Skip to main content

Printed Functionalities on Paper Substrates Towards Fulfilment of the ASSURED Criteria

  • Chapter
  • First Online:
Paper-based Diagnostics
  • 767 Accesses

Abstract

Paper-based diagnostics usually refers to microfluidic and chemical diagnostic components implemented on paper substrates, with the aim of such devices being able to replace more costly microfluidic diagnostic platforms. Paper provides a model platform on which to develop low-cost diagnostics, as it has intrinsic fluidic properties in addition to being a low-cost substrate. For successful paper-based diagnostics to be realized, additional functionality needs to be integrated to enable paper-based diagnostics to fulfil other technical requirements. The recent technology push for printed electronics provides an opportunity to upgrade paper diagnostic devices with strongly augmented functionality, whilst maintaining low cost. This is a possible route to meeting the ASSURED criteria, and in this chapter we explore different options towards achieving this goal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abutarboush HF, Shamim A (2012) Paper-based inkjet-printed tri-band u-slot monopole antenna for wireless applications. IEEE Antennas Wirel Propag Lett 11:1234–1237

    Article  Google Scholar 

  2. Acreo (2016). www.acreo.se/expertise/printed-electronic-technologies

  3. Aga RS, Lombardi JP, Bartsch CM, Heckman EM (2014) Performance of a printed photodetector on a paper substrate. IEEE Photon Technol Lett 26(3):305–308

    Article  Google Scholar 

  4. Ahmadraji T, Gonzalez-Macia L, Ritvonen T, Willert A, Ylimaula S, Donaghy D, Tuurala S, Suhonen M, Smart D, Morrin A, Efremov V, Baumann RR, Raja M, Kemppainen A, Killard AJ (2017) Biomedical diagnostics enabled by integrated organic and printed electronics. Anal Chem 89(14):7447–7454. PMID: 28640594

    Article  Google Scholar 

  5. Alajoki T, Koponen M, Tuomikoski M, Heikkinen M, Keränen A, Keränen K, Mäkinen JT, Aikio J, Rönkä K (2012) Hybrid in-mould integration for novel electrical and optical features in 3d plastic products. In: 2012 4th Electronic system-integration technology conference (ESTC), pp 1–6

    Google Scholar 

  6. Alimenti F, Mariotti C, Palazzi V, Virili M, Orecchini G, Mezzanotte P, Roselli L (2015) Communication and sensing circuits on cellulose. J Low Power Electron Appl 5(3):151–164

    Article  Google Scholar 

  7. Amjadi M, Sitti M (2016) High-performance multiresponsive paper actuators. ACS Nano 10(11):10202–10210. PMID: 27744680

    Article  Google Scholar 

  8. Andersson P, Nilsson D, Svensson P-O, Chen M, Malmström A, Remonen T, Kugler T, Berggren M (2002) Active matrix displays based on all-organic electrochemical smart pixels printed on paper. Adv Mater 14(20):1460–1464

    Article  Google Scholar 

  9. Andersson HA, Manuilskiy A, Haller S, Hummelgård M, Sidén J, Hummelgård C, Olin H, Nilsson H-E (2014) Assembling surface mounted components on ink-jet printed double sided paper circuit board. Nanotechnology 25(9):094002

    Article  Google Scholar 

  10. Arjowiggins Powercoat (2017). http://powercoatpaper.com/products/powercoat-alive/

  11. Asadpoordarvish A, Sandström A, Larsen C, Bollström R, Toivakka M, Österbacka R, Edman L (2015) Light-emitting paper. Adv Funct Mater 25(21):3238–3245

    Article  Google Scholar 

  12. Bai PF, Hayes RA, Jin M, Shui L, Yi ZC, Wang L, Zhang X, Zhou G (2014) Review of paper-like display technologies. Prog Electromagn Res 147:95–116

    Article  Google Scholar 

  13. Ballerini DR, Li X, Shen W (2012) Patterned paper and alternative materials as substrates for low-cost microfluidic diagnostics. Microfluid Nanofluid 13(5):769–787

    Article  Google Scholar 

  14. Bella F, Pugliese D, Zolin L, Gerbaldi C (2017) Paper-based quasi-solid dye-sensitized solar cells. Electrochim Acta 237:87–93

    Article  Google Scholar 

  15. Beni V, Nilsson D, Arven P, Norberg P, Gustafsson G, Turner APF (2015) Printed electrochemical instruments for biosensors. ECS J Solid State Sci Technol 4(10):S3001–S3005

    Article  Google Scholar 

  16. Berggren M, Simon DT, Nilsson D, Dyreklev P, Norberg P, Nordlinder S, Ersman PA, Gustafsson G, Jacob Wikner J, Hederén J, Hentzell H (2016) Browsing the real world using organic electronics, si-chips, and a human touch. Adv Mater 28(10):1911–1916

    Article  Google Scholar 

  17. Bezuidenhout PH, Land KJ, Joubert T-H (2016) Integrating integrated circuit chips on paper substrates using inkjet printed electronics. In: 17th Annual conference of the rapid product development association of south africa (RAPDASA), 2–4 November 2016, Vaal University of Technology, Vanderbijlpark

    Google Scholar 

  18. Bezuidenhout P, Kumar S, Wiederoder M, Schoeman J, Land K, Joubert T-H (2017) The characterisation and design improvement of a paper-based E. coli impedimetric sensor. In: Proceedings of SPIE, fourth conference on sensors, MEMS, and electro-optic systems, 100360L, vol 10036, pp 10036–10036-6

