Advertisement

Inferring Regular Expressions with Interleaving from XML Data

  • Xiaolan Zhang
  • Yeting Li
  • Fei Tian
  • Fanlin Cui
  • Chunmei Dong
  • Haiming ChenEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10988)

Abstract

Document Type Definition (DTD) and XML Schema Definition (XSD) are two popular schema languages for XML. However, many XML documents in practice are not accompanied by a schema, or by a valid schema. Therefore, it is essential to devise efficient algorithms for schema learning. Schema learning can be reduced to the inference of restricted regular expressions. In this paper, we first propose a new subclass of restricted regular expressions called Various CHAin Regular Expression with Interleaving (VCHARE). Then based on single occurrence automaton (SOA) and maximum independent set (MIS), we introduce an inference algorithm GenVCHARE. The algorithm has been proved to infer a descriptive generalized VCHARE from a set of given sample. Finally, we conduct a series of experiments based on our data set crawled from the Web. The experimental results show that VCHARE can cover more content models than other existing subclasses of regular expressions. And, based on the data sets of DBLP, regular expressions inferred by GenVCHARE are more accurate and concise compared with other existing methods.

References

  1. 1.
    Abiteboul, S., Bourhis, P., Vianu, V.: Highly expressive query languages for unordered data trees. Theor. Comput. Syst. 57(4), 927–966 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Benedikt, M., Fan, W., Geerts, F.: XPath satisfiability in the presence of DTDs. J. ACM 55(2), 1–79 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bernstein, P.A.: Applying model management to classical meta data problems. In: CIDR. vol. 2003, pp. 209–220. Citeseer (2003)Google Scholar
  4. 4.
    Bex, G.J., Gelade, W., Neven, F., Vansummeren, S.: Learning deterministic regular expressions for the inference of schemas from XML data. ACM Trans. Web 4(4), 1–32 (2010)CrossRefGoogle Scholar
  5. 5.
    Bex, G.J., Neven, F., Bussche, J.V.D.: DTDs versus XML schema: a Practical Study. In: International Workshop on the Web and Databases, pp. 79–84 (2004)Google Scholar
  6. 6.
    Bex, G.J., Neven, F., Schwentick, T., Tuyls, K.: Inference of concise DTDs from XML data. In: International Conference on Very Large Data Bases, Seoul, Korea, pp. 115–126, September 2006Google Scholar
  7. 7.
    Bex, G.J., Neven, F., Schwentick, T., Vansummeren, S.: Inference of concise regular expressions and DTDs. ACM Trans. Database Syst. 35(2), 1–47 (2010)CrossRefGoogle Scholar
  8. 8.
    Bex, G.J., Neven, F., Vansummeren, S.: Inferring XML schema definitions from XML data. In: International Conference on Very Large Data Bases, University of Vienna, Austria, pp. 998–1009, September 2007Google Scholar
  9. 9.
    Boneva, I., Ciucanu, R., Staworko, S.: Simple schemas for unordered XML. In: International Workshop on the Web and Databases (2015)Google Scholar
  10. 10.
    Boppana, R., Halldrsson, M.M.: Approximating maximum independent set by excluding subgraphs. Bit Numer. Math. 32(2), 180–196 (1992)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Che, D., Aberer, K., Özsu, M.T.: Query optimization in XML structured-document databases. VLDB J. 15(3), 263–289 (2006)CrossRefGoogle Scholar
  12. 12.
    Feng, X.Q., Zheng, L.X., Chen, H.M.: Inference algorithm for a restricted class of regular expressions. Comput. Sci. 41, 178–183 (2014)Google Scholar
  13. 13.
    Freydenberger, D.D., Kötzing, T.: Fast learning of restricted regular expressions and DTDs. Theor. Comput. Syst. 57(4), 1114–1158 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Freydenberger, D.D., Reidenbach, D.: Inferring Descriptive Generalisations of Formal Languages. Academic Press Inc., Cambridge (2013)zbMATHGoogle Scholar
