol Breed 14:73–82

    Article  CAS  Google Scholar 

  • Sharma KD, Winter P, Kahl G, Muehlbauer FJ (2004) Molecular mapping of Fusarium oxysporum f. sp. ciceris race 3 resistance gene in chickpea. Theor Appl Genet 108:1243–1256

    Article  CAS  PubMed  Google Scholar 

  • Sharma KD, Chen W, Muehlbauer FJ (2005) Genetics of chickpea resistance to five races of Fusarium wilt and a concise set of race differentials for Fusarium oxysporum f. sp. ciceris. Plant Dis 89:385–390

    Article  PubMed  Google Scholar 

  • Shen C, Que Z, Xia Y, Tang N, Li D, He R, Cao M (2017) Knock out of the annexin gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice. J Plant Biol 60:539–547

    Article  CAS  Google Scholar 

  • Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216

    Article  CAS  PubMed  Google Scholar 

  • Singh KB, Dahiya BS (1973) Breeding for wilt resistance in chickpea. Symposium on problem and breeding for wilt resistance in bengal gram. IARI, New Delhi, pp 13–14

    Google Scholar 

  • Singh H, Kumar J, Smithson JB, Haware MP (1987) Complementation between genes for resistance to race 1 of Fusarium oxysporum f. sp. ciceri in chickpea. Plant Pathol 36:539–543

    Article  Google Scholar 

  • Singh KB, Malhotra RS, Saxena MC (1995) Additional sources of tolerance to cold in cultivated and wild Cicer species. Crop Sci 35:1491–1497

    Article  Google Scholar 

  • Singh S, Gumber RK, Joshi N, Singh K (2005) Introgression from wild Cicer reticulatum to cul- tivated chickpea for productivity and disease resistance. Plant Breed 124:477–480

    Article  Google Scholar 

  • Singh B, Bohra A, Mishra S, Joshi R, Pandey S (2015) Embracing new-generation ‘omics’ tools to improve drought tolerance in cereal and food-legume crops. Biol Plant 59:413–428

    Article  CAS  Google Scholar 

  • Singh VK, Khan AW, Jaganathan D, Thudi M, Roorkiwal M, Takagi H, Garg V, Kumar V, Chitikineni A, Gaur PM, Sutton T, Terauchi R, Varshney RK (2016) QTL-seq for rapid identification of candidate genes for 100-seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotechnol J 14 (11):2110–2119

    Google Scholar 

  • Singh U, Khemka N, Rajkumar MS, Garg R, Jain M (2017) PLncPRO for prediction of long non-coding RNAs (lncRNAs) in plants and its application for discovery of abiotic stress-responsive lncRNAs in rice and chickpea. Nucl Acids Res 45:e183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivasakthi K, Thudi M, Tharanya M, Kale SM, Kholová J, Halime MH, Jaganathan D, Baddam R, Thirunalasundari T, Gaur PM, Varshney RK, Vadez V (2018) Plant vigour QTLs co-map with an earlier reported QTL hotspot for drought tolerance while water saving QTLs map in other regions of the chickpea genome. BMC Plant Biol 18:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan A, Johansen C, Saxena NP (1998) Cold tolerance during early reproductive growth of chickpea (Cicer arietinum L.): characterization of stress and genetic variation in pod set. Field Crops Res 57:181–193

    Article  Google Scholar 

  • Srinivasan A, Saxena NP, Johansen C (1999) Cold tolerance during early reproductive growth of chickpea (Cicer arietinum L.): genetic variation in gamete development and function. Field Crops Res 60:209–222

    Article  Google Scholar 

  • Srivastava R, Bajaj D, Malik A, Singh M, Parida SK (2016) Transcriptome landscape of perennial wild Cicer microphyllum uncovers functionally relevant molecular tags regulating agronomic traits in chickpea. Sci Rep 6:33616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staggenborg SA, Vanderlip RL (1996) Sorghum grain yield reductions caused by duration and timing of freezing temperatures. Agron J 88:473–477

    Article  Google Scholar 

  • Tan GZH, Das Bhowmik SS, Hoang TML, Karbaschi MR, Long H, Cheng A, Bonneau JP, Beasley JT, Johnson AAT, Williams B, Mundree SG (2018) Investigation of baseline iron levels in Australian chickpea and evaluation of a transgenic biofortification approach. Front Plant Sci 9:788

    Article  PubMed  PubMed Central  Google Scholar 

  • Tar’an B, Warkentin TD, Tullu A, Vandenberg A (2007) Genetic mapping of ascochyta blight resistance in chickpea (Cicer arietinum L.) using a simple sequence repeat linkage map. Genome 50:26–34

