Skip to main content

Current Understanding and Future Applications in Dentine-Pulp Complex Inflammation and Repair

  • Chapter
  • First Online:
Clinical Approaches in Endodontic Regeneration

Abstract

Infecting oral microorganisms, which penetrate through the tooth’s enamel and dentine, are responsible for dental caries. During the caries process, bacterial by-products reach the inner dentine and trigger host defence responses within the peripheral area of the dental pulp. If the diseased hard tissue is removed and the infection is resolved by the dental practitioner, the defence events regress and pulp healing can occur. Ideally for complete pulp healing, there should be formation, at the dentine-pulp interface, of a reactionary/reparative dentine layer which distances and protects the pulp from any invading bacteria and restorative material irritation. In its absence, chronic pulpal inflammation can endure despite treatment, and this can result in progressive damage of pulp tissue, as well as reduced innate repair capabilities. Clinical and laboratory studies indicate that dentine barrier formation only occurs when the pulpal inflammation is at a relatively low level, such as at the early stage of infection or when it is subsiding after clinical intervention. This chapter focusses on our current understanding of key cellular and molecular mechanisms which are involved in the pulp’s response to bacteria and how these responses modulate local inflammation and dentinogenic repair events. Subsequently the control of infection and modulation of pulp inflammation may provide novel therapeutic opportunities which can be harnessed by the dental practitioner in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • About I, Mitsiadis TA (2001) Molecular aspects of tooth pathogenesis and repair: in vivo and in vitro models. Adv Dent Res 15:59–62

    Article  PubMed  Google Scholar 

  • Acosta-Pérez G, Maximina Bertha Moreno-Altamirano M, Rodríguez-Luna G, Javier Sánchez-Garcia F (2008) Differential dependence of the ingestion of necrotic cells and TNF-alpha/IL-1beta production by murine macrophages on lipid rafts. Scand J Immunol 68(4):423–429

    Article  PubMed  Google Scholar 

  • Arthur JS, Ley SC (2013) Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol 13(9):679–692

    Article  PubMed  Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252

    Article  PubMed  Google Scholar 

  • Barkhordar RA, Hayashi C, Hussain MZ (1999) Detection of interleukin-6 in human pulp and periapical lesions. Endod Dent Traumatol 15(1):26–27

    Article  PubMed  Google Scholar 

  • Baumgardner KR, Sulfaro MA (2001) The anti-inflammatory effects of human recombinant copper-zinc superoxide dismutase on pulp inflammation. J Endod 27(3):190–195

    Article  PubMed  Google Scholar 

  • Bergenholtz G (1981) Inflammatory response of the dental pulp to bacterial irritation. J Endod 7(3):100–104

    Article  PubMed  Google Scholar 

  • Beutler BA (2009) Microbe sensing, positive feedback loops, and the pathogenesis of inflammatory diseases. Immunol Rev 227(1):248–263

    Article  PubMed  PubMed Central  Google Scholar 

  • Bjørndal L (2008) The caries process and its effect on the pulp the science is changing and so is our understanding. J Endod 34(7 Suppl):S2–S5

    Article  PubMed  Google Scholar 

  • Bjørndal L, Darvann T (1999) A light microscopic study of odontoblastic and non-odontoblastic cells involved in tertiary dentinogenesis in well-defined cavitated carious lesions. Caries Res 33(1):50–60

    Article  PubMed  Google Scholar 

  • Bogdan C (2015) Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol 36(3):161–178

    Article  PubMed  Google Scholar 

  • Brentano F, Schorr O, Gay RE, Gay S, Kyburz D (2005) RNA released from necrotic synovial fluid cells activates rheumatoid arthritis synovial fibroblasts via Toll-like receptor 3. Arthritis Rheum 52(9):2656–2665

    Article  PubMed  Google Scholar 

  • Bruno KF, Silva JA, Silva TA, Batista AC, Alencar AH, Estrela C (2010) Characterization of inflammatory cell infiltrate in human dental pulpitis. Int Endod J 43(11):1013–1021

    Article  PubMed  Google Scholar 

  • Carrouel F, Staquet M-J, Keller J-F et al (2013) Lipopolysaccharide-binding protein inhibits toll-like receptor 2 activation by lipoteichoic acid in human odontoblast-like cells. J Endod 39(8):1008–1014

    Article  PubMed  Google Scholar 

  • Chang J, Zhang C, Tani-Ishii N, Shi S, Wang CY (2005) NF-kappaB activation in human dental pulp stem cells by TNF and LPS. J Dent Res 84(11):994–998

    Article  PubMed  Google Scholar 

  • Coleman JW (2001) Nitric oxide in immunity and inflammation. Int Immunopharmacol 1(8):1397–1406