  15. 15.
    Garcia, P., Vidal, E.: Inference of k-testable languages in the strict sense and application to syntactic pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell. 12(9), 920–925 (2002)CrossRefGoogle Scholar
  16. 16.
    Garofalakis, M., Gionis, A., Shim, K., Shim, K., Shim, K.: XTRACT: learning document type descriptors from XML document collections. Data Min. Knowl. Disc. 7(1), 23–56 (2003)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ghelli, G., Colazzo, D., Sartiani, C.: Efficient inclusion for a class of XML types with interleaving and counting. Inf. Syst. 34(7), 643–656 (2009)CrossRefGoogle Scholar
  18. 18.
    Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Grijzenhout, S., Marx, M.: The quality of the XML web. Web Semant. Sci. Serv. Agents World Wide Web 19, 59–68 (2013)CrossRefGoogle Scholar
  20. 20.
    Koch, C., Scherzinger, S., Schweikardt, N., Stegmaier, B.: Schema-based scheduling of event processors and buffer minimization for queries on structured data streams. In: Thirtieth International Conference on Very Large Data Bases, pp. 228–239 (2004)CrossRefGoogle Scholar
  21. 21.
    Li, Y., Zhang, X., Peng, F., Chen, H.: Practical study of subclasses of regular expressions in DTD and XML schema. In: Li, F., Shim, K., Zheng, K., Liu, G. (eds.) APWeb 2016. LNCS, vol. 9932, pp. 368–382. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45817-5_29CrossRefGoogle Scholar
  22. 22.
    Manolescu, I., Florescu, D., Kossmann, D.: Answering XML queries on heterogeneous data sources. In: International Conference on Very Large Data Bases, pp. 241–250 (2001)Google Scholar
  23. 23.
    Martens, W., Neven, F.: Typechecking top-down uniform unranked tree transducers. In: Calvanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp. 64–78. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36285-1_5CrossRefGoogle Scholar
  24. 24.
    Martens, W., Neven, F.: Frontiers of tractability for typechecking simple XML transformations. In: ACM Sigmod-Sigact-Sigart Symposium on Principles of Database Systems, pp. 23–34 (2004)Google Scholar
  25. 25.
    Martens, W., Neven, F., Schwentick, T.: Complexity of decision problems for XML schemas and chain regular expressions. SIAM J. Comput. 39(4), 1486–1530 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Melnik, S.: Generic Model Management: Concepts and Algorithms. Springer, Heidelberg (2004).  https://doi.org/10.1007/b97859CrossRefzbMATHGoogle Scholar
  27. 27.
    Min, J.K., Ahn, J.Y., Chung, C.W.: Efficient extraction of schemas for XML documents. Inf. Process. Lett. 85(1), 7–12 (2003)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Papakonstantinou, Y., Vianu, V.: DTD inference for views of XML data. In: Nineteenth ACM Sigmod-Sigact-Sigart Symposium on Principles of Database Systems, pp. 35–46 (2000)Google Scholar
  29. 29.
    Peng, F., Chen, H.: Discovering restricted regular expressions with interleaving. In: Cheng, R., Cui, B., Zhang, Z., Cai, R., Xu, J. (eds.) APWeb 2015. LNCS, vol. 9313, pp. 104–115. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25255-1_9CrossRefGoogle Scholar
  30. 30.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB J. 10, 334–350 (2001)CrossRefGoogle Scholar
  31. 31.
    Thompson, H.S.: XML schema part 1: structures. Recommendation 6, 291–313 (2001)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Xiaolan Zhang
    • 1
    • 2
  • Yeting Li
    • 1
    • 2
  • Fei Tian
    • 3
  • Fanlin Cui
    • 1
    • 2
  • Chunmei Dong
    • 1
    • 2
  • Haiming Chen
    • 1
    Email author
  1. 1.State Key Laboratory of Computer Science, Institute of SoftwareChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.University of Science and Technology of ChinaHefeiChina

Personalised recommendations