Skip to main content

Low-Energy Neutrino Physics and Astrophysics

  • Chapter
  • First Online:
Probes of Multimessenger Astrophysics

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 1287 Accesses

Abstract

Stellar evolution, the theory of how stars evolve, relies on observations of many stars of different masses, colors, ages, and chemical composition. The energy of stars is provided by nuclear fusion reactions in their core, and their evolution is strongly dependent upon their mass. The Sun, through the Standard Solar Model, is the only star for which the stellar evolution theory can be deeply tested through neutrinos emitted from various thermonuclear processes. The experimental study of solar neutrinos has made a fundamental contribution both to astroparticle and to elementary particle physics, offering an ideal test of solar models and providing, at the same time, fundamental indications concerning the physics of the neutrino sector. The solar neutrino experiments (with atmospheric neutrinos) have given compelling evidence for the existence of neutrino oscillations caused by nonzero neutrino masses and neutrino mixing. This has a huge impact on particle physics. It also has consequences on the prediction of the neutrino flavor composition from high-energy neutrino sources. Neutrinos do not only play a key role during the life of a star. When a massive star has exhausted its hydrogen, it evolves by producing energy through the fusion of heavier elements up to iron. Neutrinos produced during such reactions escape unimpeded from the stellar material and more and more intense nuclear burning is needed to replace the huge amount of energy carried away. Once the inner region of a star becomes primarily iron, further compression of the core no longer ignites nuclear fusion; the star collapses to form a compact object such as a neutron star or a black hole. A prominent prediction from theoretical models of the core-collapse of a massive star is that 99% of the gravitational binding energy of the resulting remnant is converted to neutrinos with energies of a few tens of MeV over a timescale of 10 s. Neutrinos were observed from the celebrated 1987A supernova in the Large Magellanic Cloud, the first event of multimessenger astrophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is usually called normal ordering or Normal Hierarchy . Another possible solution is the case with 0 < m 3 ≪ m 1 < m 2, which corresponds to an inverted ordering or Inverted Hierarchy . We do not consider these aspects of ν physics.

References

  • J.N. Abdurashitov et al., Measurement of the solar neutrino capture rate with gallium metal. III. Results for the 2002–2007 data-taking period. Phys. Rev. C 80, 015807 (2009)

    Google Scholar 

  • K. Abe et al., Solar neutrino results in Super-Kamiokande-III. Phys. Rev. D 83, 052010 (2011)

    Article  ADS  Google Scholar 

  • F. Acero et al., HESS Collab., First detection of VHE gamma-rays from SN1006 by H.E.S.S. Astron. Astrophys. 516, A62 (2010)

    Google Scholar 

  • B. Aharmim et al., Electron energy spectra, fluxes, and day-night asymmetries of 8B solar neutrinos from the 391-day salt phase SNO data set. Phys. Rev. C 72, 055502 (2005)

    Article  ADS  Google Scholar 

  • Q.R. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett. 89, 011301 (2002)

    Article  ADS  Google Scholar 

  • M. Altmann et al., Complete results for five years of GNO solar neutrino observations. Phys. Lett. B 616, 174 (2005)

    Article  ADS  Google Scholar 

  • P. Antonioli et al., SNEWS: the SuperNova Early Warning System. New J. Phys. 6, 114 (2004)

    Article  ADS  Google Scholar 

  • V. Antonelli, L. Miramonti, C. Pe\(\tilde {n}\)a Garay, A. Serenelli, Solar neutrinos. Adv. High Energy Phys. 2013, 34 pp (2013); Article ID 351926. https://doi.org/10.1155/2013/351926

    Article  Google Scholar 

  • M. Asplund, N. Grevesse, A.J. Sauval, P. Scott, The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481 (2009)

    Article  ADS  Google Scholar 

  • H. Athar, M. Jezabek, O. Yasuda, Effects of neutrino mixing on high-energy cosmic neutrino flux. Phys. Rev. D62, 103007 (2000)

    ADS  Google Scholar 

  • J.N. Bahcall, Neutrino Astrophysics (Cambridge University Press, Cambridge, 1989). ISBN: 978-0521379755. The Solar Standard Model is also described on the website: http://www.sns.ias.edu/jnb/

  • J. Beringer et al., Particle data group, The review of particle physics. Section: 13. Neutrino mass, mixing, and oscillations. Phys. Rev. D86, 010001 (2012)

    Google Scholar 

  • H.A. Bethe, Supernova mechanisms. Rev. Mod. Phys. 62, 801 (1990)

    Article  ADS  Google Scholar 

  • Borexino Collaboration, Neutrinos from the primary proton-proton fusion process in the Sun. Nature 512, 383 (2014)

    Google Scholar 

  • S. Braibant, G. Giacomelli, M. Spurio, Particle and Fundamental Interactions (Springer, Berlin, 2011). ISBN: 978-9400724631

    MATH  Google Scholar 

  • S. Braibant, G. Giacomelli, M. Spurio, Particles and Fundamental Interactions: Supplements, Problems and Solutions (Springer, Dordrecht, 2012)

    MATH  Google Scholar 

  • C. Broggini, D. Bemmerer, A. Guglielmetti, R. Menegazzo, LUNA: nuclear astrophysics deep underground. Annu. Rev. Nucl. Part. Sci. 60, 53–73 (2010)

    Article  ADS  Google Scholar 

  • F. Calaprice, C. Galbiati, A. Wright, A. Ianni, Results from the Borexino solar neutrino experiment. Annu. Rev. Nucl. Part. Sci. 62, 315–336 (2012)

    Article  ADS  Google Scholar 

  • G.L. Fogli et al., Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP violation searches. Phys. Rev. D86, 013012 (2012)

    ADS  Google Scholar 

  • Y. Fukuda et al., Solar neutrino data covering solar cycle 22. Phys. Rev. Lett. 77, 1683 (1996)

    Article  ADS  Google Scholar 

  • J. Gava, J. Kneller, C. Volpe, G.C. McLaughlin, A dynamical collective calculation of supernova neutrino signals. Phys. Rev. Lett. 103, 071101 (2009)

    Article  ADS  Google Scholar 

  • W. Hampel et al., GALLEX solar neutrino observations: results for GALLEX IV. Phys. Lett. B 447, 127 (1999)

    Article  ADS  Google Scholar 

  • W. Haxton, The scientific life of John Bahcall. Annu. Rev. Nucl. Part. Sci. 59, 1–20 (2009)

    Article  ADS  Google Scholar 

  • W.C. Haxton, R.G. Hamish Robertson, A.M. Serenelli, Solar neutrinos: status and prospects. Annu. Rev. Astron. Astrophys. 51, 21–61 (2013)

    Article  ADS  Google Scholar 

  • A. Hoeflich, E. Mueller, P. Hoeflich, Light curves of type IA supernova models with different explosion mechanisms. Astron. Astrophys. 270, 223–248 (1993)

    ADS  Google Scholar 

  • H.Th. Janka et al., Theory of core-collapse Supernovae. Phys. Rep. 442, 38 (2007)

    Article  ADS  Google Scholar 

  • N. Jelley, A.B. McDonald, R.G.H. Robertson, The sudbury neutrino observatory. Annu. Rev. Nucl. Part. Sci. 59, 431–465 (2009)

    Article  ADS  Google Scholar 

  • R. Kippenhahn, A. Weigert, Stellar Structure and Evolution (Springer, Berlin, 1990)

    Book  Google Scholar 

  • M. Koshiba, Observational neutrino astrophysics. Phys. Rep. 220, 229–381 (1992)

    Article  ADS  Google Scholar 

  • K. Lande, The life of Raymond Davis, Jr. and the beginning of neutrino astronomy. Annu. Rev. Nucl. Part. Sci. 59, 21–39 (2009)

    Article  ADS  Google Scholar 

  • P. Lipari, Introduction to neutrino physics, in 1st CERN—CLAF School of High-energy Physics, Itacuruca, Brazil (2001). http://cds.cern.ch/record/677618/files/p115.pdf

  • L.A. Marschall, The Supernova Story (Princeton Science Library, Princeton, 1988). ISBN: 978-0691036335

    Book  Google Scholar 

  • C. Patrignani et al. (Particle data group), Chin. Phys. C 40, 100001 (2016/2017)

    Google Scholar 

  • G. Raffelt, Particle physics from stars. Annu. Rev. Nucl. Part. Sci. 49, 163 (1999)

    Article  ADS  Google Scholar 

  • K. Scholberg, Supernova neutrino detection. Annu. Rev. Nucl. Part. Sci. 62, 81 (2012)

    Article  ADS  Google Scholar 

  • A.M. Serenelli, W.C. Haxton, C. Pena-Garay, Solar models with accretion. I. Application to the solar abundance problem. Astrophys. J. 743, 24 (2011)

    Article  Google Scholar 

  • M.B. Smy et al., SK Collab., Super-Kamiokande’s solar ν. Nucl. Phys. B Proc. Suppl. 49, 235–236 (2013)

    Google Scholar 

  • F.-K. Thielemann et al., Neutron star mergers and nucleosynthesis of heavy elements. Annu. Rev. Nucl. Part. Sci. 67, 253 (2017)

    Article  ADS  Google Scholar 

  • S.E. Woosley, A. Heger, T.A. Weaver, The evolution and explosion of massive stars. Rev. Mod. Phys. 74, 1015 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spurio, M. (2018). Low-Energy Neutrino Physics and Astrophysics. In: Probes of Multimessenger Astrophysics. Astronomy and Astrophysics Library. Springer, Cham. https://doi.org/10.1007/978-3-319-96854-4_12

Download citation

Publish with us

Policies and ethics