    Google Scholar 

  19. Bezuidenhout P, Smith S, Land K, Joubert TH (2017) A low-cost potentiostat for point-of-need diagnostics. In: 2017 IEEE AFRICON, pp 83–87

    Google Scholar 

  20. Bihar E, Deng Y, Miyake T, Saadaoui M, Malliaras GG, Rolandi M (2016) A disposable paper breathalyzer with an alcohol sensing organic electrochemical transistor. Sci Rep 6:27582

    Article  Google Scholar 

  21. Cao Q, Kim H-S, Pimparkar N, Kulkarni JP, Wang C, Shim M, Roy K, Alam MA, Rogers JA (2008) Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454(7203):495–500

    Article  Google Scholar 

  22. Cate DM, Adkins JA, Mettakoonpitak J, Henry CS (2015) Recent developments in paper-based microfluidic devices. Anal Chem 87(1):19–41

    Article  Google Scholar 

  23. Chang J, Zhang X, Ge T, Zhou J (2014) Fully printed electronics on flexible substrates: high gain amplifiers and {DAC}. Org Electron 15(3):701–710

    Article  Google Scholar 

  24. Chen S-S, Hu C-W, Yu I-F, Liao Y-C, Yang J-T (2014) Origami paper-based fluidic batteries for portable electrophoretic devices. Lab Chip 14:2124–2130

    Article  Google Scholar 

  25. Cheng Q, Song Z, Ma T, Smith BB, Tang R, Yu H, Jiang H, Chan CK (2013) Folding paper-based lithium-ion batteries for higher areal energy densities. Nano Lett 13(10):4969–4974. PMID: 24059538

    Article  Google Scholar 

  26. Chia S, Zalzala A, Zalzala L, Karim A (2013) Intelligent technologies for self-sustaining, RFID-based, rural e-health systems. IEEE Technol Soc Mag 32(1):36–43

    Article  Google Scholar 

  27. Choi K-H, Yoo JT, Lee CK, Lee S-Y (2016) All-inkjet-printed, solid-state flexible supercapacitors on paper. Energy Environ Sci 9:2812–2821

    Article  Google Scholar 

  28. Chowdhury B, Khosla R (2007) RFID-based hospital real-time patient management system. In: 6th IEEE/ACIS international conference on computer and information science (ICIS 2007), pp 363–368

    Google Scholar 

  29. Çiftçi T, Karaosmanoğlu B, Ergül Ö (2016) Low-cost inkjet antennas for RFID applications. IOP Conf Ser: Mater Sci Eng 120(1):012005

    Article  Google Scholar 

  30. Cook BS, Cooper JR, Tentzeris MM (2013) An inkjet-printed microfluidic RFID-enabled platform for wireless lab-on-chip applications. IEEE Trans Microwave Theory Tech 61(12):4714–4723

    Article  Google Scholar 

  31. Cunningham JC, DeGregory PR, Crooks RM (2016) New functionalities for paper-based sensors lead to simplified user operation, lower limits of detection, and new applications. Annu Rev Anal Chem 9(1):183–202. PMID: 27049635

    Article  Google Scholar 

  32. Dahiya AS, Opoku C, Poulin-Vittrant G, Camara N, Daumont C, Barbagiovanni EG, Franzò G, Mirabella S, Alquier D (2017) Flexible organic/inorganic hybrid field-effect transistors with high performance and operational stability. ACS Appl Mater Interfaces 9(1):573–584. PMID: 28001361

    Article  Google Scholar 

  33. Delaney JL, Doeven EH, Harsant AJ, Hogan CF (2013) Reprint of: use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors. Anal Chim Acta 803:123–127

    Article  Google Scholar 

  34. Deol RS, Choi HW, Singh M, Jabbour GE (2015) Printable displays and light sources for sensor applications: a review. IEEE Sensors J 15(6):3186–3195

    Article  Google Scholar 

  35. Down MP, Foster CW, Ji X, Banks CE (2016) Pencil drawn paper based supercapacitors. RSC Adv 6:81130–81141

    Article  Google Scholar 

  36. Engel N, Davids M, Blankvoort N, Pai NP, Dheda K, Pai M (2015) Compounding diagnostic delays: a qualitative study of point-of-care testing in south africa. Tropical Med Int Health 20(4):493–500

    Article  Google Scholar 

  37. Ersman PA, Kawahara J, Berggren M (2013) Printed passive matrix addressed electrochromic displays. Org Electron 14(12):3371–3378

    Article  Google Scholar 

  38. Esquivel JP, Del Campo FJ, de la Fuente JLG, Rojas S, Sabate N (2014) Microfluidic fuel cells on paper: meeting the power needs of next generation lateral flow devices. Energy Environ Sci 7:1744–1749

    Article  Google Scholar 

  39. Fang Z, Zhu H, Yuan Y, Ha D, Zhu S, Preston C, Chen Q, Li Y, Han X, Lee S, Chen G, Li T, Munday J, Huang J, Hu L (2014) Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett 14(2):765–773. PMID: 24372201

    Article  Google Scholar 

  40. Fernández MR, Casanova EZ, Alonso IG (2015) Review of display technologies focusing on power consumption. Sustainability 7(8):10854

