Discovering Multiple Time Lags of Temporal Dependencies from Fluctuating Events

  • Wentao WangEmail author
  • Chunqiu Zeng
  • Tao Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10988)


As one of the key features of temporal dependency, time lag plays an important role in analyzing sequential data and predicting the developing trend. Huge number of temporal mining approaches have been successfully applied in many applications, like finance, environmental science and health-care. However, these approaches cannot effectively deal with a more realistic scenario, where more than one types of time lags are existed in sequences and all of them are fluctuating due to the inevitable noise. In this paper, we study the problem of discovering multiple time lags of temporal dependencies from event sequences considering the randomness property of the hidden time lags. We first present a parametric model as well as an EM-based solution for solving this problem. Then two approximate approaches are proposed for efficiently finding diverse types of time lags without significant loss of accuracy. Extensive empirical studies on both synthetic and real datasets demonstrate the efficiency and effectiveness of our proposed approaches.


Time lag Temporal dependency Event mining 


  1. 1.
    Aggarwal, C.C.: Data Streams: Models and Algorithms, vol. 31. Springer, Heidelberg (2007). Scholar
  2. 2.
    Ailamaki, A., Faloutos, C., Fischbeck, P.S., Small, M.J., VanBriesen, J.: An environmental sensor network to determine drinking water quality and security. ACM SIGMOD Rec. 32(4), 47–52 (2003)CrossRefGoogle Scholar
  3. 3.
    Arnold, A., Liu, Y., Abe, N.: Temporal causal modeling with graphical granger methods. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 66–75. ACM (2007)Google Scholar
  4. 4.
    Bahadori, M.T., Liu, Y.: An examination of practical granger causality inference. In: Proceedings of the 2013 SIAM International Conference on Data Mining, pp. 467–475. SIAM (2013)CrossRefGoogle Scholar
  5. 5.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)Google Scholar
  6. 6.
    Bouandas, K., Osmani, A.: Mining association rules in temporal sequences. In: IEEE Symposium on Computational Intelligence and Data Mining CIDM 2007, pp. 610–615. IEEE (2007)Google Scholar
  7. 7.
    Dhurandhar, A.: Learning maximum lag for grouped graphical granger models. In: 2010 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 217–224. IEEE (2010)Google Scholar
  8. 8.
    Du, X., Jin, R., Ding, L., Lee, V.E., Thornton Jr, J.H.: Migration motif: a spatial-temporal pattern mining approach for financial markets. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. ACM (2009)Google Scholar
  9. 9.
    Golab, L., Karloff, H., Korn, F., Saha, A., Srivastava, D.: Sequential dependencies. Proc. VLDB Endow. 2(1), 574–585 (2009)CrossRefGoogle Scholar
  10. 10.
    Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., Hsu, M.C.: FreeSpan: frequent pattern-projected sequential pattern mining. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 355–359. ACM (2000)Google Scholar
  11. 11.
    Hellerstein, J.L., Ma, S., Perng, C.S.: Discovering actionable patterns in event data. IBM Syst. J. 41(3), 475–493 (2002)CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Jansen, R., Yu, H., Greenbaum, D., Kluger, Y., Krogan, N.J., Chung, S., Emili, A., Snyder, M., Greenblatt, J.F., Gerstein, M.: A bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302(5644), 449–453 (2003)CrossRefGoogle Scholar
  14. 14.
    Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Laxman, S., Sastry, P.S.: A survey of temporal data mining. Sadhana 31(2), 173–198 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Li, T.: Event Mining. Chapman and Hall/CRC, Boca Raton (2015)Google Scholar
  17. 17.
    Li, T., Liang, F., Ma, S., Peng, W.: An integrated framework on mining logs files for computing system management. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 776–781. ACM (2005)Google Scholar
  18. 18.
    Li, T., Ma, S.: Mining temporal patterns without predefined time windows. In: Fourth IEEE International Conference on Data Mining ICDM 2004, pp. 451–454. IEEE (2004)Google Scholar
  19. 19.
    Li, T., Peng, W., Perng, C., Ma, S., Wang, H.: An integrated data-driven framework for computing system management. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. 40(1), 90–99 (2010)CrossRefGoogle Scholar
  20. 20.
    Lozano, A.C., Abe, N., Liu, Y., Rosset, S.: Grouped graphical granger modeling methods for temporal causal modeling. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 577–586. ACM (2009)Google Scholar
  21. 21.
    Ma, S., Hellerstein, J.L.: Mining partially periodic event patterns with unknown periods. In: Proceedings 17th International Conference on Data Engineering 2001, pp. 205–214. IEEE (2001)Google Scholar
  22. 22.
    Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: Prefixspan: mining sequential patterns by prefix-projected growth. In: Proceedings of the 17th International Conference on Data Engineering, pp. 215–224. IEEE Computer Society, Washington, DC, USA (2001)Google Scholar
  23. 23.
    Peng, W., Perng, C., Li, T., Wang, H.: Event summarization for system management. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1028–1032. ACM (2007)Google Scholar
  24. 24.
    Schroeder, D.J.: Astronomical Optics. Academic press, Cambridge (1999)Google Scholar
  25. 25.
    Song, L., Kolar, M., Xing, E.P.: Time-varying dynamic Bayesian networks. In: Advances in Neural Information Processing Systems, pp. 1732–1740 (2009)Google Scholar
  26. 26.
    Srikant, R., Agrawal, R.: Mining sequential patterns: generalizations and performance improvements. In: Apers, P., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 1–17. Springer, Heidelberg (1996). Scholar
  27. 27.
    Tan, P.N., et al.: Introduction to Data Mining. Pearson Education India, London (2006)Google Scholar
  28. 28.
    Tang, L., Li, T., Shwartz, L.: Discovering lag intervals for temporal dependencies. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 633–641. ACM (2012)Google Scholar
  29. 29.
    Zeng, C., Wang, Q., Wang, W., Li, T., Shwartz, L.: Online inference for time-varying temporal dependency discovery from time series. In: 2016 IEEE International Conference on Big Data (Big Data), pp. 1281–1290 (2016)Google Scholar
  30. 30.
    Zeng, C., Tang, L., Li, T., Shwartz, L., Grabarnik, G.Y.: Mining temporal lag from fluctuating events for correlation and root cause analysis. In: 2014 10th International Conference on Network and Service Management (CNSM), pp. 19–27. IEEE (2014)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Computing and Information SciencesFlorida International UniversityMiamiUSA

Personalised recommendations