Skip to main content

Phase Field Model and Computer Simulation of Strain Glasses

  • Chapter
  • First Online:
  • 978 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 275))

Abstract

Strain glass is a new structural state in ferroelastic materials, which offers unique transition behavior and properties. In this chapter, we introduce a phase field model of strain glass systems and study their transition behavior and the associated properties by computer simulations. Local stresses associated with randomly distributed defects, including point defects and extended defects (dislocations and concentration modulations), are found to play the most important role in the formation of strain glass, by suppressing autocatalysis in nucleation and confining the growth of martensitic domains. A broad distribution of defect strength leads to continued nucleation and growth of martensitic domains in a broad temperature or stress range and renders the otherwise sharp first-order martensitic transformation into a broadly smeared “diffuse” strain glass transition with slim hysteresis, nearly linear superelasticity, ultralow elastic modulus and Invar and Elinvar anomalies. New strategies for designing strain glass systems with large recoverable strain are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K. Ōtsuka, C.M. Wayman, Shape Memory Materials (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  2. A.R. Pelton et al., Nitinol medical devices. Adv Mater Process 163, 63–65 (2005)

    Google Scholar 

  3. T.W. Duerig, A.R. Pelton, An overview of superelastic stent design. Mater Sci Forum 394-3, 1–8 (2001)

    Google Scholar 

  4. T.W. Duerig, Engineering Aspects of Shape Memory Alloys (Butterworth-Heinemann, Oxford, 1990)

    Google Scholar 

  5. S. Sarkar, X.B. Ren, K. Otsuka, Evidence for strain glass in the ferroelastic-martensitic system Ti50-xNi50 + x. Phys Rev Lett 95, 205702 (2005). https://doi.org/10.1103/Physrevlett.95.205702

    Article  ADS  Google Scholar 

  6. Y. Wang, X.B. Ren, K. Otsuka, Shape memory effect and superelasticity in a strain glass alloy. Phys Rev Lett 97, 225703 (2006). https://doi.org/10.1103/Physrevlett.97.225703

    Article  ADS  Google Scholar 

  7. X.B. Ren et al., Strain glass in ferroelastic systems: Premartensitic tweed versus strain glass. Philos Mag 90, 141–157 (2010). https://doi.org/10.1080/14786430903074771

    Article  ADS  Google Scholar 

  8. L.-Q. Chen, Phase-field models for microstructure evolution. Annual Review of Materials Research 32, 113–140 (2002). https://doi.org/10.1146/annurev.matsci.32.112001.132041

    Article  Google Scholar 

  9. A.G. Khachaturȋân, Theory of Structural Transformations in Solids (Wiley, Hoboken, 1983)

    Google Scholar 

  10. D. Raabe, Continuum Scale Simulation of Engineering Materials: Fundamentals, Microstructures, Process Applications (Wiley-VCH, Hoboken, 2004), pp. 271–296

    Book  Google Scholar 

  11. Y. Wang, J. Li, Phase field modeling of defects and deformation. Acta Materialia 58, 1212–1235 (2010). https://doi.org/10.1016/j.actamat.2009.10.041

    Article  Google Scholar 

  12. I. Steinbach, Phase-field model for microstructure evolution at the mesoscopic scale. Annual Review of Materials Research 43, 89–107 (2013). https://doi.org/10.1146/annurev-matsci-071312-121703

    Article  ADS  Google Scholar 

  13. K. Elder, H. Gould, J. Tobochnik, Langevin simulations of nonequilibrium phenomena. Computers in Physics 7, 27–33 (1993). https://doi.org/10.1063/1.4823138

    Article  ADS  Google Scholar 

  14. A. Artemev, Y. Jin, A.G. Khachaturyan, Three-dimensional phase field model of proper martensitic transformation. Acta Materialia 49, 1165–1177 (2001). https://doi.org/10.1016/S1359-6454(01)00021-0

    Article  Google Scholar 

  15. Y. Wang, A.G. Khachaturyan, Three-dimensional field model and computer modeling of martensitic transformations. Acta Materialia 45, 759–773 (1997). https://doi.org/10.1016/S1359-6454(96)00180-2

    Article  Google Scholar 

  16. Y.L. Li, S.Y. Hu, Z.K. Liu, L.Q. Chen, Phase-field model of domain structures in ferroelectric thin films. Applied Physics Letters 78, 3878–3880 (2001). https://doi.org/10.1063/1.1377855