    Article  Google Scholar 

  41. Fischer T, Wetzold N, Elsner H, Kroll L, Hübler AC (2011) Carbon nanotube areas printed on textile and paper substrates. Nanomater Nanotechnol 1:3

    Article  Google Scholar 

  42. Focke M, Kosse D, Muller C, Reinecke H, Zengerle R, von Stetten F (2010) Lab-on-a-foil: microfluidics on thin and flexible films. Lab Chip 10:1365–1386

    Article  Google Scholar 

  43. Fraiwan A, Mukherjee S, Sundermier S, Lee H-S, Choi S (2013) A paper-based microbial fuel cell: instant battery for disposable diagnostic devices. Biosens Bioelectron 49(Suppl C):410–414

    Google Scholar 

  44. Fraiwan A, Dai C, Nguyen TH, Choi S (2014) A paper-based bacteria-powered battery having high power generation. In: The 9th IEEE international conference on nano/micro engineered and molecular systems (NEMS), pp 394–397

    Google Scholar 

  45. Fraiwan A, Choi S, stackable A (2016) Two-chambered, paper-based microbial fuel cell. Biosens Bioelectron 83:27–32

    Google Scholar 

  46. Gaikwad AM, Arias AC, Steingart DA (2015) Recent progress on printed flexible batteries: mechanical challenges, printing technologies, and future prospects. Energy Technol 3(4):305–328

    Article  Google Scholar 

  47. Gao Y, Li H, Liu J (2013) Directly writing resistor, inductor and capacitor to composite functional circuits: a super-simple way for alternative electronics. PLOS ONE 8(8):1–8

    Google Scholar 

  48. Gao W, Saqib M, Qi L, Zhang W, Xu G (2017) Recent advances in electrochemiluminescence devices for point-of-care testing. Curr Opin Electrochem 3(1):4–10

    Article  Google Scholar 

  49. Ge L, Wang P, Ge S, Li N, Yu J, Yan M, Huang J (2013) Photoelectrochemical lab-on-paper device based on an integrated paper supercapacitor and internal light source. Anal Chem 85(8):3961–3970

    Article  Google Scholar 

  50. Gellett W, Kesmez M, Schumacher J, Akers N, Minteer SD (2010) Biofuel cells for portable power. Electroanalysis 22(7–8):727–731

    Article  Google Scholar 

  51. Ghafar-Zadeh E (2015) Wireless integrated biosensors for point-of-care diagnostic applications. Sensors 15(2):3236–3261

    Article  Google Scholar 

  52. Gih-Keong L, Shrestha M (2017) Ink-jet printing of micro-elelectro-mechanical systems (mems). Micromachines 8(6):1–19

    Google Scholar 

  53. Gong S, Schwalb WH, Wang Y, Chen Y, Tang Y, Si KJ, Shirinzadeh B, Cheng W (2014) A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun 5:1–8

    Google Scholar 

  54. Gross EM, Durant HE, Hipp KN, Lai RY (2017) Electrochemiluminescence detection in paper-based and other inexpensive microfluidic devices. Chem Electro Chem 4(7):1594–1603

    Google Scholar 

  55. Gualandi I, Marzocchi M, Achilli A, Cavedale D, Bonfiglio A, Fraboni B (2016) Textile organic electrochemical transistors as a platform for wearable biosensors. Sci Rep 6:33637

    Article  Google Scholar 

  56. Guder F, Ainla A, Redston J, Mosadegh B, Glavan A, Martin TJ, Whitesides GM (2016) Paper-based electrical respiration sensor. Angew Chem Int Ed 55(19):5727–5732

    Article  Google Scholar 

  57. Hamedi MM, Ainla A, Güder F, Christodouleas DC, Fernández-Abedul MT, Whitesides GM (2016) Integrating electronics and microfluidics on paper. Adv Mater 28(25):5054–5063

    Article  Google Scholar 

  58. Hamedi MM, Campbell VE, Rothemund P, Güder F, Christodouleas DC, Bloch J-F, Whitesides GM (2016) Electrically activated paper actuators. Adv Funct Mater 26(15):2446–2453

    Article  Google Scholar 

  59. He H, Sydänheimo L, Virkki J, Ukkonen L (2016) Experimental study on inkjet-printed passive uhf RFID tags on versatile paper-based substrates. Int J Antennas Propag 2016. Article ID 9265159

    Google Scholar 

  60. Hu L, Choi JW, Yang Y, Jeong S, La Mantia F, Cui L-F, Cui Y (2009) Highly conductive paper for energy-storage devices. Proc Natl Acad Sci 106(51):21490–21494

    Article  Google Scholar 

  61. Hu J, Wang S, Wang L, Li F, Pingguan-Murphy B, Lu TJ, Xu F (2014) Advances in paper-based point-of-care diagnostics. Biosens Bioelectron 54:585–597

    Article  Google Scholar 

  62. Hubler A, Trnovec B, Zillger T, Ali M, Wetzold N, Mingebach M, Wagenpfahl A, Deibel C, Dyakonov V (2011) Printed paper photovoltaic cells. Adv Energy Mater 1(6):1018–1022

