Skip to main content

Glassy Phenomena and Precursors in the Lattice Dynamics

  • Chapter
  • First Online:
Frustrated Materials and Ferroic Glasses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 275))

  • 1003 Accesses

Abstract

Broad classes of functional materials exhibit glass-like phenomena originating with the frustration of a soft phonon driven phase transition, including relaxor ferroelectrics and shape memory strain glasses. While the soft phonon mechanism is mostly understood, how this mechanism becomes frustrated in the presence of disorder remains intensely debated. A common structural feature of the frustrated state is nanoscale regions of local ferroic displacements that form well above the ordering temperature; these are called polar nanoregions (PNRs) in relaxor ferroelectrics and ferroelastic nanodomains (FND) in the strain glasses. The existence of these small regions provides a basis to explain glass-like slow relaxation phenomena, which can manifest in the lattice dynamics as phonon over damping. However, this does not explain why the long-range order becomes localized into PNRs or FNDs, or why this happens specifically at the nanoscale. Recent scattering experiments and theories suggest an exciting new way to think about these problems in terms of the physics of lattice vibrations in chemically disordered crystals. More generally, probing the lattice dynamics of these systems sheds new light on the microscopic origin of the nanoregions, glassy behavior, and enhanced functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.-E. Park, T.R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804–1811 (1997)

    Article  ADS  Google Scholar 

  2. K. Uchino, Piezoelectric Actuators and Ultrasonic Motors (Kluwer Academic Publishers, Dordrecht, 1996)

    Book  Google Scholar 

  3. S. Zhang, F. Li, High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective. J. Appl. Phys. 111, 031301 (2012)

    Article  ADS  Google Scholar 

  4. H. Fu, R.E. Cohen, Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403, 281–283 (2000)

    Article  ADS  Google Scholar 

  5. M.E. Manley, D.L. Abernathy, R. Sahul, D.E. Parshall, J.W. Lynn, A.D. Christianson, P.J. Stonaha, E.D. Specht, J.D. Budai, Giant electromechanical coupling of relaxor ferroelectrics controlled by polar nanoregion vibrations. Sci. Adv. 2, e1501814 (2016)

    Article  ADS  Google Scholar 

  6. F. Li, S.J. Zhang, T.N. Yang, Z. Xu, N. Zhang, G. Liu, J.J. Wang, J.L. Wang, Z.X. Cheng, Z.G. Ye, J. Luo, T.R. Shrout, L.Q. Chen, The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nat. Commun. 7, 13807 (2016)

    Article  ADS  Google Scholar 

  7. G. Xu, Z. Zhong, Y. Bing, Z.-G. Ye, G. Shirane, Electric-field-induced redistribution of polar nano-regions in a relaxor ferroelectric. Nat. Mater. 5, 134–140 (2006)

    Article  ADS  Google Scholar 

  8. Y. Wang, X. Ren, K. Otsuka, Shape memory effect and superelasticity in a strain glass alloy. Phys. Rev. Lett. 97, 225703 (2006)

    Article  ADS  Google Scholar 

  9. J. Hlinka, S. Kamba, J. Petzelt, J. Kulda, C.A. Randall, S.J. Zhang, Origin of the “waterfall” effect in phonon dispersion of relaxor perovskites. Phys. Rev. Lett. 91, 107602 (2003)

    Article  ADS  Google Scholar 

  10. J.C. Lashley, S.M. Shapiro, B.L. Winn, C.P. Opeil, M.E. Manley, A. Alatas, W. Ratcliff, T. Park, R.A. Fisher, B. Mihaila, P. Riseborough, E.K.H. Salje, J.L. Smith, Observation of a continuous phase transition in a shape-memory alloy. Phys. Rev. Lett. 101, 135703 (2008)

    Article  ADS  Google Scholar 

  11. W. Cochran, Crystal stability and the theory of ferroelectricity. Phys. Rev. Lett. 3, 412 (1959)

    Article  ADS  Google Scholar 

  12. P.W. Anderson, in Proceedings of the 2nd Union Conference, Moscow, ed. by G. I. Skanavi. Physics of dialectics (Academy of Sciences, USSR, 1960), p. c. 290

    Google Scholar 

  13. A.J. Sievers, S. Takeno, Intrinisic localized modes in anharmonic crystals. Phys. Rev. Lett. 61, 970–973 (1988)

    Article  ADS  Google Scholar 

  14. S. Flach, A. Gorbach, Discrete Breathers-Advances in Theory and Applications (Elsevier Science, New York, 2008)

    MATH  Google Scholar 

  15. D.K. Campbell, S. Flach, Y.S. Kivshar, Localizing energy through nonlinearity and discreteness. Phys. Today 57, 43–49 (2004)

    Article  ADS  Google Scholar 

  16. A. Bussmann-Holder, A.R. Bishop, T. Egami, Relaxor ferroelectrics and intrinsic inhomogeneity. Europhys. Lett. 71, 249–255 (2005)

    Article  ADS  Google Scholar 

  17. A.R. Bishop, A. Bussmann-Holder, S. Kamba, M. Maglione, Common characteristics of displacive and relaxor ferroelectrics. Phys. Rev. B 81, 064106 (2010)

    Article  ADS  Google Scholar 

  18. J. Macutkevic, J. Banys, A. Bussmann-Holder, A.R. Bishop, Origin of polar nanoregions in relaxor ferroelectrics: Nonlinearity, discrete breather formation, and charge transfer. Phys. Rev. B 83, 184301 (2011)

