Skip to main content

Direct Cosmic Ray Detection: Protons, Nuclei, Electrons and Antimatter

  • Chapter
  • First Online:
Probes of Multimessenger Astrophysics

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 1273 Accesses

Abstract

This chapter refers on the chemical composition of cosmic rays (CRs), i.e., the relative percentage of protons and heavier nuclei in cosmic radiation. Its detailed knowledge up to the highest energies is of crucial importance for the understanding of astrophysical sources of CRs and their propagation in the Galaxy. The chemical composition of CRs can be accurately measured through experiments carried out at a negligible residual atmospheric depth or outside the atmosphere. Here, we deal with the techniques and the experimental results of direct measurements performed with balloons and space missions. These accurately measured the flux and chemical composition of CRs up to about 100 TeV, allowing for the formulation of models around their galactic origin and propagation. One of the key feature derived by these observations is that the CR spectra are well-described by power laws, with similar spectral indices for protons and heavier nuclei, up to energies of ∼ 1015 eV. The CR sources up to these energies should be concentrated near the galactic disk, with a radial distribution similar to that of supernova remnants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Chondrites are stony meteorites that have not been modified due to melting or differentiation of the parent body.

  2. 2.

    This is exact in the case of conversion of a γ-ray. Positrons can be produced as the end stage of hadronic interactions by the decay chain π + → μ + →e+. On average, isotopic spin invariance on π ± production guarantees the presence of an electron through the decay π → μ →e with equal rate. However, due to the fact that CRs are positively charged, secondary positrons are in slight excess over electrons.

References

  • P. Abreu et al. (AUGER Collaboration), Measurement of the proton-air cross-section at \(\sqrt {s}\) = 57 TeV with the pierre auger observatory. Phys. Rev. Lett. 109, 062002 (2012)

    Google Scholar 

  • M. Ackermann et al., Measurement of separate cosmic-ray electron and positron spectra with the Fermi-LAT. Phys. Rev. Lett. 108, 011103 (2012)

    Article  ADS  Google Scholar 

  • O. Adriani et al. (PAMELA Collaboration), Observation of an anomalous positron abundance in the cosmic radiation. Nature 458, 607–609 (2009)

    Google Scholar 

  • O. Adriani et al. (PAMELA Collaboration), The cosmic-ray electron flux measured by the PAMELA experiment between 1 and 625 GeV. Phys. Rev. Lett. 106, 201101 (2011a)

    Google Scholar 

  • O. Adriani et al., PAMELA measurements of cosmic-ray proton and helium spectra. Science 332, 69–72 (2011b). https://doi.org/10.1126/science.1199172

    Article  ADS  Google Scholar 

  • O. Adriani et al. (PAMELA Collaboration), The cosmic-ray positron energy spectrum measured by PAMELA. Phys. Rev. Lett. 111, 081102 (2013). arXiv:1308.0133

  • O. Adriani et al., Ten years of PAMELA in space. Rivista Nuovo Cimento 40, 473 (2017). https://doi.org/10.1393/ncr/i2017-10140-x

    Google Scholar 

  • M. Aguilar et al. (AMS-02 Collaboration), AMS-02 provides a precise measure of cosmic rays. CERN Courier 53(8), 23–26 (2013a). Also: B. Bertucci ICRC 2013 (ID 1267)

    Google Scholar 

  • M. Aguilar et al. (AMS-02 Collaboration), First result from the alpha magnetic spectrometer on the ISS: precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV. Phys. Rev. Lett. 110, 14–141102 (2013b)

    Google Scholar 

  • M. Aguilar et al. (AMS-02 Collaboration), Precision measurement of the (e + + e ) flux in primary cosmic rays from 0.5 GeV to 1 TeV with the AMS on the ISS. Phys. Rev. Lett. 113, 221102 (2014)

    Google Scholar 

  • M. Aguilar et al. (AMS-02 Collaboration), Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the AMS on the ISS. Phys. Rev. Lett. 114, 171103 (2015)

    Google Scholar 

  • M. Aguilar et al. (AMS-02 Collaboration), Precision measurement of the helium flux in primary cosmic rays of rigidities 1.9 GV to 3 TV with the AMS on the ISS. Phys. Rev. Lett. 115, 211101 (2015)

    Google Scholar 

  • M. Aguilar et al. (AMS-02 Collaboration), Antiproton flux, antiproton-to-proton flux ratio, and properties of elementary particle fluxes in primary CRs measured with the AMS on the ISS. Phys. Rev. Lett. 117, 091103 (2016)

    Google Scholar 

  • F.A. Aharonian, A.M. Atoyan, H.J. Voelk, High energy electrons and positrons in cosmic rays as an indicator of the existence of a nearby cosmic Tevatron. Astron. Astrophys. 294, L41 (1995)

    ADS  Google Scholar 

  • H.S. Ahn et al. (CREAM Collaboration), The cosmic ray energetics and mass (CREAM) instrument. T. Nucl. Instrum. Methods A 579, 1034–1053 (2007)

    Google Scholar 

  • H.S. Ahn et al., Measurements of the relative abundances of high-energy cosmic-ray nuclei in the Tev/nucleon region. Astrophys. J. Lett. 714, L89 (2010)

    Article  ADS  Google Scholar 

  • J. Alcaraz et al., Cosmic protons. Phys. Lett. B 490, 27 (2000)

    Article  ADS  Google Scholar 

  • K. Asakimori et al., Cosmic-ray proton and helium spectra: results from the JACEE experiment. Astrophys. J. 502, 278–283 (1998)

    Article  ADS  Google Scholar 

  • M. Ave et al., Composition of primary cosmic-ray nuclei at high energies. Astrophys. J. 678, 262–273 (2008)