    Article  Google Scholar 

  63. IDTechEx Research (2016). www.idtechex.com

  64. intelliPaper (2017). https://www.intellipaper.info/

  65. ISORG (2017). http://www.isorg.fr/

  66. Jacob S, Benwadih M, Bablet J, Charbonneau M, Aliane A, Plihon A, Revaux A (2015) Large area sensing surfaces: flexible organic printed interfacing circuits and sensors. In: 2015 IEEE international electron devices meeting (IEDM), pp 19.5.1–19.5.4

    Google Scholar 

  67. Jenkins G, Wang Y, Xie YL, Wu Q, Huang W, Wang L, Yang X (2015) Printed electronics integrated with paper-based microfluidics: new methodologies for next-generation health care. Microfluid Nanofluid 19(2):251–261

    Article  Google Scholar 

  68. Jiang X, Fan ZH (2016) Fabrication and operation of paper-based analytical devices. Annu Rev Anal Chem 9:203–222

    Article  Google Scholar 

  69. Kang YJ, Chung H, Han C-H, Kim W (2012) All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes. Nanotechnology 23:065401

    Article  Google Scholar 

  70. Kaushik BK, Kumar B, Negi YS, Mittal P (2012) Prospects and limitations of organic thin film transistors (OTFTs). Adv Comp Sci Eng Appl 167:125–139

    Article  Google Scholar 

  71. Kavcic U, Pivar M, Dokic M, Gregor-Svetec D, Pavlovic L, Muck T (2014) Uhf RFID tags with printed antennas on recycled papers and cardboards. Mater Technol 48(2):261–267

    Google Scholar 

  72. Kavcic U, Maek M, Muck T (2015) Ultra-high frequency radio frequency identification tag antennas printed directly onto cardboard used for the manufacture of pharmaceutical packaging. J Imaging Sci Technol 59(5):50504-1–50504-8

    Google Scholar 

  73. Kawahara J, Andersson Ersman P, Nilsson D, Katoh K, Nakata Y, Sandberg M, Nilsson M, Gustafsson G, Berggren M (2013) Flexible active matrix addressed displays manufactured by printing and coating techniques. J Polym Sci B Polym Phys 51(4):265–271

    Article  Google Scholar 

  74. Kawahara Y, Hodges S, Gong N-W, Olberding S, Steimle J (2014) Building functional pervasive computing prototypes using conductive inkjet printing. Pervasive Comput 13:30–38

    Article  Google Scholar 

  75. Khan S, Lorenzelli L, Dahiya RS (2015) Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sensors J 15(6):3164–3185

    Article  Google Scholar 

  76. Kim DY, Steckl AJ (2010) Electrowetting on paper for electronic paper display. ACS Appl Mater Interfaces 2(11):3318–3323. PMID: 20973510

    Article  Google Scholar 

  77. Kim JY, Park SH, Jeong T, Bae MJ, Song S, Lee J, Han IT, Jung D, Yu S (2010) Paper as a substrate for inorganic powder electroluminescence devices. IEEE Trans Electron Devices 57(6):1470–1474

    Article  Google Scholar 

  78. Kim J, Yun S, Mahadeva SK, Yun K, Yang SY, Maniruzzaman M (2010) Paper actuators made with cellulose and hybrid materials. Sensors 10(3):1473–1485

    Article  Google Scholar 

  79. Kisic M, Dakic B, Damnjanovic M, Menicanin A, Blaz N, Zivanov L (2013) Design and simulation of 13.56 MHz RFID tag in ink-jet printing technology. In: 2013 36th international spring seminar on electronics technology (ISSE), pp 263–267

    Google Scholar 

  80. Koren K, Kühl M (2015) A simple laminated paper-based sensor for temperature sensing and imaging. Sensors Actuators B Chem 210(Suppl C):124–128

    Google Scholar 

  81. Kumar AA, Hennek JW, Smith BS, Kumar S, Beattie P, Jain S, Rolland JP, Stossel TP, Chunda-Liyoka C, Whitesides GM (2015) From the bench to the field in low-cost diagnostics: two case studies. Angew Chem Int Ed 54(20):5836–5853

    Article  Google Scholar 

  82. Kwon Y-J, Park YD, Lee WH (2016) Inkjet-printed organic transistors based on organic semiconductor/insulating polymer blends. Materials 9(8):650

    Article  Google Scholar 

  83. Lanz T, Sandström A, Tang S, Chabrecek P, Sonderegger U, Edman L (2016) A light-emission textile device: conformal spray-sintering of a woven fabric electrode. Flex Print Electron 1(2):025004

    Article  Google Scholar 

  84. Lee H, Choi S (2015) An origami paper-based bacteria-powered battery. Nano Energy 15:549–557

    Article  Google Scholar 

  85. Lee B-H, Lee D-I, Bae H, Seong H, Jeon S-B, Seol M-L, Han J-W, Meyyappan M, Im S-G, Choi Y-K (2016) Foldable and disposable memory on paper. Sci Rep 6:38389

    Article  Google Scholar 

  86. Lee S, Aranyosi AJ, Wong MD, Hong JH, Lowe J, Chan C, Garlock D, Shaw S, Beattie PD, Kratochvil Z, Kubasti N, Seagers K, Ghaffari R, Swanson CD (2016) Flexible opto-electronics enabled microfluidics systems with cloud connectivity for point-of-care micronutrient analysis. Biosens Bioelectron 78:290–299

    Article  Google Scholar 

  87. Leonat L, White MS, Głowacki ED, Scharber MC, Zillger T, Rühling J, Hübler A, Sariciftci NS (2014) 4% efficient polymer solar cells on paper substrates. J Phys Chem C 118(30):16813–16817

    Article  Google Scholar 

  88. Liana DD, Raguse B, Gooding JJ, Chow E (2012) Recent advances in paper-based sensors. Sensors (Switzerland) 12(9):11505–11526

    Article  Google Scholar 

  89. Liana DD, Raguse B, Gooding JJ, Chow E (2015) Toward paper-based sensors: turning electrical signals into an optical readout system. ACS Appl Mater Interfaces 7(34):19201–19209. PMID: 26329490

    Article  Google Scholar 

  90. Liana DD, Raguse B, Gooding JJ, Chow E (2016) An integrated paper-based readout system and piezoresistive pressure sensor for measuring bandage compression. Adv Mater Technol 1(9):1600143

    Article  Google Scholar 

  91. Liana DD, Raguse B, Gooding JJ, Chow E (2017) A balance-in-a-box: an integrated paper-based weighing balance for infant birth weight determination. Anal Methods 9:66–75

    Article  Google Scholar 

  92. Liang T, Zou X, Mazzeo AD (2016) A flexible future for paper-based electronics. In: Micro- and nanotechnology sensors, systems, and applications VIII, proceedings of SPIE, vol 9836, p 98361D-1

    Google Scholar 

  93. Lien DH, Kuo ZK, Huang TH, Liao YC, Lee SC, He H (2014) Paper memory by all printing technology. In: 2014 symposium on VLSI technology (VLSI-Technology): digest of technical papers, pp 1–2

    Google Scholar 

  94. Lilliu S, Boeberl M, Sramek M, Tedde SF, Macdonald JE, Hayden O (2011) Inkjet-printed organic photodiodes. Thin Solid Films 520(1):610–615

    Article  Google Scholar 

  95. Liu H, Crooks RM (2012) Paper-based electrochemical sensing platform with integral battery and electrochromic read-out. Anal Chem 84(5):2528–2532

    Article  Google Scholar 

  96. Liu B, Du D, Hua X, Yu X-Y, Lin Y (2014) Paper-based electrochemical biosensors: from test strips to paper-based microfluidics. Electroanalysis 26(6):1214–1223

    Article  Google Scholar 

  97. Liu J, Oliva J, Tong K, Zhao F, Chen D, Pei Q (2017) Multi-colored light-emitting electrochemical cells based on thermal activated delayed fluorescence host. Sci Rep 7:1524

    Article  Google Scholar 

  98. Mace CR, Deraney RN (2014) Manufacturing prototypes for paper-based diagnostic devices. Microfluid Nanofluid 16(5):801–809

    Article  Google Scholar 

  99. Madakam S, Ramaswamy R, Tripathi S (2015) Internet of things (IOT): a literature review. J Comput Commun 3:164–173

    Article  Google Scholar 

  100. Mak WC, Beni V, Turner APF (2016) Lateral-flow technology: from visual to instrumental. Trends Anal Chem 79:297–305. Past, Present and Future challenges of Biosensors and Bioanalytical tools in Analytical Chemistry: a tribute to Prof Marco Mascini

    Google Scholar 

  101. Mannoor MS, Tao H, Clayton JD, Sengupta A, Kaplan DL, Naik RR, Verma N, Omenetto FG, McAlpine MC (2012) Graphene-based wireless bacteria detection on tooth enamel. Nat Commun 3:763

    Article  Google Scholar 

  102. Martinez AW, Phillips ST, Carrilho E, Thomas SW III, Sindi H, Whitesides GM (2008) Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem 80(10):3699–3707

    Article  Google Scholar 

  103. Martinez AW, Phillips ST, Nie Z, Cheng C-M, Carrilho E, Wiley BJ, Whitesides GM (2010) Programmable diagnostic devices made from paper and tape. Lab Chip 10:2499–2504

    Article  Google Scholar 

  104. Matsuda Y, Shibayama S, Uete K, Yamaguchi H, Niimi T (2015) Electric conductive pattern element fabricated using commercial inkjet printer for paper-based analytical devices. Anal Chem 87(11):5762–5765. PMID: 25952643

    Article  Google Scholar 

  105. Mattana G, Briand D (2016) Recent advances in printed sensors on foil. Mater Today 19(2):88–99

    Google Scholar 

  106. Maxwell E, Mazzeo AD, Whitesides GM (2013) Paper-based electroanalytical devices for accessible diagnostic testing. MRS Bull 38(4):309–314

    Article  Google Scholar 

  107. Meier S, Tordera D, Pertegás A, Carmona C, Ortí E, Bolink H (2014) Light-emitting electrochemical cells: recent progress and future prospects. Mater Today 17:217–223

    Article  Google Scholar 

  108. Meiss T, Wertschützky R, Stoeber B (2014) Rapid prototyping of resistive mems sensing devices on paper substrates. In: 2014 IEEE 27th international conference on micro electro mechanical systems (MEMS), pp 536–539

    Google Scholar 

  109. Meredith NA, Quinn C, Cate DM, Reilly TH, Volckens J, Henry CS (2016) Paper-based analytical devices for environmental analysis. Analyst 141:1874–1887

    Article  Google Scholar 

  110. Meyer W (2013) Connectivity in point of care testing. PathCare Pathology Forum - Point of Care Vol 4 No 2, chapter 7, 1st edn. Dietrich Voight Mia Partners, Goodwood, pp 24–25