    Article  PubMed  Google Scholar 

  • Cooper PR, Takahashi Y, Graham LW, Simon S, Imazato S, Smith AJ (2010) Inflammation-regeneration interplay in the dentine-pulp complex. J Dent 38(9):687–697

    Article  PubMed  Google Scholar 

  • Cooper PR, McLachlan JL, Simon S, Graham LW, Smith AJ (2011) Mediators of inflammation and regeneration. Adv Dent Res 23(3):290–295

    Article  PubMed  Google Scholar 

  • Cooper PR, Holder MJ, Smith AJ (2014) Inflammation and regeneration in the dentin-pulp complex: a double-edged sword. J Endod 40(4 Suppl):S46–S51

    Article  PubMed  Google Scholar 

  • Cooper PR, Chicca IJ, Holder MJ, Milward MR (2017) Inflammation and regeneration in the dentin-pulp complex: net gain or net loss? J Endod 43(9S):S87–S94

    Article  PubMed  Google Scholar 

  • Cornish J, Callon KE, Coy DH et al (1997) Adrenomedullin is a potent stimulator of osteoblastic activity in vitro and in vivo. Am J Physiol 273(6 Pt 1):E1113–E1120

    PubMed  Google Scholar 

  • De Miguel MP, Fuentes-Julián S, Blázquez-Martínez A et al (2012) Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med 12(5):574–591

    Article  PubMed  Google Scholar 

  • De Wilde V, Van Rompaey N, Hill M et al (2009) Endotoxin-induced myeloid-derived suppressor cells inhibit alloimmune responses via heme oxygenase-1. Am J Transplant 9(9):2034–2047

    Article  PubMed  Google Scholar 

  • Di Nardo Di Maio F, Lohinai Z, D’Arcangelo C et al (2004) Nitric oxide synthase in healthy and inflamed human dental pulp. J Dent Res 83:312–316

    Article  Google Scholar 

  • Dinarello CA (1984) Interleukin-1. Rev Infect Dis 6(1):51–95

    Article  PubMed  Google Scholar 

  • Dommisch H, Winter J, Açil Y, Dunsche A, Tiemann M, Jepsen S (2005) Human beta-defensin (hBD-1, -2) expression in dental pulp. Oral Microbiol Immunol 20(3):163–166

    Article  PubMed  Google Scholar 

  • Dommisch H, Winter J, Willebrand C, Eberhard J, Jepsen S (2007) Immune regulatory functions of human beta-defensin-2 in odontoblast-like cells. Int Endod J 40(4):300–307

    Article  PubMed  Google Scholar 

  • Drujont L, Carretero-Iglesia L, Bouchet-Delbos L et al (2014) Evaluation of the therapeutic potential of bone marrow-derived myeloid suppressor cell (MDSC) adoptive transfer in mouse models of autoimmunity and allograft rejection. PLoS One 9:e100013

    Article  PubMed  PubMed Central  Google Scholar 

  • Dugast AS, Haudebourg T, Coulon F et al (2008) Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector T cell expansion. J Immunol 180(12):7898–7906

    Article  PubMed  Google Scholar 

  • Durand SH, Flacher V, Roméas A et al (2006) Lipoteichoic acid increases TLR and functional chemokine expression while reducing dentin formation in in vitro differentiated human odontoblasts. J Immunol 176(5):2880–2887

    Article  PubMed  Google Scholar 

  • Eba H, Murasawa Y, Iohara K, Isogai Z, Nakamura H, Nakashima M (2012) The anti-inflammatory effects of matrix metalloproteinase-3 on irreversible pulpitis of mature erupted teeth. PLoS One 7:e52523

    Article  PubMed  PubMed Central  Google Scholar 

  • Farges J-C, Romeas A, Melin M et al (2003) TGF-beta1 induces accumulation of dendritic cells in the odontoblast layer. J Dent Res 82(8):652–656

    Article  PubMed  Google Scholar 

  • Farges J-C, Keller J-F, Carrouel F et al (2009) Odontoblasts in the dental pulp immune response. J Exp Zool Part Mol Dev Evol 312B(5):425–436

    Article  Google Scholar 

  • Farges J-C, Carrouel F, Keller J-F et al (2011) Cytokine production by human odontoblast-like cells upon Toll-like receptor-2 engagement. Immunobiology 216(4):513–517

    Article  PubMed  Google Scholar 

  • Farges J-C, Alliot-Licht B, Baudouin C, Msika P, Bleicher F, Carrouel F (2013) Odontoblast control of dental pulp inflammation triggered by cariogenic bacteria. Front Physiol 4:1–3

    Article  Google Scholar 

  • Farges JC, Bellanger A, Ducret M et al (2015) Human odontoblast-like cells produce nitric oxide with antibacterial activity upon TLR2 activation. Front Physiol 23(6):185–194

    Google Scholar 

  • Feng X, Feng G, Xing J et al (2013) TNF-α triggers osteogenic differentiation of human dental pulp stem cells via the NF-κB signalling pathway. Cell Biol Int 37(12):1267–1275

    Article  PubMed  Google Scholar 

  • Fiers W, Beyaert R, Declercq W, Vandenabeele P (1999) More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18(54):7719–7730

    Article  PubMed  Google Scholar 

  • Fitzgerald M, Chiego DJ Jr, Heys DR (1990) Autoradiographic analysis of odontoblast replacement following pulp exposure in primate teeth. Arch Oral Biol 35(9):707–715

    Article  PubMed  Google Scholar 

  • Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaudin A, Renard E, Hill M et al (2015) Phenotypic analysis of immunocompetent cells in healthy human dental pulp. J Endod 41(5):621–627

    Article  PubMed  Google Scholar 

  • Goldberg M, Six N, Decup F et al (2003) Bioactive molecules and the future of pulp therapy. Am J Dent 16(1):66–76

    PubMed  Google Scholar 

  • Goldberg M, Farges JC, Lacerda-Pinheiro S et al (2008) Inflammatory and immunological aspects of dental pulp repair. Pharmacol Res 58(2):137–147

    Article  PubMed  PubMed Central  Google Scholar 

  • Graham L, Cooper PR, Cassidy N, Nor JE, Sloan AJ, Smith AJ (2006) The effect of calcium hydroxide on solubilisation of bio-active dentin matrix. Biomaterials 27(14):2865–2873

    Article  PubMed  Google Scholar 

  • Guha M, Mackman N (2001) LPS induction of gene expression in human monocytes. Cell Signal 13(2):85–94

    Article  PubMed  Google Scholar 

  • Guo X, Niu Z, Xiao M, Yue L, Lu H (2000) Detection of interleukin-8 in exudates from normal and inflamed human dental pulp tissues. Chinese J Dent Res 3(1):63–66

    Google Scholar 

  • Guzik TJ, Korbut R, Adamek-Guzik T (2003) Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol 54(4):469–487

    PubMed  Google Scholar 

  • Hagemann C, Blank JL (2001) The ups and downs of MEK kinase interactions. Cell Signal 13(12):863–875

    Article  PubMed  Google Scholar 

  • Hahn CL, Liewehr FR (2007a) Innate immune responses of the dental pulp to caries. J Endod 33(6):643–651

    Article  PubMed  Google Scholar 

  • Hahn CL, Liewehr FR (2007b) Update on the adaptive immune responses of the dental pulp. J Endod 33:773–781

    Article  PubMed  Google Scholar 

  • Hahn CL, Falkler WA Jr, Siegel MA (1989) A study of T and B cells in pulpal pathosis. J Endod 15(1):20–26

    Article  PubMed  Google Scholar 

  • Hahn CL, Best AM, Tew JG (2000) Cytokine induced by Streptococcus mutans and pulpal pathogenesis. Infect Immun 68(12):6785–6789

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamilton IR (2000) Ecological basis for dental caries. In: Kuramitsu HK, Ellen RP (eds) Oral bacterial ecology: the molecular basis. Horizon Scientific Press, Wymondham, pp 219–274

    Google Scholar 

  • He WX, Niu ZY, Zhao SL, Smith AJ (2005) Smad protein mediated transforming growth factor beta1 induction of apoptosis in the MDPC-23 odontoblast-like cell line. Arch Oral Biol 50(11):929–936

    Article  PubMed  Google Scholar 

  • He W, Wang Z, Luo Z et al (2015) LPS promote the odontoblastic differentiation of human dental pulp stem cells via MAPK signaling pathway. J Cell Physiol 230(3):554–561

    Article  PubMed  Google Scholar 

  • Hermann BW (1930) Dentinobliteration der Wurzelkanäle nach Behandlung mit calcium. Zahnarztl Rundsch 30:887–899

    Google Scholar 

  • Heyeraas KJ, Berggreen E (1999) Interstitial fluid pressure in normal and inflamed pulp. Crit Rev Oral Biol Med 10(3):328–336

    Article  PubMed  Google Scholar 

  • Hosoya S, Matsushima K, Ohbayashi E, Yamazaki M, Shibata Y, Abiko Y (1996) Stimulation of interleukin-1beta-independent interleukin-6 production in human dental pulp cells by lipopolysaccharide. Biochem Mol Med 59(2):138–143

    Article  PubMed  Google Scholar 

  • Huang TH, Yang CC, Ding SJ, Yeng M, Kao CT, Chou MY (2005) Inflammatory cytokines reaction elicited by root-end filling materials. J Biomed Mater Res B Appl Biomater 73(1):123–128

    Article  PubMed  Google Scholar 

  • Hui T, Wang C, Chen D, Zheng L, Huang D, Ye L (2017) Epigenetic regulation in dental pulp inflammation. Oral Dis 23(1):22–28

    Article  PubMed  Google Scholar 

  • Hunter CA, Jones SA (2015) IL-6 as a keystone cytokine in health and disease. Nat Immunol 16(5):448–457

    Article  PubMed  Google Scholar 

  • Inoue T, Shimono M (1992) Repair dentinogenesis following transplantation into normal and germ-free animals. Proc Finn Dent Soc 88(Suppl 1):183–194

    PubMed  Google Scholar 

  • Ishii M, Koike C, Igarashi A et al (2005) Molecular markers distinguish bone marrow mesenchymal stem cells from fibroblasts. Biochem Biophys Res Commun 332(1):297–303

    Article  PubMed  Google Scholar 

  • Izumi T, Kobayashi I, Okamura K, Sakai H (1995) Immunohistochemical study on the immunocompetent cells of the pulp in human non-carious and carious teeth. Arch Oral Biol 40(7):609–614

    Article  PubMed  Google Scholar 

  • Jernvall J, Thesleff I (2000) Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev 92(1):19–29

    Article  PubMed  Google Scholar 

  • Jiang HW, Zhang W, Ren BP, Zeng JF, Ling JQ (2006) Expression of toll like receptor 4 in normal human odontoblasts and dental pulp tissue. J Endod 32(8):747–751

    Article  PubMed  Google Scholar 

  • Jiang HW, Ling JQ, Gong QM (2008a) The expression of stromal cell-derived factor 1 (SDF-1) in inflamed human dental pulp. J Endod 34(11):1351–1354

    Article  PubMed  Google Scholar 

  • Jiang L, Zhu YQ, Du R et al (2008b) The expression and role of stromal cell-derived factor-1alpha-CXCR4 axis in human dental pulp. J Endod 34(8):939–944

    Article  PubMed  PubMed Central  Google Scholar 

  • Jontell M, Okiji T, Dahlgren U, Bergenholtz G (1998) Immune defense mechanisms of the dental pulp. Crit Rev Oral Biol Med 9(2):179–200

    Article  PubMed  Google Scholar 

  • Kaji R, Kiyoshima-Shibata J, Nagaoka M, Nanno M, Shida K (2010) Bacterial teichoic acids reverse predominant IL-12 production induced by certain Lactobacillus strains into predominant IL-10 production via TLR2-dependent ERK activation in macrophages. J Immunol 184(7):3505–3513

    Article  PubMed  Google Scholar 

  • Kardos TB, Hunter AR, Hanlin SM, Kirk EE (1998) Odontoblast differentiation: a response to environmental calcium. Endod Dent Traumatol 14(3):105–111

    Article  PubMed  Google Scholar 

  • Karim M, El-Sayed F, Klingebiel P, C. E. (2016) Toll-like receptor expression profile of human dental pulp stem/progenitor cells. J Endod 42(3):413–417

    Article  Google Scholar 

  • Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384

    Article  PubMed  Google Scholar 

  • Kawanishi HN, Kawashima N, Suzuki N, Suda H, Takagi M (2004) Effects of an inducible nitric oxide synthase inhibitor on experimentally induced rat pulpitis. Eur J Oral Sci 112(4):332–337

    Article  PubMed  Google Scholar 

  • Kawashima N, Nakano-Kawanishi H, Suzuki N, Takagi M, Suda H (2005) Effect of NOS inhibitor on cytokine and COX2 expression in rat pulpitis. J Dent Res 84(8):762–767

    Article  PubMed  Google Scholar 

  • Kawashima N, Wongyaofa I, Suzuki N, Kawanishi HN, Suda H (2006) NK and NKT cells in the rat dental pulp tissues. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102(4):558–563

    Article  PubMed  Google Scholar 

  • Keller J-F, Carrouel F, Colomb E et al (2010) Toll-like receptor 2 activation by lipoteichoic acid induces differential production of pro-inflammatory cytokines in human odontoblasts, dental pulp fibroblasts and immature dendritic cells. Immunobiology 215(1):53–59

    Article  PubMed  Google Scholar 

  • Keller J-F, Carrouel F, Staquet M-J et al (2011) Expression of NOD2 is increased in inflamed human dental pulps and lipoteichoic acid-stimulated odontoblast-like cells. Innate Immun 17(1):29–34

    Article  PubMed  Google Scholar 

  • Kim YS, Min KS, Lee SI, Shin SJ, Shin KS, Kim EC (2010) Effect of proinflammatory cytokines on the expression and regulation of human beta-defensin 2 in human dental pulp cells. J Endod 36(1):64–69

    Article  PubMed  Google Scholar 

  • Kim JC, Lee YH, Yu MK et al (2012) Anti-inflammatory mechanism of PPARγ on LPS-induced pulp cells: role of the ROS removal activity. Arch Oral Biol 57(4):392–400

    Article  PubMed  Google Scholar 

  • Koh ET, McDonald F, Pitt Ford TR, Torabinejad M (1998) Cellular response to mineral trioxide aggregate. J Endod 24(8):543–547

    Article  PubMed  Google Scholar 

  • Korkmaz Y, Lang H, Beikler T et al (2011) Irreversible inflammation is associated with decreased levels of the alpha1-, beta1-, and alpha2-subunits of sGC in human odontoblasts. J Dent Res 90(4):517–522

    Article  PubMed  Google Scholar 

  • Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30(1):16–34

    Article  PubMed  Google Scholar 

  • Lara VS, Figueiredo F, da Silva TA, Cunha FQ (2003) Dentin-induced in vivo inflammatory response and in vitro activation of murine macrophages. J Dent Res 82(6):460–465

    Article  PubMed  Google Scholar 

  • Law AS, Baumgardner KR, Meller ST, Gebhart GF (1999) Localization and changes in NADPH-diaphorase reactivity and nitric oxide synthase immunoreactivity in rat pulp following tooth preparation. J Dent Res 78(10):1585–1595

    Article  PubMed  Google Scholar 

  • Lee SH, Baek DH (2012) Antibacterial and neutralizing effect of human β-defensins on Enterococcus faecalis and Enterococcus faecalis lipoteichoic acid. J Endod 38(3):351–356

    Article  PubMed  Google Scholar 

  • Lee DH, Lim BS, Lee YK, Yang HC (2006) Effects of hydrogen peroxide (H2O2) on alkaline phosphatase activity and matrix mineralization of odontoblast and osteoblast cell lines. Cell Biol Toxicol 22(1):39–46

    Article  PubMed  Google Scholar 

  • Lee SI, Min KS, Bae WJ et al (2011) Role of SIRT1 in heat stress- and lipopolysaccharide-induced immune and defense gene expression in human dental pulp cells. J Endod 37(11):1525–1530

    Article  PubMed  Google Scholar 

  • Lee CC, Avalos AM, Ploegh HL (2012) Accessory molecules for Toll-like receptors and their function. Nat Rev Immunol 12(3):168–179

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee JK, Chang SW, Perinpanayagam H et al (2013a) Antibacterial efficacy of a human β-defensin-3 peptide on multispecies biofilms. J Endod 39(12):1625–1629

    Article  PubMed  Google Scholar 

  • Lee YH, Lee NH, Bhattarai G et al (2013b) Anti-inflammatory effect of pachymic acid promotes odontoblastic differentiation via HO-1 in dental pulp cells. Oral Dis 19(2):193–199

    Article  PubMed  Google Scholar 

  • Leprince JG, Zeitlin BD, Tolar M, Peters OA (2012) Interactions between immune system and mesenchymal stem cells in dental pulp and periapical tissues. Int Endod J 45(8):689–701

    Article  PubMed  Google Scholar 

  • Lesot H, Smith AJ, Tziafas D, Bègue-Kirn C, Cassidy N, Ruch J-V (1994) Biologically active molecule and dental tissue repair, a comparative review of reactionary and reparative dentinogenesis with induction of odontoblast differentiation in vitro. Cells Mater 4:199–218

    Google Scholar 

  • Li MO, Flavell RA (2008) Contextual regulation of inflammation: a duet by transforming growth factor-β and interleukin-10. Immunity 28(4):468–476

    Article  PubMed  Google Scholar 

  • Li H, Shi B (2015) Tolerogenic dendritic cells and their applications in transplantation. Cell Mol Immunol 12(1):24–30

    Article  PubMed  Google Scholar 

  • Love RM, Jenkinson HF (2002) Invasion of dentinal tubules by oral bacteria. Crit Rev Oral Biol Med 13(2):171–183

    Article  PubMed  Google Scholar 

  • Luheshi NM, McColl BW, Brough D (2009) Nuclear retention of IL-1alpha by necrotic cells: a mechanism to dampen sterile inflammation. Eur J Immunol 39(11):2973–2980

    Article  PubMed  PubMed Central  Google Scholar 

  • MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15:323–350

    Article  PubMed  Google Scholar 

  • Magalhães-Santos IF, Andrade SG (2005) Participation of cytokines in the necrotic-inflammatory lesions in the heart and skeletal muscles of Calomys callosus infected with Trypanosoma cruzi. Mem Inst Oswaldo Cruz 100(5):555–561

    Article  PubMed  Google Scholar 

  • Magloire H, Joffre A, Bleicher F (1996) An in vitro model of human dental pulp repair. J Dent Res 75(12):1971–1978

    Article  PubMed  Google Scholar 

  • Mangkornkarn C, Steiner JC, Bohman R, Lindemann RA (1991) Flow cytometric analysis of human dental pulp tissue. J Endod 17(2):49–53

    Article  PubMed  Google Scholar 

  • Mansour SC, Pena OM, Hancock REW (2014) Host defense peptides: front-line immunomodulators. Trends Immunol 35(9):443–450

    Article  PubMed  Google Scholar 

  • Matsuo T, Ebisu S, Nakanishi T, Yonemura K, Harada Y, Okada H (1994) Interleukin-1 alpha and interleukin-1 beta periapical exudates of infected root canals: correlations with the clinical findings of the involved teeth. J Endod 20(9):432–435

    Article  PubMed  Google Scholar 

  • McLachlan JL, Sloan AJ, Smith AJ, Landini G, Cooper PR (2004) S100 and cytokine expression in caries. Infect Immun 72(7):4102–4108

    Article  PubMed  PubMed Central  Google Scholar 

  • McLachlan JL, Smith AJ, Bujalska IJ, Cooper PR (2005) Gene expression profiling of pulpal tissue reveals the molecular complexity of dental caries. Biochim Biophys Acta 1741(3):271–281

    Article  PubMed  Google Scholar 

  • Miller RJ, Banisadr G, Bhattacharyya BJ (2008) CXCR4 signaling in the regulation of stem cell migration and development. J Neuroimmunol 198(1-2):31–38

    Article  PubMed  PubMed Central  Google Scholar 

  • Milward MR, Holder MJ, Palin WM et al (2014) Dental phototherapy: low level light therapy (LLLT) for the treatment and management of dental and oral diseases. Dent Update 41(9):763–772

    Article  Google Scholar 

  • Min KS, Kim HI, Chang HS et al (2008) Involvement of mitogen-activated protein kinases and nuclear factor-kappa B activation in nitric oxide-induced interleukin-8 expression in human pulp cells. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105(5):654–660

    Article  PubMed  Google Scholar 

  • Mitchell PJ, Pitt Ford TR, Torabinejad M, McDonald F (1999) Osteoblast biocompatibility of mineral trioxide aggregate. Biomaterials 20(2):167–173

    Article  PubMed  Google Scholar 

  • Montuenga LM, Martínez A, Miller MJ, Unsworth EJ, Cuttitta F (1997) Expression of adrenomedullin and its receptor during embryogenesis suggests autocrine or paracrine modes of action. Endocrinology 138(1):440–451

    Article  PubMed  Google Scholar 

  • Morelli AE, Thomson AW (2007) Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol 7(8):610–621

    Article  PubMed  Google Scholar 

  • Murdoch C (2000) CXCR4: chemokine receptor extraordinaire. Immunol Rev 177:175–184

    Article  PubMed  Google Scholar 

  • Musson DS, McLachlan JL, Sloan AJ, Smith AJ, Cooper PR (2010) Adrenomedullin is expressed during rodent dental tissue development and promotes cell growth and mineralization. Biol Cell 102(3):145–157

    Article  PubMed  Google Scholar 

  • Nair PN, Duncan HF, Pitt Ford TR, Luder HU (2008) Histological, ultrastructural and quantitative investigations on the response of healthy human pulps to experimental capping with mineral trioxide aggregate: a randomized controlled trial. Int Endod J 41(2):128–150

    PubMed  Google Scholar 

  • Nanci A (2003) Dentin-pulp complex. In: Nanci A (ed) Ten cate’s oral histology: development structure, and function. Mosby, Saint Louis, MO, pp 192–239

    Google Scholar 

  • Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J 6(12):3051–3064

    Article  PubMed  Google Scholar 

  • Nibali L, Fedele S, D’Aiuto F, Donos N (2012) Interleukin-6 in oral diseases: a review. Oral Dis 18(3):236–243

    Article  PubMed  Google Scholar 

  • Nussler AK, Billiar TR (1993) Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leukoc Biol 54(2):171–178

    Article  PubMed  Google Scholar 

  • Okiji T, Jontell M, Belichenko P, Bergenholtz G, Dahlstrom A (1997) Perivascular dendritic cells of the human dental pulp. Acta Physiol Scand 159(2):163–169

    Article  PubMed  Google Scholar 

  • Onoe K, Yanagawa Y, Minami K, Iijima N, Iwabuchi K (2007) Th1 or Th2 balance regulated by interaction between dendritic cells and NKT cells. Immunol Res 38(1-3):319–332

    Article  PubMed  Google Scholar 

  • Oosting M, Cheng SC, Bolscher JM et al (2014) Human TLR10 is an anti-inflammatory pattern-recognition receptor. Proc Natl Acad Sci U S A 11(42):E4478–E4484

    Article  Google Scholar 

  • Paris S, Wolgin M, Kielbassa AM, Pries A, Zakrzewicz A (2009) Gene expression of human beta-defensins in healthy and inflamed human dental pulps. J Endod 35(4):520–523

    Article  PubMed  Google Scholar 

  • Paula-Silva FW, Ghosh A, Silva LA, Kapila YL (2009) TNF-alpha promotes an odontoblastic phenotype in dental pulp cells. J Dent Res 88(4):339–344

    Article  PubMed  PubMed Central  Google Scholar 

  • Pazgier M, Hoover DM, Yang D, Lu W, Lubkowski J (2006) Human beta-defensins. Cell Mol Life Sci 63(11):1294–1313

    Article  PubMed  Google Scholar 

  • Pevsner-Fischer M, Morad V, Cohen-Sfady M et al (2007) Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood 109(4):1422–1432

    Article  PubMed  Google Scholar 

  • Pezelj-Ribaric S, Anic I, Brekalo I, Miletic I, Hasan M, Simunovic-Soskic M (2002) Detection of tumor necrosis factor alpha in normal and inflamed human dental pulps. Arch Med Res 33(5):482–484

    Article  PubMed  Google Scholar 

  • Renard E, Gaudin A, Bienvenu G, Amiaud J, Farges JC, Cuturi MC, Moreau A, Alliot-Licht B (2016) Immune Cells and Molecular Networks in Experimentally Induced Pulpitis. J Dent Res 95(2):196–205

    Article  PubMed  Google Scholar 

  • Rutherford RB, Gu K (2000) Treatment of inflamed ferret dental pulps with recombinant bone morphogenetic protein-7. Eur J Oral Sci 108(3):202–206

    Article  PubMed  Google Scholar 

  • Saito K, Nakatomi M, Ida-Yonemochi H, Kenmotsu S, Ohshima H (2011) The expression of GM-CSF and osteopontin in immunocompetent cells precedes the odontoblast differentiation following allogenic tooth transplantation in mice. J Histochem Cytochem 59(5):518–529

    Article  PubMed  PubMed Central  Google Scholar 

  • Saraiva M, O’Garra A (2010) The regulation of IL-10 production by immune cells. Nat Rev Immunol 10(3):170–181

    Article  PubMed  Google Scholar 

  • Schröder U (1985) Effects of calcium hydroxide-containing pulp-capping agents on pulp cell migration, proliferation, and differentiation. J Dent Res 64 (Spec No):541–548

    Article  Google Scholar 

  • Schröder U, Granath LE (1971) Early reaction of intact human teeth to calcium hydroxide following experimental pulpotomy and its significance to the development of hard tissue barrier. Odontol Revy 22(4):379–395

    PubMed  Google Scholar 

  • Semple F, Dorin JR (2012) β-Defensins: multifunctional modulators of infection, inflammation and more? J Innate Immun 4(4):337–348

    Article  PubMed  PubMed Central  Google Scholar 

  • Shiba H, Mouri Y, Komatsuzawa H et al (2003) Macrophage inflammatory protein-3alpha and beta-defensin-2 stimulate dentin sialophosphoprotein gene expression in human pulp cells. Biochem Biophys Res Commun 306(4):867–871

    Article  PubMed  Google Scholar 

  • Silva TA, Lara VS, Silva JS, Garlet GP, Butler WT, Cunha FQ (2004) Dentin sialoprotein and phosphoprotein induce neutrophil recruitment: a mechanism dependent on IL-1beta, TNF-beta, and CXC chemokines. Calcif Tissue Int 74(6):532–541

    Article  PubMed  Google Scholar 

  • Silva-Mendez LS, Allaker RP, Hardie JM, Benjamin N (1999) Antimicrobial effect of acidified nitrite on cariogenic bacteria. Oral Microbiol Immunol 14(6):391–392

    Article  PubMed  Google Scholar 

  • Simon S, Smith AJ, Berdal A, Lumley PJ, Cooper PR (2010) The MAPK pathway is involved in tertiary reactionary dentinogenesis via p38 phosphorylation. J Endod 36(2):256–259

    Article  PubMed  Google Scholar 

  • Simon SR, Berdal A, Cooper PR, Lumley PJ, Tomson PL, Smith AJ (2011) Dentin-pulp complex regeneration: from lab to clinic. Adv Dent Res 23(3):340–345

    Article  PubMed  Google Scholar 

  • Smith KA, Lachman LB, Oppenheim JJ, Favata MF (1980) The functional relationship of the interleukins. J Exp Med 151(6):1551–1556

    Article  PubMed  Google Scholar 

  • Smith AJ, Cassidy N, Perry H, Bègue-Kirn C, Ruch JV, Lesot H (1995) Reactionary dentinogenesis. Int J Dev Biol 39(1):273–280

    PubMed  Google Scholar 

  • Smith AJ, Patel M, Graham L, Sloan AJ, Cooper PR (2005) Dentin regeneration: key roles for stem cells and molecular signaling. Oral Biosci Med 2:127–132

    Google Scholar 

  • Smith AJ, Scheven BA, Takahashi Y, Ferracane JL, Shelton RM, Cooper PR (2012) Dentin as a bioactive extracellular matrix. Arch Oral Biol 57(2):109–121

    Article  PubMed  Google Scholar 

  • Song W, Shi Y, Xiao M et al (2009) In vitro bactericidal activity of recombinant human beta-defensin-3 against pathogenic bacterial strains in human tooth root canal. Int J Antimicrob Agents 33(3):237–243

    Article  PubMed  Google Scholar 

  • Sørensen OE, Borregaard N, Cole AM (2008) Antimicrobial peptides in innate immune responses. Contrib Microbiol 15:61–77

    Article  PubMed  Google Scholar 

  • Stanley H (2002) Calcium hydroxide and vital pulp therapy. In: Hargreaves KM, Goodis HE (eds) Seltzer and Bender’s dental pulp. Quintessence, Chicago, IL, pp 309–324

    Google Scholar 

  • Staquet MJ, Durand SH, Colomb E et al (2008) Different roles of odontoblasts and fibroblasts in immunity. J Dent Res 87(3):256–261

    Article  PubMed  Google Scholar 

  • Tanoue T, Umesaki Y, Honda K (2010) Immune responses to gut microbiota-commensals and pathogens. Gut Microbes 1(4):224–233

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomic S, Djokic J, Vasilijic S et al (2011) Immunomodulatory properties of mesenchymal stem cells derived from dental pulp and dental follicle are susceptible to activation by toll-like receptor agonists. Stem Cells Dev 20(4):695–708

    Article  PubMed  Google Scholar 

  • Tomson PL, Grover LM, Lumley PJ, Sloan AJ, Smith AJ, Cooper PR (2007) Dissolution of bio-active dentin matrix components by mineral trioxide aggregate. J Dent 35(8):636–642

    Article  PubMed  Google Scholar 

  • Turner MD, Nedjai B, Hurst T, Pennington DJ (2014) Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta 1843(11):2563–2582

    Article  PubMed  Google Scholar 

  • Veerayutthwilai O, Byers MR, Pham TT, Darveau RP, Dale BA (2007) Differential regulation of immune responses by odontoblasts. Oral Microbiol Immunol 22(1):5–13

    Article  PubMed  Google Scholar 

  • Viola A, Luster AD (2008) Chemokines and their receptors: drug targets in immunity and inflammation. Annu Rev Pharmacol Toxicol 48:171–197

    Article  PubMed  Google Scholar 

  • Wang Y, Yan M, Fan Z, Ma L, Yu Y, Yu J (2014) Mineral trioxide aggregate enhances the odonto/osteogenic capacity of stem cells from inflammatory dental pulps via NF-κB pathway. Oral Dis 20(7):650–658

    Article  PubMed  Google Scholar 

  • Wang Z, Ma F, Wang J et al (2015) Extracellular signal-regulated kinase mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling are required for lipopolysaccharide-mediated mineralization in murine odontoblast-like cells. J Endod 41(6):871–876

    Article  PubMed  Google Scholar 

  • Yamada M, Kojima N, Paranjpe A et al (2008) N-acetyl cysteine (NAC)-assisted detoxification of PMMA resin. J Dent Res 87(4):372–377

    Article  PubMed  Google Scholar 

  • Zhong S, Zhang S, Bair E, Nares S, Khan AA (2012) Differential expression of microRNAs in normal and inflamed human pulps. J Endod 38(6):746–752

    Article  PubMed  Google Scholar 

  • Zudaire E, Portal-Núñez S, Cuttitta F (2006) The central role of adrenomedullin in host defense. J Leukoc Biol 80(2):237–244

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Conflict of Interests: The authors declare that there is no conflict of interests regarding the publication of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Roy Cooper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cooper, P.R., Farges, JC., Alliot-Licht, B. (2019). Current Understanding and Future Applications in Dentine-Pulp Complex Inflammation and Repair. In: Duncan, H., Cooper, P. (eds) Clinical Approaches in Endodontic Regeneration. Springer, Cham. https://doi.org/10.1007/978-3-319-96848-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96848-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96847-6

  • Online ISBN: 978-3-319-96848-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics