Skip to main content

Motivating Change in Addiction via Modulation of the Dark Side

  • Chapter
  • First Online:
  • 885 Accesses

Part of the book series: Nebraska Symposium on Motivation ((NSM,volume 65))

Abstract

The constructs of emotion and motivation are intimately linked. Throughout my career, W. Horsley Gantt and Joseph V. Brady laid a rich foundation for understanding the concept of emotion, derived from two prominent traditions of physiology and psychology: classical conditioning and operant conditioning, respectively. This framework guided my fierce interest in motivation in general and the interaction between reward and stress, which began at John Hopkins University with my thesis work under the mentorship of Zoltan Annau, with help from Solomon Synder and Joseph Brady, among many others. Using the study of the neurobiology of addiction as a framework, I argue that drug addiction can be heuristically framed as a cycle of three stages—binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation (“craving”)—that involve domains of incentive salience/pathological habits (mediated by basal ganglia circuits), reward deficits/stress surfeit (mediated by extended amygdala circuits), and executive function deficits (mediated by the frontal cortex), respectively. Movement through the three stages involves a transition from positive reinforcement that is associated with the rewarding effects of drugs of abuse to another major source of reinforcement, specifically negative reinforcement that is driven by negative emotional states (termed the “dark side” of addiction). Repeated overstimulation of the reward systems with drugs of abuse decreases reward function, characterized by a decrease in brain stimulation reward and presumbably reflecting a dysphoria-like state. The construct of negative reinforcement, defined as drug taking that alleviates a negative emotional state that is created by drug abstinence, is particularly relevant as a driving force in both the withdrawal/negative affect and preoccupation/anticipation stages of the addiction cycle. From a neurobiological perspective, the negative emotional state that drives such negative reinforcement is hypothesized to derive from excessive activation of the brain reward systems that leads to a decrease in the function of normal reward-related neurocircuitry (dopamine, opioid peptides) in the ventral striatum and persistent recruitment of anti-reward systems, reflected by sensitization of the brain stress systems (corticotropin-releasing factor, dynorphin) within the extended amygdala. This shift in motivation is hypothesized to reflect the allostatic misregulation of hedonic tone such that drug taking makes the hedonic negative emotional state worse during the process of seeking temporary relief with compulsive drug taking. Understanding the neuroplasticity of the neurocircuitry that comprises negative reinforcement that is associated with addiction is a key to understanding motivation in general and its representation in pathophysiology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmed, S. H., Kenny, P. J., Koob, G. F., & Markou, A. (2002). Neurobiological evidence for hedonic allostasis associated with escalating cocaine use. Nature Neuroscience, 5, 625–626.

    Article  PubMed  Google Scholar 

  • Alheid, G. F., De Olmos, J. S., & Beltramino, C. A. (1995). Amygdala and extended amygdala. In G. Paxinos (Ed.), The rat nervous system (2nd ed., pp. 495–578). San Diego, CA: Academic Press.

    Google Scholar 

  • Ashok, A. H., Mizuno, Y., Volkow, N. D., & Howes, O. D. (2017). Association of stimulant use with dopaminergic alterations in users of cocaine, amphetamine, or methamphetamine: A systematic review and meta-analysis. JAMA Psychiatry, 74, 511–519.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barbier, E., Vendruscolo, L. F., Schlosburg, J. E., Edwards, S., Juergens, N., Park, P. E., … Heilig, M. (2013). The NK1 receptor antagonist L822429 reduces heroin reinforcement. Neuropsychopharmacology, 38, 976–984.

    Article  PubMed  PubMed Central  Google Scholar 

  • Berlin, G. S., & Hollander, E. (2014). Compulsivity, impulsivity, and the DSM-5 process. CNS Spectrums, 19, 62–68.

    Article  PubMed  Google Scholar 

  • Brady, J. V. (1956). Assessment of drug effects on emotional behavior. Science, 123(3206), 1033–1034.

    Article  PubMed  Google Scholar 

  • Brady, J. V. (1975). Toward a behavioral biology of emotion. In L. Levi (Ed.), Emotions: Their Parameters and Measurement (pp. 17–45). New York: Raven Press.

    Google Scholar 

  • Brady, J. V., & Emurian, H. H. (1978). Behavioral analysis of motivational and emotional interactions in a programmed environment. In R. A. Dienstbier (Ed.), Human Emotion (series title: Nebraska Symposium on Motivation, vol. 26, pp. 81–122). Lincoln: University of Nebraska Press.

    Google Scholar 

  • Breiter, H. C., Gollub, R. L., Weisskoff, R. M., Kennedy, D. N., Makris, N., Berke, J. D., … Hyman, S. E. (1997). Acute effects of cocaine on human brain activity and emotion. Neuron, 19, 591–611.

    Article  PubMed  Google Scholar 

  • Bruijnzeel, A. W., Bishnoi, M., van Tuijl, I. A., Keijzers, K. F., Yavarovich, K. R., Pasek, T. M., … Yamada, H. (2010). Effects of prazosin, clonidine, and propranolol on the elevations in brain reward thresholds and somatic signs associated with nicotine withdrawal in rats. Psychopharmacology, 212, 485–499.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruijnzeel, A. W., Ford, J., Rogers, J. A., Scheick, S., Ji, Y., Bishnoi, M., & Alexander, J. C. (2012). Blockade of CRF1 receptors in the central nucleus of the amygdala attenuates the dysphoria associated with nicotine withdrawal in rats. Pharmacology, Biochemistry, and Behavior, 101, 62–68.

    Article  PubMed  Google Scholar 

  • Bruijnzeel, A. W., Prado, M., & Isaac, S. (2009). Corticotropin-releasing factor-1 receptor activation mediates nicotine withdrawal-induced deficit in brain reward function and stress-induced relapse. Biological Psychiatry, 66, 110–117.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruijnzeel, A. W., Zislis, G., Wilson, C., & Gold, M. S. (2007). Antagonism of CRF receptors prevents the deficit in brain reward function associated with precipitated nicotine withdrawal in rats. Neuropsychopharmacology, 32, 955–963.

    Article  PubMed  Google Scholar 

  • Burchfield, S. (1979). The stress response: A new perspective. Psychosomatic Medicine, 41, 661–672.

    Article  PubMed  Google Scholar 

  • Carlezon, W. A., Jr., Nestler, E. J., & Neve, R. L. (2000). Herpes simplex virus-mediated gene transfer as a tool for neuropsychiatric research. Critical Reviews in Neurobiology, 14, 47–67.

    Article  PubMed  Google Scholar 

  • Chartoff, E., Sawyer, A., Rachlin, A., Potter, D., Pliakas, A., & Carlezon, W. A. (2012). Blockade of kappa opioid receptors attenuates the development of depressive-like behaviors induced by cocaine withdrawal in rats. Neuropharmacology, 62, 1167–1176.

    Article  Google Scholar 

  • Ciccocioppo, R., Economidou, D., Fedeli, A., & Massi, M. (2003). The nociceptin/orphanin FQ/NOP receptor system as a target for treatment of alcohol abuse: A review of recent work in alcohol-preferring rats. Physiology & Behavior, 79, 121–128.

    Article  Google Scholar 

  • Cohen, A., Koob, G. F., & George, O. (2012). Robust escalation of nicotine intake with extended access to nicotine self-administration and intermittent periods of abstinence. Neuropsychopharmacology, 37, 2153–2160.

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins, A. C., Bhat, R. V., Pauly, J. R., & Marks, M. J. (1990). Modulation of nicotine receptors by chronic exposure to nicotinic agonists and antagonists. In G. Bock & J. Marsh (Eds.), The biology of nicotine dependence, Ciba foundation symposium (Vol. 152, pp. 87–105). New York, NY: John Wiley.

    Google Scholar 

  • Dani, J. A., & Heinemann, S. (1996). Molecular and cellular aspects of nicotine abuse. Neuron, 16, 905–908.

    Article  PubMed  Google Scholar 

  • Davidson, M., Shanley, B., & Wilce, P. (1995). Increased NMDA-induced excitability during ethanol withdrawal: A behavioural and histological study. Brain Research, 674, 91–96.

    Article  PubMed  Google Scholar 

  • Delfs, J. M., Zhu, Y., Druhan, J. P., & Aston-Jones, G. (2000). Noradrenaline in the ventral forebrain is critical for opiate withdrawal-induced aversion. Nature, 403, 430–434.

    Article  PubMed  Google Scholar 

  • Deroche-Gamonet, V., Belin, D., & Piazza, P. V. (2004). Evidence for addiction-like behavior in the rat. Science, 305, 1014–1017.

    Article  PubMed  Google Scholar 

  • Diana, M., Pistis, M., Carboni, S., Gessa, G. L., & Rossetti, Z. L. (1993). Profound decrement of mesolimbic dopaminergic neuronal activity during ethanol withdrawal syndrome in rats: Electrophysiological and biochemical evidence. Proceedings of the National Academy of Sciences of the United States of America, 90, 7966–7969.

    Article  PubMed  PubMed Central  Google Scholar 

  • Diana, M., Pistis, M., Muntoni, A., & Gessa, G. (1995). Profound decrease of mesolimbic dopaminergic neuronal activity in morphine withdrawn rats. The Journal of Pharmacology and Experimental Therapeutics, 272, 781–785.

    PubMed  Google Scholar 

  • Edwards, S., Guerrero, M., Ghoneim, O. M., Roberts, E., & Koob, G. F. (2011). Evidence that vasopressin V1b receptors mediate the transition to excessive drinking in ethanol-dependent rats. Addiction Biology, 17, 76–85.

    Article  PubMed  PubMed Central  Google Scholar 

  • Edwards, S., & Koob, G. F. (2010). Neurobiology of dysregulated motivational systems in drug addiction. Future Neurology, 5, 393–410.

    Article  PubMed  PubMed Central  Google Scholar 

  • Epping-Jordan, M. P., Watkins, S. S., Koob, G. F., & Markou, A. (1998). Dramatic decreases in brain reward function during nicotine withdrawal. Nature, 393, 76–79.

    Article  PubMed  Google Scholar 

  • Estes, W. K., & Skinner, B. F. (1941). Some quantitative properties of anxiety. Journal of Experimental Psychology, 29, 390–400.

    Article  Google Scholar 

  • Everitt, B. J., & Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nature Neuroscience, 8, 1481–1489 [erratum: 9(7):979].

    Article  PubMed  Google Scholar 

  • Funk, C. K., O’Dell, L. E., Crawford, E. F., & Koob, G. F. (2006). Corticotropin-releasing factor within the central nucleus of the amygdala mediates enhanced ethanol self-administration in withdrawn, ethanol-dependent rats. The Journal of Neuroscience, 26, 11324–11332.

    Article  PubMed  PubMed Central  Google Scholar 

  • Funk, C. K., Zorrilla, E. P., Lee, M. J., Rice, K. C., & Koob, G. F. (2007). Corticotropin-releasing factor 1 antagonists selectively reduce ethanol self-administration in ethanol-dependent rats. Biological Psychiatry, 61, 78–86.

    Article  PubMed  Google Scholar 

  • Gantt, W. H. (1942). The origin and development of nervous disturbances experimentally produced. The American Journal of Psychiatry, 98, 475–481.

    Article  Google Scholar 

  • Gardner, E. L., & Vorel, S. R. (1998). Cannabinoid transmission and reward-related events. Neurobiology of Disease, 5, 502–533.

    Article  PubMed  Google Scholar 

  • Gawin, F. H., & Kleber, H. D. (1986). Abstinence symptomatology and psychiatric diagnosis in cocaine abusers: Clinical observations. Archives of General Psychiatry, 43, 107–113.

    Article  PubMed  Google Scholar 

  • Gehlert, D. R., Cippitelli, A., Thorsell, A., Le, A. D., Hipskind, P. A., Hamdouchi, C., … Heilig, M. (2007). 3-(4-Chloro-2-morpholin-4-yl-thiazol-5-yl)-8-(1-ethylpropyl)-2,6-dimethyl-imidazo[1,2-b]pyridazine: A novel brain-penetrant, orally available corticotropin-releasing factor receptor 1 antagonist with efficacy in animal models of alcoholism. The Journal of Neuroscience, 27, 2718–2726.

    Article  PubMed  PubMed Central  Google Scholar 

  • George, O., Ghozland, S., Azar, M. R., Cottone, P., Zorrilla, E. P., Parsons, L. H., … Koob, G. F. (2007). CRF-CRF1 system activation mediates withdrawal-induced increases in nicotine self-administration in nicotine-dependent rats. Proceedings of the National Academy of Sciences of the United States of America, 104, 17198–17203.

    Article  PubMed  PubMed Central  Google Scholar 

  • George, O., & Koob, G. F. (2013). Control of craving by the prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 110, 4165–4166.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilpin, N. W., & Koob, G. F. (2010). Effects of β-adrenoceptor antagonists on alcohol drinking by alcohol-dependent rats. Psychopharmacology, 212, 431–439.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilpin, N. W., Misra, K., & Koob, G. F. (2008). Neuropeptide Y in the central nucleus of the amygdala suppresses dependence-induced increases in alcohol drinking. Pharmacology Biochemistry and Behavior, 90, 475–480.

    Article  Google Scholar 

  • Gilpin, N. W., Stewart, R. B., Murphy, J. M., Li, T. K., & Badia-Elder, N. E. (2003). Neuropeptide Y reduces oral ethanol intake in alcohol-preferring (P) rats following a period of imposed ethanol abstinence. Alcoholism, Clinical and Experimental Research, 27, 787–794.

    Article  PubMed  Google Scholar 

  • Gracy, K. N., Dankiewicz, L. A., & Koob, G. F. (2001). Opiate withdrawal-induced Fos immunoreactivity in the rat extended amygdala parallels the development of conditioned place aversion. Neuropsychopharmacology, 24, 152–160.

    Article  PubMed  Google Scholar 

  • Greenwell, T. N., Funk, C. K., Cottone, P., Richardson, H. N., Chen, S. A., Rice, K., … Koob, G. F. (2009). Corticotropin-releasing factor-1 receptor antagonists decrease heroin self-administration in long-, but not short-access rats. Addiction Biology, 14, 130–143.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grieder, T. E., George, O., Tan, H., George, S. R., Le Foll, B., Laviolette, S. R., & van der Kooy, D. (2012). Phasic D1 and tonic D2 dopamine receptor signaling double dissociate the motivational effects of acute nicotine and chronic nicotine withdrawal. Proceedings of the National Academy of Sciences of the United States of America, 109, 3101–3106.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haber, S. N., Fudge, J. L., & McFarland, N. R. (2000). Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. The Journal of Neuroscience, 20, 2369–2382.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heilig, M., & Koob, G. F. (2007). A key role for corticotropin-releasing factor in alcohol dependence. Trends in Neurosciences, 30, 399–406.

    Article  PubMed  PubMed Central  Google Scholar 

  • Himmelsbach, C. K. (1943). Can the euphoric, analgetic, and physical dependence effects of drugs be separated? IV. With reference to physical dependence. Federation Proceedings, 2, 201–203.

    Google Scholar 

  • Jang, C. G., Whitfield, T., Schulteis, G., Koob, G. F., & Wee, S. (2013). A dysphoric-like state during early withdrawal from extended access to methamphetamine self-administration in rats. Psychopharmacology, 225, 753–763.

    Article  PubMed  Google Scholar 

  • June, H. L., Liu, J., Warnock, K. T., Bell, K. A., Balan, I., Bollino, D., … Aurelian, L. (2015). CRF-amplified neuronal TLR4/MCP-1 signaling regulates alcohol self-administration. Neuropsychopharmacology, 40, 1549–1559.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kenny, P. J., Chen, S. A., Kitamura, O., Markou, A., & Koob, G. F. (2006). Conditioned withdrawal drives heroin consumption and decreases reward sensitivity. The Journal of Neuroscience, 26, 5894–5900.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kenny, P. J., Gasparini, F., & Markou, A. (2003). Group II metabotropic and α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainate glutamate receptors regulate the deficit in brain reward function associated with nicotine withdrawal in rats. The Journal of Pharmacology and Experimental Therapeutics, 306, 1068–1076.

    Article  PubMed  Google Scholar 

  • Khachaturian, H., Lewis, M. E., Schafer, M. K. H., & Watson, S. J. (1985). Anatomy of the CNS opioid systems. Trends in Neurosciences, 8, 111–119.

    Article  Google Scholar 

  • Knoll, A. T., Meloni, E. G., Thomas, J. B., Carroll, F. I., & Carlezon, W. A., Jr. (2007). Anxiolytic-like effects of κ-opioid receptor antagonists in models of unlearned and learned fear in rats. The Journal of Pharmacology and Experimental Therapeutics, 323, 838–845.

    Article  PubMed  Google Scholar 

  • Koob, G. F. (2008). A role for brain stress systems in addiction. Neuron, 59, 11–34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koob, G. F. (2009). Brain stress systems in the amygdala and addiction. Brain Research, 1293, 61–75.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koob, G. F. (2010). The role of CRF and CRF-related peptides in the dark side of addiction. Brain Research, 1314, 3–14.

    Article  PubMed  Google Scholar 

  • Koob, G. F. (2015). The dark side of emotion: The addiction perspective. European Journal of Pharmacology, 753, 73–87.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koob, G. F. (2017). The dark side of addiction: The Horsley Gantt to Joseph Brady connection. Journal of Nervous and Mental Disease, 205, 270–272.

    Article  Google Scholar 

  • Koob, G. F., & Annau, Z. (1973). Effect of hypoxia on hypothalamic mechanisms. American Journal of Physiology, 224, 1403–1408.

    Google Scholar 

  • Koob, G. F., & Bloom, F. E. (1988). Cellular and molecular mechanisms of drug dependence. Science, 242, 715–723.

    Article  PubMed  Google Scholar 

  • Koob, G. F., Heinrichs, S. C., Menzaghi, F., Pich, E. M., & Britton, K. T. (1994). Corticotropin releasing factor, stress and behavior. Seminars in Neuroscience, 6, 221–229.

    Article  Google Scholar 

  • Koob, G. F., & Kreek, M. J. (2007). Stress, dysregulation of drug reward pathways, and the transition to drug dependence. The American Journal of Psychiatry, 164, 1149–1159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koob, G. F., & Le Moal, M. (1997). Drug abuse: Hedonic homeostatic dysregulation. Science, 278, 52–58.

    Article  PubMed  Google Scholar 

  • Koob, G. F., & Le Moal, M. (2001). Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology, 24, 97–129.

    Article  PubMed  Google Scholar 

  • Koob, G. F., & Le Moal, M. (2005). Plasticity of reward neurocircuitry and the “dark side” of drug addiction. Nature Neuroscience, 8, 1442–1444.

    Article  PubMed  Google Scholar 

  • Koob, G. F., & Le Moal, M. (2008). Addiction and the brain antireward system. Annual Review of Psychology, 59, 29–53.

    Article  PubMed  Google Scholar 

  • Koob, G. F., & Volkow, N. D. (2010). Neurocircuitry of addiction. Neuropsychopharmacology Reviews, 35, 217–238 [erratum: 35: 1051].

    Article  PubMed  Google Scholar 

  • Kornetsky, C., & Esposito, R. U. (1981). Reward and detection thresholds for brain stimulation: Dissociative effects of cocaine. Brain Research, 209, 496–500.

    Article  PubMed  Google Scholar 

  • Kreek, M. J., & Koob, G. F. (1998). Drug dependence: Stress and dysregulation of brain reward pathways. Drug and Alcohol Dependence, 51, 23–47.

    Article  PubMed  Google Scholar 

  • Land, B. B., Bruchas, M. R., Lemos, J. C., Xu, M., Melief, E. J., & Chavkin, C. (2008). The dysphoric component of stress is encoded by activation of the dynorphin κ-opioid system. The Journal of Neuroscience, 28, 407–414.

    Article  PubMed  PubMed Central  Google Scholar 

  • Land, B. B., Bruchas, M. R., Schattauer, S., Giardino, W. J., Aita, M., Messinger, D., … Chavkin, C. (2009). Activation of the kappa opioid receptor in the dorsal raphe nucleus mediates the aversive effects of stress and reinstates drug seeking. Proceedings of the National Academy of Sciences of the United States of America, 106, 19168–19173.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, J., & Schulteis, G. (2004). Brain reward deficits accompany naloxone-precipitated withdrawal from acute opioid dependence. Pharmacology, Biochemistry, and Behavior, 79, 101–108.

    Article  PubMed  Google Scholar 

  • Mague, S. D., Pliakas, A. M., Todtenkopf, M. S., Tomasiewicz, H. C., Zhang, Y., Stevens, W. C., Jr., … Carlezon, W. A., Jr. (2003). Antidepressant-like effects of κ-opioid receptor antagonists in the forced swim test in rats. The Journal of Pharmacology and Experimental Therapeutics, 305, 323–330.

    Article  PubMed  Google Scholar 

  • Makino, S., Gold, P. W., & Schulkin, J. (1994). Effects of corticosterone on CRH mRNA and content in the bed nucleus of the stria terminalis: Comparison with the effects in the central nucleus of the amygdala and the paraventricular nucleus of the hypothalamus. Brain Research, 657, 141–149.

    Article  PubMed  Google Scholar 

  • Markou, A., & Koob, G. F. (1991). Post-cocaine anhedonia: An animal model of cocaine withdrawal. Neuropsychopharmacology, 4, 17–26.

    PubMed  Google Scholar 

  • Martin-Fardon, R., Zorrilla, E. P., Ciccocioppo, R., & Weiss, F. (2010). Role of innate and drug-induced dysregulation of brain stress and arousal systems in addiction: Focus on corticotropin-releasing factor, nociceptin/orphanin FQ, and orexin/hypocretin. Brain Research, 1314, 145–161.

    Article  PubMed  Google Scholar 

  • McLaughlin, J. P., Li, S., Valdez, J., Chavkin, T. A., & Chavkin, C. (2006). Social defeat stress-induced behavioral responses are mediated by the endogenous kappa opioid system. Neuropsychopharmacology, 31, 1241–1248.

    Article  PubMed  Google Scholar 

  • McLaughlin, J. P., Marton-Popovici, M., & Chavkin, C. (2003). κ Opioid receptor antagonism and prodynorphin gene disruption block stress-induced behavioral responses. The Journal of Neuroscience, 23, 5674–5683.

    Article  PubMed  PubMed Central  Google Scholar 

  • Merlo-Pich, E., Lorang, M., Yeganeh, M., Rodriguez de Fonseca, F., Raber, J., Koob, G. F., & Weiss, F. (1995). Increase of extracellular corticotropin-releasing factor-like immunoreactivity levels in the amygdala of awake rats during restraint stress and ethanol withdrawal as measured by microdialysis. The Journal of Neuroscience, 15, 5439–5447.

    Article  PubMed  Google Scholar 

  • Morrisett, R. A. (1994). Potentiation of N-methyl-D-aspartate receptor-dependent afterdischarges in rat dentate gyrus following in vitro ethanol withdrawal. Neuroscience Letters, 167, 175–178.

    Article  PubMed  Google Scholar 

  • Mucha, R. F., & Herz, A. (1985). Motivational properties of kappa and mu opioid receptor agonists studied with place and taste preference conditioning. Psychopharmacology, 86, 274–280.

    Article  PubMed  Google Scholar 

  • Nealey, K. A., Smith, A. W., Davis, S. M., Smith, D. G., & Walker, B. M. (2011). κ-Opioid receptors are implicated in the increased potency of intra-accumbens nalmefene in ethanol-dependent rats. Neuropharmacology, 61, 35–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nestler, E. J. (2001). Molecular basis of long-term plasticity underlying addiction. Nature Reviews. Neuroscience, 2, 119–128.

    Article  PubMed  Google Scholar 

  • Nestler, E. J. (2005). Is there a common molecular pathway for addiction? Nature Neuroscience, 8, 1445–1449.

    Article  PubMed  Google Scholar 

  • O’Brien, C. P., Testa, J., O’Brien, T. J., Brady, J. P., & Wells, B. (1977). Conditioned narcotic withdrawal in humans. Science, 195, 1000–1002.

    Article  PubMed  Google Scholar 

  • Olive, M. F., Koenig, H. N., Nannini, M. A., & Hodge, C. W. (2002). Elevated extracellular CRF levels in the bed nucleus of the stria terminalis during ethanol withdrawal and reduction by subsequent ethanol intake. Pharmacology, Biochemistry, and Behavior, 72, 213–220.

    Article  PubMed  Google Scholar 

  • Park, P. E., Schlosburg, J. E., Vendruscolo, L. F., Schulteis, G., Edwards, S., & Koob, G. F. (2015). Chronic CRF1 receptor blockade reduces heroin intake escalation and dependence-induced hyperalgesia. Addiction Biology, 20, 275–284.

    Article  PubMed  Google Scholar 

  • Parsons, L. H., & Justice, J. B., Jr. (1993). Perfusate serotonin increases extracellular dopamine in the nucleus accumbens as measured by in vivo microdialysis. Brain Research, 606, 195–199.

    Article  PubMed  Google Scholar 

  • Paterson, N. E., & Markou, A. (2003). Increased motivation for self-administered cocaine after escalated cocaine intake. Neuroreport, 14, 2229–2232.

    Article  PubMed  Google Scholar 

  • Paterson, N. E., Myers, C., & Markou, A. (2000). Effects of repeated withdrawal from continuous amphetamine administration on brain reward function in rats. Psychopharmacology, 152, 440–446.

    Article  PubMed  Google Scholar 

  • Pavlov, I. P. (1927). Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. London, England: Oxford University Press.

    Google Scholar 

  • Pavlov, I. P., & Gantt, W. A. H. (1941). Lectures on conditioned reflexes: Vol. 2. Conditioned reflexes and psychiatry. London, England: Lawrence and Wishart.

    Google Scholar 

  • Pfeiffer, A., Brantl, V., Herz, A., & Emrich, H. M. (1986). Psychotomimesis mediated by κ opiate receptors. Science, 233, 774–776.

    Article  PubMed  Google Scholar 

  • Piazza, P. V., & Le Moal, M. (1997). Glucocorticoids as a biological substrate of reward: Physiological and pathophysiological implications. Brain Research Reviews, 25, 359–372.

    Article  PubMed  Google Scholar 

  • Poulos, C. X., & Cappell, H. (1991). Homeostatic theory of drug tolerance: A general model of physiological adaptation. Psychological Review, 98, 390–408.

    Article  PubMed  Google Scholar 

  • Rasmussen, D. D., Boldt, B. M., Bryant, C. A., Mitton, D. R., Larsen, S. A., & Wilkinson, C. W. (2000). Chronic daily ethanol and withdrawal: 1. Long-term changes in the hypothalamo-pituitary-adrenal axis. Alcoholism, Clinical and Experimental Research, 24, 1836–1849.

    Article  PubMed  Google Scholar 

  • Redila, V. A., & Chavkin, C. (2008). Stress-induced reinstatement of cocaine seeking is mediated by the kappa opioid system. Psychopharmacology, 200, 59–70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Richardson, H. N., Lee, S. Y., O’Dell, L. E., Koob, G. F., & Rivier, C. L. (2008). Alcohol self-administration acutely stimulates the hypothalamic-pituitary-adrenal axis, but alcohol dependence leads to a dampened neuroendocrine state. European Journal of Neuroscience, 28, 1641–1653.

    Article  Google Scholar 

  • Rivier, C., Bruhn, T., & Vale, W. (1984). Effect of ethanol on the hypothalamic-pituitary-adrenal axis in the rat: Role of corticotropin-releasing factor (CRF). The Journal of Pharmacology and Experimental Therapeutics, 229, 127–131.

    PubMed  Google Scholar 

  • Robbins, T. W., Gillan, C. M., Smith, D. G., de Wit, S., & Ersche, K. D. (2012). Neurocognitive endophenotypes of impulsivity and compulsivity: Towards dimensional psychiatry. Trends in Cognitive Sciences, 16, 81–91.

    Article  PubMed  Google Scholar 

  • Roberto, M., Cruz, M. T., Gilpin, N. W., Sabino, V., Schweitzer, P., Bajo, M., … Parsons, L. H. (2010). Corticotropin releasing factor-induced amygdala gamma-aminobutyric acid release plays a key role in alcohol dependence. Biological Psychiatry, 67, 831–839.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts, A. J., Cole, M., & Koob, G. F. (1996). Intra-amygdala muscimol decreases operant ethanol self-administration in dependent rats. Alcoholism, Clinical and Experimental Research, 20, 1289–1298.

    Article  PubMed  Google Scholar 

  • Russell, M. A. H. (1976). What is dependence? In G. Edwards (Ed.), Drugs and drug dependence (pp. 182–187). Lexington, MA: Lexington Books.

    Google Scholar 

  • Russo, S. J., Dietz, D. M., Dumitriu, D., Morrison, J. H., Malenka, R. C., & Nestler, E. J. (2010). The addicted synapse: Mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends in Neurosciences, 33, 267–276.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schindler, A. G., Li, S., & Chavkin, C. (2010). Behavioral stress may increase the rewarding valence of cocaine-associated cues through a dynorphin/-opioid receptor-mediated mechanism without affecting associative learning or memory retrieval mechanisms. Neuropsychopharmacology, 35, 1932–1942.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schlosburg, J. E., Whitfield, T. W., Jr., Park, P. E., Crawford, E. F., George, O., Vendruscolo, L. F., & Koob, G. F. (2013). Long-term antagonism of κ opioid receptors prevents escalation of and increased motivation for heroin intake. The Journal of Neuroscience, 33, 19384–19392.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmeichel, B. E., Barbier, E., Misra, K. K., Contet, C., Schlosburg, J. E., Grigoriadis, D., … Vendruscolo, L. F. (2015). Hypocretin receptor 2 antagonism dose-dependently reduces escalated heroin self-administration in rats. Neuropsychopharmacology, 40, 1123–1129.

    Article  PubMed  Google Scholar 

  • Schulteis, G., Ahmed, S. H., Morse, A. C., Koob, G. F., & Everitt, B. J. (2000). Conditioning and opiate withdrawal: The amygdala links neutral stimuli with the agony of overcoming drug addiction. Nature, 405, 1013–1014.

    Article  PubMed  Google Scholar 

  • Schulteis, G., & Koob, G. (1994). Dark side of drug dependence. Nature, 371, 108–109.

    Article  PubMed  Google Scholar 

  • Schulteis, G., & Liu, J. (2006). Brain reward deficits accompany withdrawal (hangover) from acute ethanol in rats. Alcohol, 39, 21–28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulteis, G., Markou, A., Cole, M., & Koob, G. (1995). Decreased brain reward produced by ethanol withdrawal. Proceedings of the National Academy of Sciences of the United States of America, 92, 5880–5884.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulteis, G., Markou, A., Gold, L. H., Stinus, L., & Koob, G. F. (1994). Relative sensitivity to naloxone of multiple indices of opiate withdrawal: A quantitative dose-response analysis. The Journal of Pharmacology and Experimental Therapeutics, 271, 1391–1398.

    PubMed  Google Scholar 

  • Serrano, A., & Parsons, L. H. (2011). Endocannabinoid influence in drug reinforcement, dependence and addiction-related behaviors. Pharmacology & Therapeutics, 132, 215–241.

    Article  Google Scholar 

  • Shippenberg, T. S., Zapata, A., & Chefer, V. I. (2007). Dynorphin and the pathophysiology of drug addiction. Pharmacology & Therapeutics, 116, 306–321.

    Article  Google Scholar 

  • Shurman, J., Koob, G. F., & Gutstein, H. B. (2010). Opioids, pain, the brain, and hyperkatifeia: A framework for the rational use of opioids for pain. Pain Medicine, 11, 1092–1098.

    Article  PubMed  Google Scholar 

  • Siegel, S. (1975). Evidence from rats that morphine tolerance is a learned response. Journal of Comparative and Physiological Psychology, 89, 498–506.

    Article  PubMed  Google Scholar 

  • Solomon, R. L. (1980). The opponent-process theory of acquired motivation: The costs of pleasure and the benefits of pain. The American Psychologist, 35, 691–712.

    Article  PubMed  Google Scholar 

  • Solomon, R. L., & Corbit, J. D. (1974). An opponent-process theory of motivation: 1. Temporal dynamics of affect. Psychological Review, 81, 119–145.

    Article  PubMed  Google Scholar 

  • Specio, S. E., Wee, S., O’Dell, L. E., Boutrel, B., Zorrilla, E. P., & Koob, G. F. (2008). CRF1 receptor antagonists attenuate escalated cocaine self-administration in rats. Psychopharmacology, 196, 473–482.

    Article  PubMed  Google Scholar 

  • Sterling, P., & Eyer, J. (1988). Allostasis: A new paradigm to explain arousal pathology. In S. Fisher & J. Reason (Eds.), Handbook of life stress, cognition and health (pp. 629–649). Chichester, England: John Wiley.

    Google Scholar 

  • Stinus, L., Le Moal, M., & Koob, G. F. (1990). Nucleus accumbens and amygdala are possible substrates for the aversive stimulus effects of opiate withdrawal. Neuroscience, 37, 767–773.

    Article  PubMed  Google Scholar 

  • Swanson, L. W., Sawchenko, P. E., Rivier, J., & Vale, W. (1983). The organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: An immunohistochemical study. Neuroendocrinology, 36, 165–186.

    Article  PubMed  Google Scholar 

  • Tan, H., Bishop, S. F., Lauzon, N. M., Sun, N., & Laviolette, S. R. (2009). Chronic nicotine exposure switches the functional role of mesolimbic dopamine transmission in the processing of nicotine’s rewarding and aversive effects. Neuropharmacology, 56, 741–751.

    Article  PubMed  Google Scholar 

  • Thorsell, A., Rapunte-Canonigo, V., O’Dell, L., Chen, S. A., King, A., Lekic, D., … Sanna, P. P. (2007). Viral vector-induced amygdala NPY overexpression reverses increased alcohol intake caused by repeated deprivations in Wistar rats. Brain, 130, 1330–1337.

    Article  PubMed  Google Scholar 

  • Thorsell, A., Slawecki, C. J., & Ehlers, C. L. (2005a). Effects of neuropeptide Y and corticotropin-releasing factor on ethanol intake in Wistar rats: Interaction with chronic ethanol exposure. Behavioural Brain Research, 161, 133–140.

    Article  PubMed  Google Scholar 

  • Thorsell, A., Slawecki, C. J., & Ehlers, C. L. (2005b). Effects of neuropeptide Y on appetitive and consummatory behaviors associated with alcohol drinking in Wistar rats with a history of ethanol exposure. Alcoholism, Clinical and Experimental Research, 29, 584–590.

    Article  PubMed  Google Scholar 

  • Valdez, G. R., & Koob, G. F. (2004). Allostasis and dysregulation of corticotropin-releasing factor and neuropeptide Y systems: Implications for the development of alcoholism. Pharmacology, Biochemistry, and Behavior, 79, 671–689.

    Article  PubMed  Google Scholar 

  • Van Dyke, C., & Byck, R. (1982). Cocaine. Scientific American, 246, 128–141.

    Article  PubMed  Google Scholar 

  • Vanderschuren, L. J., & Everitt, B. J. (2004). Drug seeking becomes compulsive after prolonged cocaine self-administration. Science, 305, 1017–1019.

    Article  PubMed  Google Scholar 

  • Vendruscolo, L. F., Barbier, E., Schlosburg, J. E., Misra, K. K., Whitfield, T., Jr., Logrip, M. L., … Koob, G. F. (2012). Corticosteroid-dependent plasticity mediates compulsive alcohol drinking in rats. The Journal of Neuroscience, 32, 7563–7571.

    Article  PubMed  PubMed Central  Google Scholar 

  • Volkow, N. D., Fowler, J. S., & Wang, G. J. (2003). The addicted human brain: Insights from imaging studies. The Journal of Clinical Investigation, 111, 1444–1451.

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker, B. M., & Koob, G. F. (2007). The γ-aminobutyric acid-B receptor agonist baclofen attenuates responding for ethanol in ethanol-dependent rats. Alcoholism, Clinical and Experimental Research, 31, 11–18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker, B. M., & Koob, G. F. (2008). Pharmacological evidence for a motivational role of κ-opioid systems in ethanol dependence. Neuropsychopharmacology, 33, 643–652.

    Article  PubMed  Google Scholar 

  • Walker, B. M., Rasmussen, D. D., Raskind, M. A., & Koob, G. F. (2008). α1-Noradrenergic receptor antagonism blocks dependence-induced increases in responding for ethanol. Alcohol, 42, 91–97.

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker, B. M., Zorrilla, E. P., & Koob, G. F. (2010). Systemic κ-opioid receptor antagonism by nor-binaltorphimine reduces dependence-induced excessive alcohol self-administration in rats. Addiction Biology, 16, 116–119.

    Article  Google Scholar 

  • Wee, S., & Koob, G. F. (2010). The role of the dynorphin-κ opioid system in the reinforcing effects of drugs of abuse. Psychopharmacology, 210, 121–135.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wee, S., Mandyam, C. D., Lekic, D. M., & Koob, G. F. (2008). ∝1-Noradrenergic system role in increased motivation for cocaine intake in rats with prolonged access. European Neuropsychopharmacology, 18, 303–311.

    Article  PubMed  Google Scholar 

  • Wee, S., Orio, L., Ghirmai, S., Cashman, J. R., & Koob, G. F. (2009). Inhibition of kappa opioid receptors attenuated increased cocaine intake in rats with extended access to cocaine. Psychopharmacology, 205, 565–575.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wee, S., Wang, Z., Woolverton, W. L., Pulvirenti, L., & Koob, G. F. (2007). Effect of aripiprazole, a partial D2 receptor agonist, on increased rate of methamphetamine self-administration in rats with prolonged access. Neuropsychopharmacology, 32, 2238–2247.

    Article  PubMed  Google Scholar 

  • Weiss, F., Markou, A., Lorang, M. T., & Koob, G. F. (1992). Basal extracellular dopamine levels in the nucleus accumbens are decreased during cocaine withdrawal after unlimited-access self-administration. Brain Research, 593, 314–318.

    Article  PubMed  Google Scholar 

  • Weiss, F., Parsons, L. H., Schulteis, G., Hyytia, P., Lorang, M. T., Bloom, F. E., & Koob, G. F. (1996). Ethanol self-administration restores withdrawal-associated deficiencies in accumbal dopamine and 5-hydroxytryptamine release in dependent rats. The Journal of Neuroscience, 16, 3474–3485.

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitfield, T. W., Jr., Schlosburg, J., Wee, S., Gould, A., George, O., Grant, Y., … Koob, G. F. (2015). κ Opioid receptors in the nucleus accumbens shell mediate escalation of methamphetamine intake. The Journal of Neuroscience, 35, 4296–4305.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks Michael Arends for assistance with manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George F. Koob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koob, G.F. (2018). Motivating Change in Addiction via Modulation of the Dark Side. In: Hope, D., Bevins, R. (eds) Change and Maintaining Change. Nebraska Symposium on Motivation, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-319-96920-6_1

Download citation

Publish with us

Policies and ethics