    Google Scholar 

  111. Mraovic M, Muck T, Pivar M, Trontelj J, Pleteršek A (2014) Humidity sensors printed on recycled paper and cardboard. Sensors 14(8):13628–13643

    Article  Google Scholar 

  112. Myny K, Smout S, Rockelé M, Bhoolokam A, Ke TH, Steudel S, Cobb B, Gulati A, Rodriguez FG, Obata K, Marinkovic M, Pham D-V, Hoppe A, Gelinck GH, Genoe J, Dehaene W, Heremans P (2014) A thin-film microprocessor with inkjet print-programmable memory. Sci Rep 4:7398

    Article  Google Scholar 

  113. Nassar JM, Cordero MD, Kutbee AT, Karimi MA, Sevilla GAT, Hussain AM, Shamim A, Hussain MM (2016) Paper skin multisensory platform for simultaneous environmental monitoring. Adv Mater Technol 1(1):1600004

    Article  Google Scholar 

  114. Nguyen TH, Fraiwan A, Choi S. Paper-based batteries: a review (2014) Biosens Bioelectron 54:640–649

    Article  Google Scholar 

  115. Nilghaz A, Guan L, Tan W, Shen W (2016) Advances of paper-based microfluidics for diagnostics–the original motivation and current status. ACS Sens 1(12):1382–1393

    Article  Google Scholar 

  116. NXP Semiconductors (2017). https://www.nxp.com/products/wireless-connectivity:wireless-connectivity

  117. Nyholm L, Nyström G, Mihranyan A, Strømme M (2011) Toward flexible polymer and paper-based energy storage devices. Adv Mater 23(33):3751–3769

    Google Scholar 

  118. Ostfeld AE, Deckman I, Gaikwad AM, Lochner CM, Arias AC (2015) Screen printed passive components for flexible power electronics. Sci Rep 5:15959

    Article  Google Scholar 

  119. Pan S, Ren J, Fang X, Peng H (2016) Integration: an effective strategy to develop multifunctional energy storage devices. Adv Energy Mater 6(4):1501867

    Article  Google Scholar 

  120. Phillips EA, Shen R, Zhao S, Linnes JC (2016) Thermally actuated wax valves for paper-fluidic diagnostics. Lab Chip 16:4230–4236

    Article  Google Scholar 

  121. Pierre A, Deckman I, Lechene PB, Arias AC (2015) High detectivity all-printed organic photodiodes. Adv Mater 27(41):6411–6417

    Article  Google Scholar 

  122. Piila T, Juusti A, Kylmänen M, Ikonen K (2015) Printed electronics and diagnostic products: printoCent designer’s handbook. Neficon Finland Oy

    Google Scholar 

  123. PST Sensors (2017). http://www.pstsensors.com/

  124. Purandare S, Gomez E, Steckl A (2014) High brightness phosphorescent organic light emitting diodes on transparent and flexible cellulose films. Nanotechnology 25:094012

    Article  Google Scholar 

  125. Qi J (2017). http://technolojie.com/

  126. Qu H, Hou J, Tang Y, Semenikhin O, Skorobogatiy M (2017) Thin flexible lithium-ion battery featuring graphite paper based current collectors with enhanced conductivity. Can J Chem 95(2):169–173

    Article  Google Scholar 

  127. Rackus DG, Shamsi MH, Wheeler AR (2015) Electrochemistry, biosensors and microfluidics: a convergence of fields. Chem Soc Rev 44:5320–5340

    Article  Google Scholar 

  128. Rahman F, Bhuiyan MZA, Ahamed SI (2016) A privacy preserving framework for {RFID} based healthcare systems. Futur Gener Comput Syst 72:339–352

    Article  Google Scholar 

  129. Ren T-L, Tian H, Xie D, Yang Y (2012) Flexible graphite-on-paper piezoresistive sensors. Sensors 12(5):6685–6694

    Article  Google Scholar 

  130. Sani N, Robertsson M, Cooper P, Wang X, Svensson M, Ersman PA, Norberg P, Nilsson M, Nilsson D, Liu X, Hesselbom H, Akesso L, Fahlman M, Crispin X, Engquist I, Berggren M, Gustafsson G. (2014) All-printed diode operating at 1.6 GHz. Proc Natl Acad Sci 111(33):11943–11948

    Article  Google Scholar 

  131. Shafiee H, Asghar W, Inci F, Yuksekkaya M, Jahangir M, Zhang MH, Durmus NG, Gurkan UA, Kuritzkes DR, Demirci U (2015) Paper and flexible substrates as materials for biosensing platforms to detect multiple biotargets. Sci Rep 5:8719

    Article  Google Scholar 

  132. Shaker G, Rida A, Safavi-Naeini S, Tentzeris MM, Nikolaou S (2011) Inkjet printing of uwb antennas on paper based substrates. In Proceedings of the 5th european conference on antennas and propagation, EUCAP 2011, pp 3001–3004

    Google Scholar 

  133. Sher M, Zhuang R, Demirci U, Asghar W (2017) Paper-based analytical devices for clinical diagnosis: recent advances in the fabrication techniques and sensing mechanisms. Expert Rev Mol Diagn 17:351–366

    Article  Google Scholar 

  134. Shin H, Yoon B, Park IS, Kim J-M (2014) An electrothermochromic paper display based on colorimetrically reversible polydiacetylenes. Nanotechnology 25(9):094011

