Skip to main content

Mesoscopic Modelling of Strain Glass

  • Chapter
  • First Online:
Book cover Frustrated Materials and Ferroic Glasses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 275))

  • 947 Accesses

Abstract

Glassiness is ubiquitous in nature but it still keeps many fascinating phenomena hidden. The discovery about a decade ago of glassy behavior in strain nanoclusters (the strain glass) has extended ferroic glasses to include the ferroelastic property. Here, by means of numerical modelling and comparison with experimental data in the literature, we identify disorder and anisotropy as key parameters whose interplay determines the ferroelastic behavior in alloys: While anisotropy-driven systems exhibit a normal ferroelastic transition, disorder-driven systems may result in the strain glass state. Interestingly, strain glass preserves functional properties such as the shape memory effect (SME) and superelasticity. Moreover, it exhibits hysteresis reduction and widening of operational temperature-stress range, which enhances its technological appeal. Precisely based on the occurrence of the SME, the relevance of geometrical frustration in strain glass is called into question as it might play a minor role in the freezing process. In magnetostructural systems, the multiferroic coupling could yield strain-mediated magnetic glass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Gutzow, J. Schmelzer, The Vitreous State. Thermodynamics, Structure, Rheology and Crystallization (Springer, Berlin, 1995)

    Google Scholar 

  2. The difference between metastable relaxation and glassy dynamics may be so small that eventually cannot be distinguished. Therefore, glass has been described somewhere as metastable quasiequilibrium states. See, for instance: T. Loerting, V.V. Brazhkin, T. Morishita, in Multiple Amorphous-Amorphous Transitions, ed. by S. Rice. Advances in Chemical Physics, vol. 143 (Wiley, Hoboken, 2009), pp. 29–83

    Google Scholar 

  3. J.M.D. Coey, P.W. Readman, Nature 246, 476–478 (1973)

    Article  ADS  Google Scholar 

  4. C. Dekker, W. Eidelloth, R.H. Koch, Phys. Rev. Lett. 68, 3347–3350 (1992)

    Article  ADS  Google Scholar 

  5. D. Viehland, J.F. Li, S.J. Jang, L.E. Cross, M. Wuttig, Phys. Rev. B 46, 8013–8017 (1992)

    Article  ADS  Google Scholar 

  6. R. Fichtl et al., Phys. Rev. Lett. 94, 027601 (2005)

    Article  ADS  Google Scholar 

  7. P.G. Wolynes, V. Lubchenko, Structural Glasses and Supercooled Liquids: Theory, Experiment, and Applications (Wiley, New Jersey, 2012)

    Book  Google Scholar 

  8. D.L. Stein, Spin Glasses: Still Complex After All These Years?, in Decoherence and Entropy in Complex Systems, ed. by T. Elze (Springer, Berlin, 2004)

    Google Scholar 

  9. S.H. Chen, H. Shi, B.M. Conger, J.C. Mastrangelo, T. Tsutsui, Adv. Mater. 8, 998–1001 (1996)

    Article  Google Scholar 

  10. S.H. Chen, D. Katsis, A.W. Schmid, J.C. Mastrangelo, T. Tsutsui, T.N. Blanton, Nat. Lett. 397, 506–508 (1999)

    Article  ADS  Google Scholar 

  11. R. Brand, P. Lunkenheimer, A. Loidl, J. Chem. Phys. 116, 10386–10401 (2002)

    Google Scholar 

  12. C.T. Moynihan, A.J. Easteal, J. Wilder, J. Tucker, J. Phys. Chem. 78, 2673–2677 (1974)

    Google Scholar 

  13. R. Moessner, A.P. Ramirez, Phys. Today 59, 24–29 (2006)

    Article  Google Scholar 

  14. M. Fujihala et al., Phys. Rev. B 85, 012402 (2012)

    Article  ADS  Google Scholar 

  15. M. Schmidt et al., Phys. A 438, 416–423 (2015)

    Article  MathSciNet  Google Scholar 

  16. J.S. Gardner, M.J.P. Gingras, J.E. Greedan, Rev. Mod. Phys. 82, 53–107 (2010)

    Article  ADS  Google Scholar 

  17. R.F. Wang et al., Nat. Lett. 439, 303–306 (2006)

    Article  ADS  Google Scholar 

  18. F. Yen et al., Phys. B 403, 1487–1489 (2008)

    Article  ADS  Google Scholar 

  19. P.G. Debenedetti, F.H. Stillinger, Nature 410, 259–267 (2001)

    Article  ADS  Google Scholar 

  20. L.C. Pardo, A. Henao, A. Vispa, J. Non-Cryst. Sol. 407, 220–227 (2015)

    Google Scholar 

  21. R.N. Bhowmik et al., Phys. Rev. B. 72, 094405 (2005)

    Article  ADS  Google Scholar 

  22. H.Y. Kwon et al., J. Magn. Magn. Mat. 324, 2171–2176 (2012)

    Article  ADS  Google Scholar 

  23. R.P. Erickson, D.L. Mills, Phys. Rev. B 43, 11527(R) (1991)

    Article  ADS  Google Scholar 

  24. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759–765 (2006)

    Article  ADS  Google Scholar 

  25. M. Porta, T. Castán, P. Lloveras, T. Lookman, A. Saxena, S.R. Shenoy, Phys. Rev. B 79, 214117 (2009)

    Article  ADS  Google Scholar 

  26. K. Battacharya, Microstructure of martensite: Why it forms and how it gives rise to the shape-memory effect. Oxford Series on Materials Modelling (Oxford University Press, Oxford, 2004)

    Google Scholar 

  27. S. Kaufmann et al., New J. Phys. 13, 053029 (2011)

    Article  ADS  Google Scholar 

  28. A.G. Khachaturyan, Domain structure in martensitic transformation, in Proceedings of Advanced Materials’93, ed. by K. Otsuka et al. (1994); published in Trans. Mat. Res. Soc. Jpn. 18B, 799 (1994)

    Google Scholar 

  29. S. Kustov, D. Salas, E. Cesari, R. Santamarta, D. Mari, J. Van Humbeeck, Mat. Sci. Forum 738–739, 274–275 (2013)

    Article  Google Scholar 

  30. S. Kustov, D. Salas, E. Cesari, R. Santamarta, D. Mari, J. Van Humbeeck, Acta Mater. 73, 275–286 (2014)

    Article  Google Scholar 

  31. N. Shankaraiah, K.P.N. Murthy, T. Lookman, S.R. Shenoy, Phys. Rev. B 84, 064119 (2011)

    Article  ADS  Google Scholar 

  32. A. Millis, Solid State Commun. 126, 3–8 (2003)

    Article  ADS  Google Scholar 

  33. Y. Imry, M. Wortis, Phys. Rev. B 19, 3580–3585 (1979)

    Article  ADS  Google Scholar 

  34. Y. Nii et al., Phys. Rev. B 82, 214104 (2010)

    Article  ADS  Google Scholar 

  35. E.K.H. Salje, Phase Transitions in Ferroelastic and Co-elastic Crystals (Cambridge University Press, Cambridge, 1990)

    Google Scholar 

  36. Y. Murakami, H. Shibuya, D. Shindo, J. Microsc. 203, 22–33 (2001)

    Article  MathSciNet  Google Scholar 

  37. S. Kartha, T. Castán, J.A. Krumhansl, J.P. Sethna, Phys. Rev. Lett. 67, 3630–3633 (1991)

    Article  ADS  Google Scholar 

  38. X. Ren et al., Philos. Mag. 90, 141–157 (2010)

    Article  ADS  Google Scholar 

  39. C. Paduani, A. Migliavacca, M.L. Sebben, J.D. Ardisson, M.I. Yoshida, S. Soriano, M. Kalisz, Solid State Commun. 141, 145–149 (2007)

