Skip to main content

A Hybrid Spectral Method for Network Community Detection

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2018)

Abstract

Community detection has been paid much attention, and a large number of community-detection methods have been proposed in the last decade. Spectral methods are widely used in many applications due to their solid mathematical foundations. In this paper, we propose a hybrid spectral method to effectively identify communities from networks. This method begins with a network-sparsification operation, which is expected to remove some between-community edges from the network to make the community boundaries clearer and sharper, then it utilizes an iterative spectral bisection algorithm to partition the network into small communities, and finally some of the small communities are merged to obtain the resulting community structure. We conducted extensive experiments on five real-world networks and two artificial networks, the experimental results show that our proposed method can extract high-quality community structures from networks effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arenas, A., Díaz Guilera, A., Pérez Vicente, C.J.: Synchronization reveals topological scales in complex networks. Phys. Rev. Lett. 96(11), 114102 (2006)

    Article  Google Scholar 

  2. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008 (2008)

    Article  Google Scholar 

  3. Capocci, A., Servedio, V.D.P., Caldarelli, G., Colaiori, F.: Detecting communities in large networks. Phys. A: Stat. Theor. Phys. 352(2–4), 669–676 (2005)

    Article  Google Scholar 

  4. Chan, T.F., Ciarlet Jr., P., Szeto, W.K.: On the optimality of the median cut spectral bisection graph partitioning method. SIAM J. Sci. Comput. 18(3), 943–948 (1997)

    Article  MathSciNet  Google Scholar 

  5. Chauhan, S., Girvan, M., Ott, E.: Spectral properties of networks with community structure. Phys. Rev. E 80, 056114 (2009)

    Article  Google Scholar 

  6. Cheng, J., Li, L., Leng, M., Lu, W., Yao, Y., Chen, X.: A divisive spectral method for network community detection. J. Stat. Mech: Theory Exp. 2016(3), 033403 (2016)

    Article  MathSciNet  Google Scholar 

  7. Cheng, X., Shen, H.: Uncovering the community structure associated with the diffusion dynamics on networks. J. Stat. Mech: Theory Exp. 2010(04), P04024 (2010)

    Article  Google Scholar 

  8. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004)

    Article  Google Scholar 

  9. Donetti, L., Muñoz, M.A.: Detecting network communities: a new systematic and efficient algorithm. J. Stat. Mech: Theory Exp. 10, P10012 (2004)

    Article  Google Scholar 

  10. van Dongen, S.: Graph clustering by flow simulation. Ph.D. thesis, University of Utrecht (2000)

    Google Scholar 

  11. Duch, J., Arenas, A.: Community detection in complex networks using extremal optimization. Phys. Rev. E 72, 027104 (2005)

    Article  Google Scholar 

  12. van Gennip, Y., Hunter, B., Ahn, R., Elliott, P., Luh, K., Halvorson, M., Reid, S., Valasik, M., Wo, J., Tita, G.E., Bertozzi, A.L., Brantingham, P.J.: Community detection using spectral clustering on sparse geosocial data. SIAM J. Appl. Math. 73(1), 67–83 (2013)

    Article  MathSciNet  Google Scholar 

  13. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Nat. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  Google Scholar 

  14. Guimera, R., Nunes Amaral, L.A.: Functional cartography of complex metabolic networks. Nature 433(7028), 895–900 (2005)

    Article  Google Scholar 

  15. Kleinberg, J., Lawrence, S.: The structure of the web. Science 294, 1849–1850 (2001)

    Article  Google Scholar 

  16. Krzakala, F., Moore, C., Mossel, E., Neeman, J., Sly, A., Zdeborov, L., Zhang, P.: Spectral redemption in clustering sparse networks. Proc. Nat. Acad. Sci. 110(52), 20935–20940 (2013)

    Article  MathSciNet  Google Scholar 

  17. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

    Article  Google Scholar 

  18. de Lange, S., de Reus, M., Van Den Heuvel, M.: The Laplacian spectrum of neural networks. Front. Comput. Neurosci. 7, 189 (2014). https://doi.org/10.3389/fncom.2013.00189

    Article  Google Scholar 

  19. Lewis, A., Jones, N., Porter, M., Deane, C.: The function of communities in protein interaction networks at multiple scales. BMC Syst. Biol. 4(1), 100 (2010)

    Article  Google Scholar 

  20. Lusseau, D., Schneider, K., Boisseau, O., Haase, P., Slooten, E., Dawson, S.: The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol. 54(4), 396–405 (2003)