    Article  Google Scholar 

  135. Siegel AC, Phillips ST, Wiley BJ, Whitesides GM (2009) Thin, lightweight, foldable thermochromic displays on paper. Lab Chip 9:2775–2781

    Article  Google Scholar 

  136. Siegel AC, Phillips ST, Dickey MD, Lu N, Suo Z, Whitesides GM (2010) Foldable printed circuit boards on paper substrates. Adv Funct Mater 20(1):28–35

    Article  Google Scholar 

  137. Silveira CM, Monteiro T, Almeida MG (2016) Biosensing with paper-based miniaturized printed electrodes - a modern trend. Biosensors 6(4):51

    Article  Google Scholar 

  138. Sipilä E, Virkki J, Wang J, Sydänheimo L, Ukkonen L (2016) Brush-painting and photonic sintering of copper oxide and silver inks on wood and cardboard substrates to form antennas for uhf RFID tags. Int J Antennas Propag 2016:1–8

    Google Scholar 

  139. Smith S, Bezuidenhout P, Land K, Korvink JG, Mager D (2017) Printed wireless devics for low-cost, connected sensors for point-of-care applications. In: Rapid product development association of south africa (RAPDASA) 2017 conference, pp 243–249

    Google Scholar 

  140. Smith S, Bezuidenhout P, Mbanjwa MB, Zheng H, Conning M, Palaniyandy N, Ozoemena K, Land K (2017) Development of paper-based electrochemical sensors for water quality monitoring. In: Proceedings of SPIE, Fourth conference on sensors, MEMS, and Electro-optic systems, 100360C., vol 10036, pp 10036–10036-6

    Google Scholar 

  141. Sou A, Jung S, Gili E, Pecunia V, Joimel J, Fichet G, Sirringhaus H (2014) Programmable logic circuits for functional integrated smart plastic systems. Org Electron 15(11):3111–3119

    Article  Google Scholar 

  142. Sritharan D, Smela E (2016) Fabrication of a miniature paper-based electroosmotic actuator. Polymers 8(11):400

    Article  Google Scholar 

  143. Stauffer NW (2011). Solar cells printed on paper: http://energy.mit.edu/news/solar-cells-printed-on-paper/, mit energy initiative

  144. Su W, Cook BS, Fang Y, Tentzeris M (2016) Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications. Sci Rep 6:35111

    Article  Google Scholar 

  145. Tehrani Z, Korochkina T, Govindarajan S, Thomas DJ, O’Mahony J, Kettle J, Claypole TC, Gethin DT (2015) Ultra-thin flexible screen printed rechargeable polymer battery for wearable electronic applications. Org Electron 26:386–394

    Article  Google Scholar 

  146. Telfer SJ, McCreary MD (2016) 42-4: invited paper: a full-color electrophoretic display. SID Symp Digest Technical Papers 47(1):574–577

    Article  Google Scholar 

  147. Thinfilm (2016). http://thinfilm.no/2012/01/24/thinfilm-and-pst-sensors-to-jointly-develop-printed-temperature-tags-to-monitor-food-and-other-perishable-goods/

  148. Thom NK, Yeung K, Pillion MB, Phillips ST (2012)“fluidic batteries” as low-cost sources of power in paper-based microfluidic devices. Lab Chip 12(10):1768–1770

    Google Scholar 

  149. Turner APF (2013) Biosensors: sense and sensibility. Chem Soc Rev 42(8):3184–3196

    Article  Google Scholar 

  150. Vilmi P, Nelo M, Voutilainen J-V, Palosaari J, Pörhönen J, Tuukkanen S, Jantunen H, Juuti J, Fabritius T (2016) Fully printed memristors for a self-sustainable recorder of mechanical energy. Flex Print Electron 1(2):025002

    Article  Google Scholar 

  151. VTT Technical Research Centre of Finland Ltd (2017). http://www.vttresearch.com/

  152. Vyas R, Lakafosis V, Rida A, Chaisilwattana N, Travis S, Pan J, Tentzeris MM (2009) Paper-based RFID-enabled wireless platforms for sensing applications. IEEE Trans Microwave Theory Tech 57(5):1370–1382

    Article  Google Scholar 

  153. Wang B, Kerr LL (2011) Dye sensitized solar cells on paper substrates. Sol Energy Mater Sol Cells 95(8):2531–2535. Photovoltaics, Solar Energy Materials & Thin Films, {IMRC} 2009-Cancun

    Google Scholar 

  154. Wang S, Liu N, Yang C, Liu W, Su J, Li L, Yang C, Gao Y (2015) Fully screen printed highly conductive electrodes on various flexible substrates for asymmetric supercapacitors. RSC Adv 5:85799–85805

    Article  Google Scholar 

  155. Wang SQ, Chinnasamy T, Lifson MA, Inci F, Demirci U (2016) Flexible substrate-based devices for point-of-care diagnostics. Trends Biotechnol 34(11):909–921

    Article  Google Scholar 

  156. Wang Y, Guo H, Chen J, Sowade E, Wang Y, Liang K, Marcus K, Baumann RR, Feng ZS (2016) Paper-based inkjet-printed flexible electronic circuits. ACS Appl Mater Interfaces 8(39):26112–26118. PMID: 27582243

    Article  Google Scholar 

  157. Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45:5925

    Article  Google Scholar 

  158. Willert A, Baumann RR (2013) Customized printed batteries driving sensor applications. In: Semiconductor conference Dresden-Grenoble (ISCDG), 2013 international, pp 1–4

    Google Scholar 

  159. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4270. PMID: 15669155

    Article  Google Scholar 

  160. Wu H, Chiang SW, Lin W, Yang C, Li Z, Liu J, Cui X, Kang F, Wong CP (2014) Towards practical application of paper based printed circuits: capillarity effectively enhances conductivity of the thermoplastic electrically conductive adhesives. Sci Rep 4:6275

    Article  Google Scholar 

  161. Xia Y, Si J, Li Z (2016) Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: a review. Biosens Bioelectron 77(Suppl C):774–789

    Google Scholar 

  162. Yamada K, Shibata H, Suzuki K, Citterio D (2017) Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges. Lab Chip 17:1206–1249

    Article  Google Scholar 

  163. Yang L, Tentzeris MM (2007) Design and characterization of novel paper-based inkjet-printed RFID and microwave structures for telecommunication and sensing applications. In: IEEE MTT-S international microwave symposium digest, pp. 1633–1636

    Google Scholar 

  164. Yang L, Rida A, Vyas R, Tentzeris MM (2007) RFID tag and rf structures on a paper substrate using inkjet-printing technology. IEEE Trans Microwave Theory Tech 55(12):2894–2901

    Article  Google Scholar 

  165. Yang L, Zhang R, Staiculescu D, Wong CP, Tentzeris MM (2009) A novel conformal RFID-enabled module utilizing inkjet-printed antennas and carbon nanotubes for gas-detection applications. IEEE Antennas Wirel Propag Lett 8:653–656

    Article  Google Scholar 

  166. Yang P-K, Lin Z-H, Pradel KC, Lin L, Li X, Wen X, He J-H, Wang ZL (2015) Paper-based origami triboelectric nanogenerators and self-powered pressure sensors. ACS Nano 9(1):901–907

    Article  Google Scholar 

  167. Yao B, Yuan L, Xiao X, Zhang J, Qi Y, Zhou J, Zhou J, Hu B, Chen W (2013) Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes. Nano Energy 2(6):1071–1078

    Article  Google Scholar 

  168. Yao B, Zhang J, Kou T, Song Y, Liu T, Li Y (2017) Paper-based electrodes for flexible energy storage devices. Adv Sci 4(7):1700107

    Article  Google Scholar 

  169. Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13:2210–2251

    Article  Google Scholar 

  170. Yoon D-Y, Kim T-Y, Moon D-G (2010) Flexible top emission organic light-emitting devices using sputter-deposited ni films on copy paper substrates. Curr Appl Phys 10(4, Suppl):e135–e138

    Google Scholar 

  171. Yuan L, Xiao X, Ding T, Zhong J, Zhang X, Shen Y, Hu B, Huang Y, Zhou J, Wang Z (2012) Paper-based supercapacitors for self-powered nanosystems. Angew Chem Int Ed Engl 51:4934–4938

    Article  Google Scholar 

  172. Yuan M, Alocilja EC, Chakrabartty S (2016) Self-powered wireless affinity-based biosensor based on integration of paper-based microfluidics and self-assembled RFID antennas. IEEE Trans Biomed Circuits Syst 10(4):799–806

    Article  Google Scholar 

  173. Yun MJ, Cha SI, Seo SH, Kim HS, Lee DY (2015) Insertion of dye-sensitized solar cells in textiles using a conventional weaving process. Sci Rep 5(11022):11022

    Article  Google Scholar 

  174. Zhang T, Hu M, Liu Y, Guo Q, Wang X, Zhang W, Lau W, Yang J (2016) A laser printing based approach for printed electronics. Appl Phys Lett 108(10):103501

    Article  Google Scholar 

  175. Zhang J, Tian GY, Marindra AMJ, Sunny AI, Zhao AB (2017) A review of passive RFID tag antenna-based sensors and systems for structural health monitoring applications. Sensors 17(2):265

    Article  Google Scholar 

  176. Zhao C, Thuo MM, Liu X (2013) A microfluidic paper-based electrochemical biosensor array for multiplexed detection of metabolic biomarkers. Sci Technol Adv Mater 14(5):054402

    Article  Google Scholar 

  177. Zheng G, Cui Y, Karabulut E, Wågberg L, Zhu H, Hu L (2013) Nanostructured paper for flexible energy and electronic devices. MRS Bull 38(4):320–325

    Article  Google Scholar 

  178. Zhong Q, Zhong J, Hu B, Hu Q, Zhou J, Wang ZL (2013) A paper-based nanogenerator as a power source and active sensor. Energy Environ Sci 6:1779–1784

    Article  Google Scholar 

  179. Zhu H, Hu L, Cumings J, Huang J, Chen Y, Preston C, Rohrbach K (2013) Highly transparent and flexible nanopaper transistor. ACS Nano 7:2106–2113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smith, S., Mager, D., Korvink, J.G., Land, K.J. (2019). Printed Functionalities on Paper Substrates Towards Fulfilment of the ASSURED Criteria. In: Land, K. (eds) Paper-based Diagnostics. Springer, Cham. https://doi.org/10.1007/978-3-319-96870-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96870-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96868-1

  • Online ISBN: 978-3-319-96870-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics