Skip to main content

Diffusion of Cosmic Rays in the Galaxy

  • Chapter
  • First Online:
Probes of Multimessenger Astrophysics

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 1266 Accesses

Abstract

The observed spectra of Cosmic Rays (CRs) depend on two basic processes: the propagation in the interstellar medium of our Galaxy, described in this chapter, and the acceleration in the astrophysical sources. Upon leaving the source regions, high-energy charged particles diffuse in the random galactic magnetic field that accounts for their high isotropy and relatively long confinement time. The galactic diffusion model explains the observations on energy spectra, composition, and anisotropy of CRs. It also provides a basis for the interpretation of radio, X-ray, and γ-ray measurements, since a continuous radiation with a non-thermal spectrum is produced during propagation by the energetic electrons, protons, and nuclei. As discussed in this chapter, relevant information on CR propagation arise from the measurements of the abundances of some particular nuclei: the so-called light elements Li, Be, and B. Light elements are mainly of secondary origin, i.e., produced as the result of interactions of heavier primary nuclei with interstellar matter. We use the observed ratio between light and medium elements to assess an analytic description of the CR propagation and a first-order estimate of their escape time from our Galaxy. Electrons, as the lightest stable-charged particles, are subject to additional energy loss mechanisms with respect to protons and nuclei. The presence of magnetic fields induces synchrotron emission, which produces intense electromagnetic radiation in the proximity of the electron accelerators. In addition, a diffuse emission is produced during electron propagation in the galactic disk. Therefore, severe limits on the electron energy spectrum and on the distance of CR electron sources can be derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “Spallation” refers to inelastic nuclear reactions that occur when energetic particles interact with an atomic nucleus. Cosmic ray physicists usually refer to reactions induced by cosmic rays as “fragmentation”. For our practical purposes, the two words are synonymous.

  2. 2.

    In the literature, this amplitude is usually denoted with δ (lower case). We adopt the upper case Δ to avoid confusion with the diffusion parameter defined above and with the declination, also used in this chapter.

References

  • A. Aab et al. (The Pierre Auger Collaboration), Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 × 1018 eV. Science 357, 1266 (2017). Also arXiv:1709.07321

    Google Scholar 

  • R. Abbasi et al., Observation of anisotropy in the galactic cosmic-ray arrival directions at 400 TeV with IceCube. Astrophys. J. 746, 33 (2012)

    Article  ADS  Google Scholar 

  • P. Abreu et al., Search for first harmonic modulation in the right ascension distribution of cosmic rays detected at the Pierre Auger Observatory. Astropart. Phys. 34, 627–639 (2011). The results were updated at the ICRC 2013 (see: arxiv:1310.4620)

  • F. Acero et al. (The Fermi-LAT Coll.). Development of the model of galactic interstellar emission for standard point-source analysis of Fermi large area telescope data. Astrophys. J. Suppl. 223(2), 26 (2016)

    Google Scholar 

  • M. Aglietta et al., Evolution of the cosmic-ray anisotropy above 1014 eV. Astrophys. J. Lett. 692(2), L130–L133 (2009)

    Article  ADS  Google Scholar 

  • M. Aguilar et al. (AMS-02 Collaboration) Precision measurement of the boron to carbon flux ratio in CRs from 1.9 GV to 2.6 TV with the AMS on the ISS. Phys. Rev. Lett. 117, 231102 (2016)

    Google Scholar 

  • A. Albert et al. (ANTARES Collaboration). New constraints on all flavor Galactic diffuse neutrino emission with the ANTARES telescope. Phys. Rev. D96, 062001 (2017)

    Google Scholar 

  • S. Bowman, Radiocarbon Dating (Interpreting the Past) (University of California Press, Berkeley, 1990). ISBN: 978-0520070370

    Google Scholar 

  • J. Candia, S. Mollerach, E. Roulet, Cosmic ray spectrum and anisotropies from the knee to the second knee. J. Cosmol. Astropart. Phys. 05, 003 (2003)

    Article  ADS  Google Scholar 

  • J.J. Engelmann et al., Charge composition and energy spectra of cosmic-ray nuclei for elements from Be to NI. Results from HEAO-3-C2. Astron. Astrophys. 233, 96–111 (1990)

    Google Scholar 

  • C. Evoli, D. Gaggero, D. Grasso, L. Maccione, Cosmic-ray nuclei, antiprotons and gamma-rays in the galaxy: a new diffusion model. J. Cosmol. Astropart. Phys. 10, 018 (2008)

    Article  ADS  Google Scholar 

  • M. Garcia-Munoz, G.M. Mason, J.A. Simpson, The age of galactic cosmic rays derived. Astrophys. J. 217, 859–877 (1977)

    Article  ADS  Google Scholar 

  • G. Ghisellini, Radiative Processes in High Energy Astrophysics. Springer Lecture Notes in Physics (Springer, Berlin, 2013). ISBN 978-3319006116

    Book  Google Scholar 

  • G. Guillian et al., Observation of the anisotropy of 10 TeV primary cosmic ray nuclei flux with the super-Kamiokande-I detector. Phys. Rev. D 75, 062003 (2007)

    Article  ADS  Google Scholar 

  • J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1999). ISBN 978-0471309321

    MATH  Google Scholar 

  • M. Kachelriess, Lecture Notes on High Energy Cosmic Rays (2008). arXiv:0801.4376

  • R. Kissmann, PICARD: A novel code for the galactic cosmic ray propagation problem. Astropart. Phys. 55, 37 (2014). https://doi.org/10.1016/j.astropartphys.2014.02.002

    Article  ADS  Google Scholar 

  • A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 301 (1941); Reprinted on Proc. R. Soc. A 434, 9 (1991)

    ADS  Google Scholar 

  • R.H. Kraichnan, Phys. Fluids 8, 1385 (1965)

    Article  ADS  Google Scholar 

  • M.S. Longair, High Energy Astrophys, 3rd edn. (Cambridge University Press, Cambridge, 2011). ISBN 978-0521756181

    Google Scholar 

  • V. Mardia, P. Jupp, Directional Statistics (Wiley, New York, 1999). ISBN: 978-0471953333

    Book  Google Scholar 

  • D. Maurin, F. Donato, R. Taillet, P. Salati, Cosmic rays below Z= 30 in a diffusion model: new constraints on propagation parameters. Astrophys. J. 555, 585 (2001). https://doi.org/10.1086/321496

    Article  ADS  Google Scholar 

  • D. Maurin, F. Melot, R. Taillet. A database of charged cosmic rays. A&A 569, A32 (2014). arxiv:1302.5525

    Article  ADS  Google Scholar 

  • A. Obermeier et al., The boron-to-carbon abundance ratio and galactic propagation of cosmic radiation. Astrophys. J. 752, 69 (2012)

    Article  ADS  Google Scholar 

  • V. Ptuskin, Propagation of galactic cosmic rays. Astropart. Phys. 39–40, 44–51 (2012)

    Article  ADS  Google Scholar 

  • J. Reimer Paula, INTCAL04 terrestrial radiocarbon age calibration, 0–26 Cal Kyr BP. Radiocarbon 46(3), 1029–1058 (2004)

    Article  Google Scholar 

  • R. Silberberg, C.H. Tsao, Spallation processes and nuclear interaction products of cosmic rays. Phys. Rep. 191, 351–408 (1990)

    Article  ADS  Google Scholar 

  • A.W. Strong, I.V. Moskalenko, Propagation of cosmic-ray nucleons in the Galaxy. Astrophys. J. 509, 212–228 (1998)

    Article  ADS  Google Scholar 

  • A.W. Strong, I.V. Moskalenko, V.S. Ptuskin, Cosmic-ray propagation and interactions in the galaxy. Annu. Rev. Nucl. Part. Sci. 57, 285–327 (2007)

    Article  ADS  Google Scholar 

  • N.E. Yanasak et al., Cosmic-ray time scales using radioactive clocks. Adv. Space Res. 27(4), 727–736 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spurio, M. (2018). Diffusion of Cosmic Rays in the Galaxy. In: Probes of Multimessenger Astrophysics. Astronomy and Astrophysics Library. Springer, Cham. https://doi.org/10.1007/978-3-319-96854-4_5

Download citation

Publish with us

Policies and ethics