    Google Scholar 

  • Thudi M, Bohra A, Nayak SN, Varghese N, Shah TM, Penmetsa RV, Upadhyaya HD (2011) Novel SSR markers from BAC-end sequences, DArT arrays and a comprehensive genetic map with 1,291 marker loci for chickpea (Cicer arietinum L.). PLoS ONE 6:e27275

    Google Scholar 

  • Thudi M, Upadhyaya HD, Rathore A, Gaur PM, Krishnamurthy L, Roorkiwal M, Nayak SN, Chaturvedi SK, Basu PS, Gangarao NV, Fikre A, Kimurto P, Sharma PC, Sheshashayee MS, Tobita S, Kashiwagi J, Ito O, Killian A, Varshney RK (2014) Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. PLoS ONE 9:e96758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thudi M, Khan AW, Kumar V, Gaur PM, Katta K, Garg V, Roorkiwal M, Samineni S, Varshney RK (2016a) Whole genome resequencing reveals genome-wide variations among parental lines of 16 mapping populations in chickpea (Cicer arietinum). BMC Plant Biol 16:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thudi M, Chitikineni A, Liu X, He W, Roorkiwal M, Yang W, Jian J, Doddamani D, Gaur PM, Rathore A, Samineni S, Saxena RK, Xu D, Singh NP, Chaturvedi SK, Zhang G, Wang J, Datta SK, Xu X, Varshney RK (2016b) Recent breeding programs enhanced genetic diversity in both desi and kabuli varieties of chickpea (Cicer arietinum L.). Sci Rep 6:38636

    Google Scholar 

  • Toker C (2005) Preliminary screening and selection for cold tolerance in annual wild Cicer species. Genet Resour Crop Evol 52:1–5

    Article  Google Scholar 

  • Toker C, Canci H, Yildirim T (2007) Evaluation of perennial wild Cicer species for drought resistance. Genet Resour Crop Evol 54:1781–1786

    Article  Google Scholar 

  • Turner NC, Colmer TD, Quealy J, Pushpavalli R, Krishnamurthy L, Kaur J, Singh G, Siddique KHM, Vadez V (2013) Salinity tolerance and ion accumulation in chickpea (Cicer arietinum L.) subjected to salt stress. Plant Soil 365:347–361

    Article  CAS  Google Scholar 

  • Udupa SM, Baum M (2003) Genetic dissection of pathotypespecific resistance to Ascochyta blight disease in chickpea (Cicer arietinum L.) using microsatellite markers. Theor Appl Genet 106:1196–1202

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya H, Haware M, Kumar J, Smithson J (1983a) Resistance to wilt in chickpea. I. Inheritance of late-wilting in response to race 1. Euphytica 32:447–456

    Article  Google Scholar 

  • Upadhyaya H, Smithson J, Haware M, Kumar J (1983b) Resistance to wilt in chickpea. Further evidence for two genes for resistance to race 1. Euphytica 32:749–755

    Article  Google Scholar 

  • Upadhyaya HD, Dronavalli N, Gowda CLL, Singh S (2011) Identification and evaluation of chickpea germplasm for tolerance to heat stress. Crop Sci 51:2079–2094

    Google Scholar 

  • Upadhyaya HD, Bajaj D, Das S, Kumar V, Gowda CL, Sharma S, Tyagi AK, Parida SK (2016a) Genetic dissection of seed-iron and zinc concentrations in chickpea. Sci Rep 6:24050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyaya HD, Bajaj D, Narnoliya L, Das S, Kumar V, Gowda CLL, Sharma S, Tyagi AK, Parida SK (2016b) Genome-wide scans for delineation of candidate genes regulating seed-protein content in chickpea. Front Plant Sci 7:302

    Article  PubMed  PubMed Central  Google Scholar 

  • Upasani ML, Limaye BM, Gurjar GS, Kasibhatla SM, Joshi RR, Kadoo NY, Gupta VS (2017) Chickpea-Fusarium oxysporum interaction transcriptome reveals differential modulation of plant defense strategies. Sci Rep 7:7746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vadez V, Krishnamurthy L, Serraj R, Gaur PM, Upadhyaya HD, Hoisington DA, Varshney RK, Turner NC, Siddique KHM (2007) Large variation in salinity tolerance in chickpea is explained by differences in sensitivity at the reproductive stage. Field Crops Res 104:123–129

    Article  Google Scholar 

  • Vadez V, Rashmi M, Sindhu K, Muralidharan M, Pushpavalli R, Turner NC, Krishnamurthy L, Gaur PM, Colmer TD (2012a) Large number of flowers and tertiary branches, and higher reproductive success increase yields under salt stress in chickpea. Eur J Agron 41:42–51

    Article  Google Scholar 

  • Vadez V, Krishnamurthy L, Thudi M, Anuradha C, Colmer TD, Turner NC, Siddique KHM, Gaur PM, Varshney RK (2012b) Assessment of ICCV 2 9 JG 62 chickpea progenies shows sensitivity of reproduction to salt stress and reveals QTL for seed yield and yield components. Mol Breed 30:9–21

    Article  Google Scholar 

  • Vandemark GJ, Grusak MA, McGee PJ (2018) Mineral concentrations of chickpea and lentil cultivars and breeding lines grown in the U.S. Pacific Northwest. Crop J 6:253–262

    Google Scholar 

  • Varshney RK, Hiremath PJ, Lekha P, Kashiwagi J, Balaji J, Deokar AA, Vadez V, Xiao Y, Srinivasan R, Gaur PM, Siddique KHM, Town CD, Hoisington DA (2009) A comprehensive resource of drought-and salinity responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.). BMC Genomics 10:523

    Google Scholar 

  • Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar’an B, Millan T, Zhang X, Ramsay LD, Iwata A, Wang Y, Nelson W, Farmer AD, Gaur PM, Soderlund C, Penmetsa RV, Xu C, Bharti AK, He W, Winter P, Zhao S, Hane JK, Carrasquilla-Garcia N, Condie JA, Upadhyaya HD, Luo MC, Thudi M, Gowda CL, Singh NP, Lichtenzveig J, Gali KK, Rubio J, Nadarajan N, Dolezel J, Bansal KC, Xu X, Edwards D, Zhang G, Kahl G, Gil J, Singh KB, Datta SK, Jackson SA, Wang J, Cook DR (2013a) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    Google Scholar 

  • Varshney RK, Gaur PM, Chamarthi SK, Krishnamurthy L, Tripathi S, Kashiwagi J, Samineni S, Singh VK, Thudi M, Jaganathan D (2013b) Fast-track introgression of ‘QTL-hotspot’ for root traits and other drought tolerance traits in JG 11, an elite and leading variety of chickpea. Plant Genome. https://doi.org/10.3835/plantgenome2013.07.0022

  • Varshney RK, Thudi M, Nayak SN, Gaur PM, Kashiwagi J, Krishnamurthy L, Jaganathan D, Koppolu J, Bohra A, Tripathi S, Rathore A, Jukanti AK, Jayalakshmi V, Vemula A, Singh SJ, Yasin M, Sheshshayee MS, Viswanatha KP (2014a) Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor Appl Genet 127:445–462

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Mohan SM, Gaur PM, Chamarthi SK, Singh VK, Srinivasan S, Swapna N, Sharma M, Singh S, Kaur L, Pande S (2014b) Marker-assisted backcrossing to introgress resistance to Fusarium wilt race 1 and Ascochyta blight in C214, an elite cultivar of chickpea. Plant Genome 7:1–11

    Article  CAS  Google Scholar 

  • Verheul MJ, Picatto C, Stamp P (1996) Growth and development of maize (Zea mays L.) seedlings under chilling conditions in the field. European J Agron 5:31–43

    Article  Google Scholar 

  • Verma S, Gupta S, Bandhiwal N, Kumar T, Bharadwaj C, Bhatia S (2015a) High-density linkage map construction and mapping of seed trait QTLs in chickpea (Cicer arietinum L.) using genotyping-by-sequencing (GBS). Sci Rep 5:17512

    Google Scholar 

  • Verma M, Kumar V, Patel RK, Garg R, Jain M (2015b) CTDB: an integrated chickpea transcriptome database for functional and applied genomics. PLoS ONE 10:e0136880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang L, Chen L, Li R, Zhao R, Yang M, Sheng J, Shen L (2017) Reduced drought tolerance by CRISPR/Cas9-Mediated SlMAPK3 mutagenesis in tomato plants. J Agri Food Chem 65:8674–8682

    Article  CAS  Google Scholar 

  • Welfare K, Yeo AR, Flowers TJ (2002) Effects of salinity and ozone, individually and in combination, on the growth and ion contents of two chickpea (Cicer arietinum L.) varieties. Environ Pollut 120:397–403

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uday C. Jha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jha, U.C. et al. (2019). Breeding and Genomics Approaches for Improving Productivity Gains in Chickpea Under Changing Climate. In: Kole, C. (eds) Genomic Designing of Climate-Smart Pulse Crops. Springer, Cham. https://doi.org/10.1007/978-3-319-96932-9_3

Download citation

Publish with us

Policies and ethics