    Article  ADS  Google Scholar 

  19. A. Lagendijk, B. van Tiggelen, D.S. Wiersma, Fifty years of Anderson localization. Phys. Today 62, 24–29 (2009)

    Article  Google Scholar 

  20. P.W. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109(5), 1492–1505 (1958)

    Article  ADS  Google Scholar 

  21. A.R. Akbarzadeh, S. Prosandeev, E.J. Walter, A. Al-Barakaty, L. Bellaiche, Finite-temperature properties of Ba(Zr, Ti)O3 relaxors from first principles. Phys. Rev. Lett. 108, 257601 (2012)

    Article  ADS  Google Scholar 

  22. D. Sherrington, BZT: A soft pseudospin glass. Phys. Rev. Lett. 111, 227601 (2013)

    Article  ADS  Google Scholar 

  23. V. Westphal, W. Kleemann, M.D. Glinchuk, Diffuse phase transitions and random-field-induced domain states of the “relaxor” ferroelectric PbMg1/3Nb2/3O3. Phys. Rev. Lett. 68, 847 (1992)

    Article  ADS  Google Scholar 

  24. M.E. Manley, J.W. Lynn, D.L. Abernathy, E.D. Specht, O. Delaire, A.R. Bishop, R. Sahul, J.D. Budai, Phonon localization drives polar nanoregions in a relaxor ferroelectric. Nat. Commun. 5, 3683 (2014)

    Article  ADS  Google Scholar 

  25. M.E. Manley, D.L. Abernathy, R. Sahul, P.J. Stonaha, J.D. Budai, Three-mode coupling interference patterns in the dynamic structure factor of a relaxor ferroelectric. Phys. Rev. B 94, 104304 (2016)

    Article  ADS  Google Scholar 

  26. M.E. Manley, A.D. Christianson, D.L. Abernathy, R. Sahul, Phonon localization transition in relaxor ferroelectric PZN-5%PT. Appl. Phys. Lett. 110, 132901 (2017)

    Article  ADS  Google Scholar 

  27. I.P. Swainson, C. Stock, P.M. Gehring, G. Xu, K. Hirota, Y. Qiu, H. Luo, X. Zhao, J.-F. Li, D. Viehland, Soft phonon columns on the edge of the Brillouin zone in the relaxor PbMg1/3Nb2/3O3. Phys. Rev. B 79, 224301 (2009)

    Article  ADS  Google Scholar 

  28. M. Matsuura, K. Hirota, P.M. Gehring, Z.-G. Ye, W. Chen, G. Shirane, Composition dependence of the diffuse scattering in the relaxor ferroelectric compound (1−x)Pb(Mg1/3Nb2/3)O3−xPbTiO3(0<x<0.40). Phys. Rev. B 74, 144107 (2006)

    Article  ADS  Google Scholar 

  29. T. Egami, S.J.L. Billinge, in Underneath the Bragg Peaks: Structural Analysis of Complex Materials, ed. by R. W. Cahn. (Pergamon Materials Series, Oxford, 2003), p. 343

    Google Scholar 

  30. B.P. Burton, E. Cockayne, Why Pb(B,B′)O3 perovskites disorder at lower temperatures than Ba(B,B′)O3 perovskites. Phys. Rev. B 60, R12542(R) (1999)

    Article  ADS  Google Scholar 

  31. H. Hu, A. Strybulevych, J.H. Page, S.E. Skipetrov, B.A. van Tiggelen, Localization of ultrasound in a three-dimensional elastic network. Nat. Phys. 4, 945 (2008)

    Article  Google Scholar 

  32. G.-M. Rotaru, S.N. Gvasaliya, B. Roessli, S. Kojima, S.G. Lushnikov, P. Gunter, Evolution of the neutron quasielastic scattering through the ferroelectric phase transition in 93%PbZn1∕3Nb2∕3O3–7%PbTiO3. Appl. Phys. Lett. 93, 032903 (2008)

    Article  ADS  Google Scholar 

  33. F.R. Archilla, R.S. MacKay, J.L. Marín, Discrete breathers and Anderson modes: two faces of the same phenomena? Phys D 134, 406–418 (1999)

    Article  MathSciNet  Google Scholar 

  34. A.R. Bishop, S. Jimenez, L. Vazquez, Fluctuation Phenomena: Disorder and Nonlinearity (World Scientific, Singapore, 1995)

    Book  Google Scholar 

  35. G. Xu, J. Wen, C. Stock, P.M. Gehring, Phase instability induced by polar nanoregions in a relaxor ferroelectric system. Nat. Mater. 7, 562–566 (2008)

    Article  ADS  Google Scholar 

  36. R. Pirc, R. Blinc, V.S. Vikhnin, Effect of polar nanoregions on giant electrostriction and piezoelectricity in relaxor ferroelectrics. Phys. Rev. B 69, 212105 (2004)

    Article  ADS  Google Scholar 

  37. R. Zhang, B. Jiang, W.W. Cao, Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals. J. Appl. Phys. 90, 3471 (2001)

    Article  ADS  Google Scholar 

  38. J.H. Yin, B. Jiang, W.W. Cao, Elastic, piezoelectric, and dielectric properties of 0.955Pb(Zn1/3Nb2/3)O3–0.045PbTiO3 single crystal with designed multidomains. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 285–291 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

Research sponsored by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Manley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manley, M.E. (2018). Glassy Phenomena and Precursors in the Lattice Dynamics. In: Lookman, T., Ren, X. (eds) Frustrated Materials and Ferroic Glasses. Springer Series in Materials Science, vol 275. Springer, Cham. https://doi.org/10.1007/978-3-319-96914-5_4

Download citation

Publish with us

Policies and ethics