    Article  ADS  Google Scholar 

  17. J. Wang, S.-Q. Shi, L.-Q. Chen, Y. Li, T.-Y. Zhang, Phase-field simulations of ferroelectric/ferroelastic polarization switching. Acta Materialia 52, 749–764 (2004). https://doi.org/10.1016/j.actamat.2003.10.011

    Article  Google Scholar 

  18. L.Q. Chen, Phase-field method of phase transitions/domain structures in ferroelectric thin films: A review. J Am Ceram Soc 91, 1835–1844 (2008). https://doi.org/10.1111/j.1551-2916.2008.02413.x

    Article  Google Scholar 

  19. L.J. Li, C.H. Lei, Y.C. Shu, J.Y. Li, Phase-field simulation of magnetoelastic couplings in ferromagnetic shape memory alloys. Acta Materialia 59, 2648–2655 (2011). https://doi.org/10.1016/j.actamat.2011.01.001

    Article  Google Scholar 

  20. Y.M. Jin, Domain microstructure evolution in magnetic shape memory alloys: Phase-field model and simulation. Acta Materialia 57, 2488–2495 (2009). https://doi.org/10.1016/j.actamat.2009.02.003

    Article  Google Scholar 

  21. Y.Z. Wang, A.G. Khachaturyan, Multi-scale phase field approach to martensitic transformations. Mat. Sci. Eng. A 438, 55–63 (2006). https://doi.org/10.1016/j.msea.2006.04.123

    Article  Google Scholar 

  22. D. Wang et al., Superelasticity of slim hysteresis over a wide temperature range by nanodomains of martensite. Acta Materialia 66, 349–359 (2014). https://doi.org/10.1016/j.actamat.2013.11.022

    Article  Google Scholar 

  23. Y.P. Gao, R.P. Shi, J.F. Nie, S.A. Dregia, Y.Z. Wang, Group theory description of transformation pathway degeneracy in structural phase transformations. Acta Materialia 109, 353–363 (2016). https://doi.org/10.1016/j.actamat.2016.01.027

    Article  Google Scholar 

  24. J.W. Cahn, J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy. The Journal of Chemical Physics 28, 258–267 (1958). https://doi.org/10.1063/1.1744102

    Article  ADS  Google Scholar 

  25. C. Shen, J.P. Simmons, Y. Wang, Effect of elastic interaction on nucleation: II. Implementation of strain energy of nucleus formation in the phase field method. Acta Materialia 55, 1457–1466 (2007). https://doi.org/10.1016/j.actamat.2006.10.011

    Article  Google Scholar 

  26. C.-J. Huang, D.J. Browne, S. McFadden, A phase-field simulation of austenite to ferrite transformation kinetics in low carbon steels. Acta Materialia 54, 11–21 (2006). https://doi.org/10.1016/j.actamat.2005.08.033

    Article  Google Scholar 

  27. S. Semenovskaya, A.G. Khachaturyan, Coherent structural transformations in random crystalline systems. Acta Materialia 45, 4367–4384 (1997). https://doi.org/10.1016/S1359-6454(97)00071-2

    Article  Google Scholar 

  28. D. Wang, Y.Z. Wang, Z. Zhang, X.B. Ren, Modeling abnormal strain states in ferroelastic systems: the role of point defects. Phys Rev Lett 105, 205702 (2010). https://doi.org/10.1103/Physrevlett.105.205702

    Article  ADS  Google Scholar 

  29. A.P. Levanȋȗk, A.S. Sigov, Defects and Structural Phase Transitions (Gordon and Breach Science Publishers, Philadelphia, 1988)

    Google Scholar 

  30. P. Lloveras, T. Castan, M. Porta, A. Planes, A. Saxena, Influence of elastic anisotropy on structural nanoscale textures. Phys Rev Lett 100, 165707 (2008). https://doi.org/10.1103/Physrevlett.100.165707

    Article  ADS  Google Scholar 

  31. D. Wang, X.B. Ren, Y.Z. Wang, Nanoscaled martensitic domains in ferroelastic systems: strain glass. Curr Nanosci 12, 192–201 (2016). https://doi.org/10.2174/1573413711666150523001617

    Article  ADS  Google Scholar 

  32. K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys. Progress in Materials Science 50, 511–678 (2005). https://doi.org/10.1016/j.pmatsci.2004.10.001

    Article  Google Scholar 

  33. E.K.H. Salje, Phase Transitions in Ferroelastic and Co-Elastic Crystals: An Introduction for Mineralogists, Material Scientists, and Physicists (Cambridge University Press, Cambridge, 1990)

    Google Scholar 

  34. S.M. Shapiro, J.Z. Larese, Y. Noda, S.C. Moss, L.E. Tanner, Neutron-scattering study of premartensitic behavior in Ni-Al alloys. Phys Rev Lett 57, 3199–3202 (1986). https://doi.org/10.1103/PhysRevLett.57.3199

    Article  ADS  Google Scholar 

  35. D. Shindo, Y. Murakami, T. Ohba, Understanding precursor phenomena for the R-phase transformation in Ti-Ni-based alloys. Mrs Bull 27, 121–127 (2002). https://doi.org/10.1557/Mrs2002.48

    Article  Google Scholar 

  36. Y. Wang, X. Ren, K. Otsuka, A. Saxena, Evidence for broken ergodicity in strain glass. Phys Rev B 76, 132201 (2007). https://doi.org/10.1103/Physrevb.76.132201

    Article  ADS  Google Scholar 

  37. D. Wang et al., Strain glass in Fe-doped Ti-Ni. Acta Materialia 58, 6206–6215 (2010). https://doi.org/10.1016/j.actamat.2010.07.040

    Article  Google Scholar 

  38. Y. Wang et al., Strain glass transition in a multifunctional beta-type Ti alloy. Sci Rep 4, 3995 (2014). https://doi.org/10.1038/Srep03995

    Article  Google Scholar 

  39. Z. Zhang et al., Phase diagram of Ti50-xNi50 + x: Crossover from martensite to strain glass. Phys Rev B 81, 224102 (2010). https://doi.org/10.1103/Physrevb.81.224102

    Article  ADS  Google Scholar 

  40. Y. Zhou et al., Strain glass in doped Ti50(Ni50 − xDx) (D = Co, Cr, Mn) alloys: Implication for the generality of strain glass in defect-containing ferroelastic systems. Acta Materialia 58, 5433–5442 (2010). https://doi.org/10.1016/j.actamat.2010.06.019

    Article  Google Scholar 

  41. Y.M. Zhou et al., High temperature strain glass in Ti-50(Pd50-xCrx) alloy and the associated shape memory effect and superelasticity. Applied Physics Letters 95, 151906 (2009). https://doi.org/10.1063/1.3249580

    Article  ADS  Google Scholar 

  42. Q. Liang et al., Novel B19\ensuremath{'} strain glass with large recoverable strain. Phys. Rev. Mater. 1, 033608 (2017)

    Article  ADS  Google Scholar 

  43. J. Liu et al., Strain glassy behavior and premartensitic transition in Au${}_{7}$Cu${}_{5}$Al${}_{4}$ alloy. Phys Rev B 84, 140102 (2011)

    Article  ADS  Google Scholar 

  44. Y. Nii, T.-h. Arima, H.Y. Kim, S. Miyazaki, Effect of randomness on ferroelastic transitions: Disorder-induced hysteresis loop rounding in Ti-Nb-O martensitic alloy. Phys Rev B 82(214), 104 (2010)

    Google Scholar 

  45. S. Kartha, T. Castan, J.A. Krumhansl, J.P. Sethna, Spin-glass nature of tweed precursors in martensitic transformations. Phys Rev Lett 67, 3630–3633 (1991). https://doi.org/10.1103/PhysRevLett.67.3630

    Article  ADS  Google Scholar 

  46. R. Vasseur, T. Lookman, Effects of disorder in ferroelastics: A spin model for strain glass. Phys Rev B 81, 094107 (2010). https://doi.org/10.1103/Physrevb.81.094107

    Article  ADS  Google Scholar 

  47. D. Sherrington, S. Kirkpatrick, Solvable model of a spin-glass. Phys Rev Lett 35, 1792–1796 (1975). https://doi.org/10.1103/PhysRevLett.35.1792

    Article  ADS  Google Scholar 

  48. D. Sherrington, A simple spin glass perspective on martensitic shape-memory alloys. J. Phys. Condens. Matter 20, 304213 (2008). https://doi.org/10.1088/0953-8984/20/30/304213

    Article  Google Scholar 

  49. Y.C. Ji, X.D. Ding, T. Lookman, K. Otsuka, X.B. Ren, Heterogeneities and strain glass behavior: Role of nanoscale precipitates in low-temperature-aged Ti48.7Ni51.3 alloys. Phys Rev B 87, 104110 (2013). https://doi.org/10.1103/Physrevb.87.104110

    Article  ADS  Google Scholar 

  50. J. Zhang et al., Dislocation induced strain glass in Ti50Ni45Fe5 alloy. Acta Materialia 120, 130–137 (2016). https://doi.org/10.1016/j.actamat.2016.08.015

    Article  Google Scholar 

  51. R. Vasseur et al., Phase diagram of ferroelastic systems in the presence of disorder: Analytical model and experimental verification. Phys Rev B 86, 184103 (2012). https://doi.org/10.1103/Physrevb.86.184103

    Article  ADS  Google Scholar 

  52. N. Gayathri et al., Electrical transport, magnetism, and magnetoresistance in ferromagnetic oxides with mixed exchange interactions: A study of the La0.7Ca0.3Mn1-xCoxO3 system. Phys. Rev. B 56, 1345–1353 (1997). https://doi.org/10.1103/PhysRevB.56.1345

    Article  ADS  Google Scholar 

  53. D. Viehland, J.F. Li, S.J. Jang, L.E. Cross, M. Wuttig, Glassy Polarization Behavior Of Relaxor Ferroelectrics. Phys Rev B 46, 8013–8017 (1992). https://doi.org/10.1103/PhysRevB.46.8013

    Article  ADS  Google Scholar 

  54. J.A. Mydosh, Spin Glasses: An Experimental Introduction (Taylor & Francis, Oxfordshire, 1993)

    Google Scholar 

  55. P. Lloveras, T. Castán, M. Porta, A. Planes, A. Saxena, Thermodynamics of stress-induced ferroelastic transitions: Influence of anisotropy and disorder. Phys Rev B 81, 214105 (2010)

    Article  ADS  Google Scholar 

  56. D. Wang et al., Defect strength and strain glass state in ferroelastic systems. Journal of Alloys and Compounds 661, 100–109 (2016). https://doi.org/10.1016/j.jallcom.2015.11.095

    Article  Google Scholar 

  57. J. Zhu, Y. Gao, D. Wang, T.-Y. Zhang, Y. Wang, Taming martensitic transformation via concentration modulation at nanoscale. Acta Materialia 130, 196–207 (2017). https://doi.org/10.1016/j.actamat.2017.03.042

    Article  Google Scholar 

  58. D. Wang et al., Integrated computational materials engineering (ICME) approach to design of novel microstructures for Ti-alloys. JOM 66, 1287–1298 (2014). https://doi.org/10.1007/s11837-014-1011-2

    Article  Google Scholar 

  59. S.-J. Qin, J.-X. Shang, F.-H. Wang, Y. Chen, The role of strain glass state in the shape memory alloy Ni50 + xTi50 − x: Insight from an atomistic study. Materials & Design 120, 238–254 (2017). https://doi.org/10.1016/j.matdes.2017.02.011

    Article  Google Scholar 

  60. X.B. Ren, Strain glass and ferroic glass - Unusual properties from glassy nano-domains. Phys. Status Solidi B Basic Solid State Phys. 251, 1982–1992 (2014). https://doi.org/10.1002/pssb.201451351

    Article  ADS  Google Scholar 

  61. L. Zhang, D. Wang, X. Ren, Y. Wang, A new mechanism for low and temperature-independent elastic modulus. Sci Rep 5, 11477 (2015). https://doi.org/10.1038/srep11477

    Article  ADS  Google Scholar 

  62. J. Cui, X. Ren, Elinvar effect in co-doped TiNi strain glass alloys. Applied Physics Letters 105, 061904 (2014). https://doi.org/10.1063/1.4893003

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, D., Ren, X., Wang, Y. (2018). Phase Field Model and Computer Simulation of Strain Glasses. In: Lookman, T., Ren, X. (eds) Frustrated Materials and Ferroic Glasses. Springer Series in Materials Science, vol 275. Springer, Cham. https://doi.org/10.1007/978-3-319-96914-5_10

Download citation

Publish with us

Policies and ethics