    Article  ADS  Google Scholar 

  40. W. Ratcliff II et al., Phys. Rev. B 65, 220406(R) (2002)

    Google Scholar 

  41. T. Chakrabarty, A.V. Mahajan, S. Kundu, J. Phys. Condens. Matter 26, 405601 (2014)

    Article  Google Scholar 

  42. J.L. Dormann, M. Nogues, J. Phys. Condens. Matter 2, 1223–1237 (1990)

    Article  ADS  Google Scholar 

  43. M. Nogues et al., J. Magn. Magn. Mater. 104–107, 1641–1642 (1992)

    Article  ADS  Google Scholar 

  44. J. Blasco, V. Cuartero, J. García, J.A. Rodríguez-Velamazán, J. Phys. Condens. Matter 24, 076006 (2012)

    Article  ADS  Google Scholar 

  45. S. Karmakar et al., Phys. Rev. B 74, 104407 (2006)

    Article  ADS  Google Scholar 

  46. C. Ang, Z. Yu, Z. Jing, Phys. Rev. B 61, 957–961 (2000)

    Article  ADS  Google Scholar 

  47. P.A. Sharma, S.B. Kim, T.Y. Koo, S. Guha, S.-W. Cheong, Phys. Rev. B 71, 224416 (2005)

    Article  ADS  Google Scholar 

  48. P. Toledano, D. Machon, Phys. Rev. B 71, 024210 (2005)

    Article  ADS  Google Scholar 

  49. S. Sarkar, X. Ren, K. Otsuka, Phys. Rev. Lett. 95, 205702 (2005)

    Article  ADS  Google Scholar 

  50. Y. Wang, X. Ren, K. Otsuka, Phys. Rev. Lett. 97, 225703 (2006)

    Article  ADS  Google Scholar 

  51. X. Ren, Y. Wang, K. Otsuka, P. Lloveras, T. Castán, M. Porta, A. Planes, A. Saxena, MRS Bull. 34, 838–846 (2009)

    Article  Google Scholar 

  52. Y. Zhou et al., Appl. Phys. Lett. 95, 151906 (2009)

    Article  ADS  Google Scholar 

  53. Y. Zhou et al., Acta Mater. 58, 5433–5442 (2010)

    Article  Google Scholar 

  54. J. Zhang et al., Phys. Rev. B 84, 214201 (2011)

    Article  ADS  Google Scholar 

  55. D.P. Wang et al., Europhys. Lett. 98, 46004 (2012)

    Article  ADS  Google Scholar 

  56. Y. Yao et al., Europhys. Lett. 100, 17004 (2012)

    Article  Google Scholar 

  57. Y. Wang et al., Appl. Phys. Lett. 102, 141909 (2013)

    Article  ADS  Google Scholar 

  58. Y. Wang et al., Sci. Rep. 4, 3995 (2014)

    Article  Google Scholar 

  59. Y. Zhou et al., Phys. Rev. Lett. 112, 025701 (2014)

    Article  ADS  Google Scholar 

  60. Y. Zhou et al., Phys. Status Solidi B 251, 2027–2033 (2014)

    Article  ADS  Google Scholar 

  61. P. Entel et al., Phys. Status Solidi B 251, 2135–2148 (2014)

    Article  ADS  Google Scholar 

  62. X. Ren et al., Mater. Sci. Eng. 312, 196–206 (2001)

    Article  Google Scholar 

  63. J. Zhang et al., Mater. Trans. JIM 40, 385–388 (1999)

    Article  Google Scholar 

  64. S. Muto et al., Acta Metall. Mater. 38, 685–694 (1990)

    Article  Google Scholar 

  65. E. Obradó et al., Phys. Rev. B 58, 14245 (1998)

    Article  ADS  Google Scholar 

  66. K. Enami et al., Scr. Metall. 10, 879–884 (1976)

    Article  Google Scholar 

  67. D. Ma et al., Phys. Status Solidi B 245, 2642–2648 (2008)

    Article  ADS  Google Scholar 

  68. K. Otsuka, C.M. Wayman, Shape Memory Materials (Cambridge University Press, Cambridge, 1990)

    Google Scholar 

  69. S. Miyazaki, K. Otsuka, S. Suzuki, Scr. Metall. 15, 287–292 (1981)

    Article  Google Scholar 

  70. Y. Wang, X. Ren, K. Otsuka, A. Saxena, Acta Mater. 56, 2885–2896 (2008)

    Article  Google Scholar 

  71. N. Nakanishi et al., Philos. Mag. 28, 277–292 (1973)

    Article  ADS  Google Scholar 

  72. T.-H. Nam et al., J. Mater. Sci. Lett. 21, 1851–1853 (2002)

    Article  Google Scholar 

  73. V.A. Chernenko et al., J. Appl. Phys. 93, 2394–2399 (2003)

    Article  ADS  Google Scholar 

  74. R. Kainuma et al., Nat. Lett. 439, 957–960 (2006)

    Article  ADS  Google Scholar 

  75. X. Ren, Phys. Status Solidi B 251, 1982–1992 (2014)

    Article  ADS  Google Scholar 

  76. J.M. Ball, R.D. James, Arch. Ration. Mech. Anal. 100, 13–52 (1987)

    Article  Google Scholar 

  77. Y. Wang, A.G. Khachaturyan, Acta Mater. 45, 759–773 (1997)

    Article  Google Scholar 

  78. A.G. Khachaturyan, Theory of Structural Transformation in Solids (Dover, New York, 2008)

    Google Scholar 

  79. O.U. Salman, A. Finel, R. Delville, D. Schryvers, J. Appl. Phys. 111, 103517 (2012)

    Article  ADS  Google Scholar 

  80. V.I. Levitas, D.L. Preston, Phys. Rev. B 66, 134206 (2002); V.I. Levitas, D.L. Preston, Phys. Rev. B 66, 134207 (2002)

    Article  ADS  Google Scholar 

  81. S. Kartha , J.A. Krumhansl, J.P. Sethna, L.K. Wickham, Phys. Rev. B 52, 803–822 (1995)

    Article  ADS  Google Scholar 

  82. A. Saxena, T. Lookman, in Handbook of Materials Modeling, ed. by S. Yip, pp. 2143–2154 (Springer, Berlin, 2005)

    Google Scholar 

  83. P. Lloveras, T. Castán, M. Porta, A. Planes, A. Saxena, Phys. Rev. Lett. 100, 165707 (2008)

    Article  ADS  Google Scholar 

  84. P. Lloveras, T. Castán, M. Porta, A. Planes, A. Saxena, Phys. Rev. B 80, 054107 (2009)

    Article  ADS  Google Scholar 

  85. P. Lloveras, T. Castán, M. Porta, A. Planes, A. Saxena, Phys. Rev. B 81, 214105 (2010)

    Article  ADS  Google Scholar 

  86. S.R. Shenoy, T. Lookman, A. Saxena, A.R. Bishop, Phys. Rev. B 60, R12537 (1999)

    Article  ADS  Google Scholar 

  87. T. Castán, A. Planes, A. Saxena, Mat. Sci. Forum 738–739, 155–159 (2013)

    Article  Google Scholar 

  88. D.C. Mattis, Phys. Lett. 56A, 421–422 (1976)

    Article  ADS  Google Scholar 

  89. C. Lu et al., Sci. Rep. 4, 4902 (2014)

    Article  Google Scholar 

  90. S. Narayana Jammalamadaka, AIP Adv. 1, 042151 (2011)

    Article  ADS  Google Scholar 

  91. V.K. Pecharsky, K.A. Gschneidner Jr., C.B. Zimm, Adv. Cryog. Eng. Mater. 42, 451–458 (1996)

    Article  Google Scholar 

  92. S.M. Shapiro, J.Z. Larese, Y. Noda, S.C. Moss, L.E. Tanner, Phys. Rev. Lett. 57, 3199–3202 (1986)

    Article  ADS  Google Scholar 

  93. G. Arlt, D. Hennings, G. de With, J. Appl. Phys. 58, 1619–1625 (1985)

    Google Scholar 

  94. L.S. Chumbley et al., IEEE Trans. Magn. 25, 2337–2340 (1989)

    Article  ADS  Google Scholar 

  95. T. Roy, T.E. Mitchell, Philos. Mag. A 63, 225–232 (1991)

    Article  ADS  Google Scholar 

  96. M.-S. Choi, T. Fukuda, T. Kakeshita, Scr. Mater. 53, 869–873 (2005)

    Article  Google Scholar 

  97. L. Zhang et al., Sci. Rep. 5, 11477 (2015)

    Article  ADS  Google Scholar 

  98. Y. Wang, X. Ren, K. Otsuka, A. Saxena, Phys. Rev. B 76, 132201 (2007)

    Article  ADS  Google Scholar 

  99. R.J. Hemley et al., Nature 334, 52–54 (1988)

    Article  ADS  Google Scholar 

  100. M. Paluch, K. Grzybowska, A. Grzybowski, J. Phys. Cond. Matt. 19, 205117 (2007)

    Article  ADS  Google Scholar 

  101. X. Moya, S. Karnarayan, N.D. Mathur, Nat. Mater. 13, 439–450 (2014)

    Article  ADS  Google Scholar 

  102. A.S. Mischenko, Q. Zhang, R.W. Whatmore, J.F. Scott, N.D. Mathur, Appl. Phys. Lett. 89, 242912 (2006)

    Article  ADS  Google Scholar 

  103. Z. Tang, Y. Wang, X. Liao, D. Wang, S. Yang, X. Song, J. Alloys Compd. 622, 622–627 (2015)

    Article  Google Scholar 

  104. Y. Murakami, D. Shindo, K. Oikawa, R. Kainuma, K. Ishida, Acta Mater. 50, 2173–2184 (2002)

    Article  Google Scholar 

  105. Y. Ge, O. Heczko, O. Soderberg, V.K. Lindroos, J. Appl. Phys. 96, 2159–2163 (2004)

    Google Scholar 

  106. J.N. Armstrong et al., J. Appl. Phys. 103, 023905 (2008)

    Article  ADS  Google Scholar 

  107. A. Saxena et al., Phys. Rev. Lett. 92, 197203 (2004)

    Article  ADS  Google Scholar 

  108. E.K.H. Salje, M. Alexe, S. Kustov, M.C. Weber, J. Schiemer, G.F. Nataf, J. Kreisel, Sci. Rep. 6, 27193 (2016)

    Article  ADS  Google Scholar 

  109. E. Dagotto, Science 309, 257–262 (2005)

    Article  ADS  Google Scholar 

  110. R. James, M. Wuttig, Philos. Mag. A 77, 1273–1299 (1998)

    Article  ADS  Google Scholar 

  111. T. Fukuda et al., Mater. Trans. 45, 188–192 (2004)

    Article  Google Scholar 

  112. M. Uehara, S. Mori, C.H. Chen, S.-W. Cheong, Nature 399, 560–563 (1999)

    Article  ADS  Google Scholar 

  113. R.A. Pelcovits, E. Pytte, J. Rudnick, Phys. Rev. Lett. 40, 476–479 (1978)

    Article  ADS  Google Scholar 

  114. L. Krusin-Elbaum, A.P. Malozemoff, R.C. Taylor, Phys. Rev. B 27, 562–565 (1983)

    Article  ADS  Google Scholar 

  115. B.E. Vugmeister, M.D. Glinchuk, Rev. Mod. Phys. 62, 993–1026 (1990)

    Article  ADS  Google Scholar 

  116. A. Levstik et al., Appl. Phys. Lett. 91, 012905 (2007)

    Article  ADS  Google Scholar 

  117. M.H. Phan et al., Phys. Rev. B 81, 094413 (2010)

    Article  ADS  Google Scholar 

  118. P. Lloveras, G. Touchagues, T. Castán, T. Lookman, M. Porta, A. Saxena, A. Planes, Phys. Stat. Sol. B 251, 2080–2087 (2014)

    Article  ADS  Google Scholar 

  119. A. Aharoni, Introduction to the Theory of Ferromagnetism (Oxford University Press, New York, 1996)

    Google Scholar 

  120. C. Kittel, Rev. Mod. Phys. 21, 541–583 (1949)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge Prof. David Sherrington for fruitful discussions. This work was supported by CICyT (Spain) project MAT2013-40590-P, by DGU (Catalonia) project 2014SGR00581 and by the U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lloveras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lloveras, P., Castán, T., Porta, M., Saxena, A., Planes, A. (2018). Mesoscopic Modelling of Strain Glass. In: Lookman, T., Ren, X. (eds) Frustrated Materials and Ferroic Glasses. Springer Series in Materials Science, vol 275. Springer, Cham. https://doi.org/10.1007/978-3-319-96914-5_9

Download citation

Publish with us

Policies and ethics