    Article  ADS  Google Scholar 

  • J.J. Beatty et al., New measurement of the cosmic-ray positron fraction from 5 to 15 GeV. Phys. Rev. Lett. 93, 24112 (2004)

    Article  Google Scholar 

  • J. Blümer, R. Engel, J. Hörandel, Cosmic rays from the knee to the highest energies. Prog. Part. Nucl. Phys. 63, 293–338 (2009)

    Article  ADS  Google Scholar 

  • M. Boezio, E. Mocchiutti, Chemical composition of galactic cosmic rays with space experiments. Astropart. Phys. 39–40, 95–108 (2012)

    Article  ADS  Google Scholar 

  • M. Boezio et al., The cosmic-ray proton and helium spectra between 0.4 and 200 GV. Astrophys. J. 518, 457 (1999)

    Article  ADS  Google Scholar 

  • M. Boezio et al., The cosmic-ray proton and helium spectra measured with the CAPRICE98 balloon experiment. Astropart. Phys. 19, 583 (2003)

    Article  ADS  Google Scholar 

  • S. Braibant, G. Giacomelli, M. Spurio, Particle and Fundamental Interaction (Springer, Berlin, 2011). ISBN: 978-9400724631

    MATH  Google Scholar 

  • J. Chang et al., An excess of cosmic ray electrons at energies of 300–800 GeV. Nature 456, 362 (2008)

    Article  ADS  Google Scholar 

  • J.H. Crane, D.D. Guo, M.H. Israel, J. Klarmann, Interaction mean-free-path of cosmic-ray Fe in air. Astrophys. Space Sci. 94(1), 201–209 (1983)

    Article  ADS  Google Scholar 

  • V.A. Derbina et al., Cosmic-ray spectra and composition in the energy range of 10–1000 TeV per particle obtained by the RUNJOB experiment. Astrophys. J. 628, L41–L44 (2005)

    Article  ADS  Google Scholar 

  • J.J. Engelmann et al., Charge composition and energy spectra of CR nuclei for elements from Be to Ni. results from HEAO-3-C2. Astron. Astrophys. 233, 96 (1990)

    Google Scholar 

  • O. Ganel et al., Beam tests of the balloon-borne ATIC experiment. Nucl. Instrum. Methods A 552(3), 409–419 (2005)

    Article  ADS  Google Scholar 

  • M. Garcia-Munoz, G.M. Mason, J.A. Simpson, The cosmic-ray age deduced from the Be-10 abundance. Astrophys. J. 201, L145 (1975)

    Article  ADS  Google Scholar 

  • M. Garcia-Munoz, G.M. Mason, J.A. Simpson, The age of galactic cosmic rays derived. Astrophys. J. 217, 859–877 (1977)

    Article  ADS  Google Scholar 

  • P.K.F. Grieder, Cosmic Rays at Earth (Elsevier, New York, 2001). ISBN: 978-0444507105

    Google Scholar 

  • S. Haino et al., Measurements of primary and atmospheric cosmic-ray spectra with the BESS-TeV spectrometer. Phys. Lett. B 594, 35 (2004)

    Article  ADS  Google Scholar 

  • J.R. Hörandel, On the knee in the energy spectrum of cosmic rays. Astropart. Phys. 19, 193–220 (2003)

    Article  ADS  Google Scholar 

  • K. Lodders, Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220 (2003)

    Article  ADS  Google Scholar 

  • K. Lodders, H. Palme, H.P. Gail. Abundances of the elements in the solar system, Chapter 4 of Landolt-Börnstein. New Series, Astronomy and Astrophysics (Springer, Berlin, 2009). Also: arXiv:0901.1149

  • D. Maurin, F. Melot, R. Taillet. A database of charged cosmic rays. Astron. Astrophys. 569, A32 (2014). Arxiv:1302.5525

    Article  ADS  Google Scholar 

  • W. Menn et al., The absolute flux of protons and helium at the top of the atmosphere using IMAX. Astrophys. J. 533, 281 (2000)

    Article  ADS  Google Scholar 

  • C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016, update). http://pdg.lbl.gov/2016/

  • E.S. Seo, Direct measurements of cosmic rays using balloon borne experiments. Astropart. Phys. 39–40, 76–87 (2012)

    Article  ADS  Google Scholar 

  • E.S. Seo et al., Cosmic ray energetics and mass for the international space station (ISS-CREAM). Adv. Space Res. 53, 1451–1455 (2014)

    Article  ADS  Google Scholar 

  • P.D. Serpico, Astrophysical models for the origin of the positron “excess”. Astropart. Phys. 39–40, 2–11 (2012)

    Article  ADS  Google Scholar 

  • J. Simpson, Elemental and isotopic composition of the galactic cosmic rays. Ann. Rev. Nucl. Part. Sci. 33, 323–382 (1983)

    Article  ADS  Google Scholar 

  • D.J. Thompson, L. Baldini, Y. Uchiyama, Cosmic ray studies with the Fermi gamma-ray space telescope Large Area Telescope. Astropart. Phys. 39–40, 22–32 (2012)

    Article  ADS  Google Scholar 

  • J.P. Wefel et al., ICRC Conference, vol. 2 (2007), p. 31

    Google Scholar 

  • B. Wiebel-Sooth, P.L. Biermann, H. Meyer, Cosmic rays. VII. individual element spectra: prediction and data. Astron. Astrophys. 330, 389–398 (1998)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spurio, M. (2018). Direct Cosmic Ray Detection: Protons, Nuclei, Electrons and Antimatter. In: Probes of Multimessenger Astrophysics. Astronomy and Astrophysics Library. Springer, Cham. https://doi.org/10.1007/978-3-319-96854-4_3

Download citation

Publish with us

Policies and ethics