    Article  Google Scholar 

  21. Menche, J., Sharma, A., Kitsak, M., Ghiassian, S.D., Vidal, M., Loscalzo, J., Barabási, A.-L.: Uncovering disease-disease relationships through the incomplete interactome. Science 347(6224) (2015). https://doi.org/10.1126/science.1257601

    Article  Google Scholar 

  22. Nascimento, M.C.V.: Community detection in networks via a spectral heuristic based on the clustering coefficient. Discret. Appl. Math. 176, 89–99 (2014)

    Article  MathSciNet  Google Scholar 

  23. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 066133 (2004)

    Article  Google Scholar 

  24. Newman, M.E.J.: Modularity and community structure in networks. Proc. Nat. Acad. Sci. 103, 8577–8582 (2006)

    Article  Google Scholar 

  25. Newman, M.E.J.: Spectral methods for community detection and graph partitioning. Phys. Rev. E 88, 042822 (2013)

    Article  Google Scholar 

  26. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)

    Article  Google Scholar 

  27. Newman, M.E.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 036104 (2006)

    Article  MathSciNet  Google Scholar 

  28. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Dietterich, T., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems 14, pp. 849–856. MIT Press (2002)

    Google Scholar 

  29. Pan, Y., Li, D.H., Liu, J.G., Liang, J.Z.: Detecting community structure in complex networks via node similarity. Physica A 389(14), 2849–2857 (2010)

    Article  Google Scholar 

  30. Pothen, A., Simon, H.D., Liou, K.P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990)

    Article  MathSciNet  Google Scholar 

  31. Qin, H., Liu, T., Ma, Y.: Mining user’s real social circle in microblog. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 348–352, August 2012

    Google Scholar 

  32. Rosvall, M., Bergstrom, C.T.: Multilevel compression of random walks on networks reveals hierarchical organization in large integrated systems. PLOS ONE 6(4), 1–10 (2011)

    Article  Google Scholar 

  33. Shen, H., Cheng, X., Fang, B.: Covariance, correlation matrix, and the multiscale community structure of networks. Phys. Rev. E 82, 016114 (2010)

    Article  Google Scholar 

  34. Shi, P., He, K., Bindel, D., Hopcroft, J.E.: Local lanczos spectral approximation for community detection. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 651–667. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9_39

    Chapter  Google Scholar 

  35. Steinhaeuser, K., Chawla, N.V.: Identifying and evaluating community structure in complex networks. Pattern Recogn. Lett. 31(5), 413–421 (2010)

    Article  Google Scholar 

  36. Su, Y., Wang, B., Zhang, X.: A seed-expanding method based on random walks for community detection in networks with ambiguous community structures. Sci. Rep. 7, 41830 (2017). https://doi.org/10.1038/srep41830

  37. Tabrizi, S.A., Shakery, A., Asadpour, M., Abbasi, M., Tavallaie, M.A.: Personalized pagerank clustering: a graph clustering algorithm based on random walks. Phys. A 392(22), 5772–5785 (2013)

    Article  MathSciNet  Google Scholar 

  38. Zachary, W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33, 452–473 (1977)

    Article  Google Scholar 

  39. Zarandi, F.D., Rafsanjani, M.K.: Community detection in complex networks using structural similarity. Phys. A: Stat. Mech. Appl. 503, 882–891 (2018). http://www.sciencedirect.com/science/article/pii/S0378437118303066

  40. Zhang, X., Nadakuditi, R.R., Newman, M.E.J.: Spectra of random graphs with community structure and arbitrary degrees. Phys. Rev. E 89, 042816 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Fundamental Research Funds for the Central Universities, China (grant ID: lzujbky-2017-sp24, lzujbky-2017-192), program of Hui-Chun Chin and Tsung-Dao Lee Chinese Undergraduate Research Endowment, CURE (grant ID: LZU-JZH1923), and the Young Scientists Fund of the National Natural Science Foundation of China (grant ID: 61602225).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyun Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, J., Li, L., Yang, H., Li, Q., Chen, X. (2018). A Hybrid Spectral Method for Network Community Detection. In: Cai, Y., Ishikawa, Y., Xu, J. (eds) Web and Big Data. APWeb-WAIM 2018. Lecture Notes in Computer Science(), vol 10987. Springer, Cham. https://doi.org/10.1007/978-3-319-96890-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96890-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96889-6

  • Online ISBN: 978-3-319-96890-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics