Skip to main content

Bacterial Chemotaxis: A Classic Example of Multiscale Modeling in Biology

  • Chapter
  • First Online:
  • 923 Accesses

Abstract

Both individual-based models and PDE models have been developed to describe the active movement of cell populations in various contexts. Individual-based models can faithfully replicate the detailed mechanisms of cell signaling and movement but are computationally intensive. PDE models are amenable for fast computation and mathematical analysis but are often based on phenomenological descriptions of macroscopic cell fluxes. Multiscale methods must be developed to elucidate the connections between individual-based models and PDE models in order to combine the strengths of these approaches. This chapter summarizes recent progress in connecting individual-based models and PDE models for chemotaxis of bacterial populations, which is a classic example for multiscale modeling in biology. The application scope and limitations of the Keller-Segel chemotaxis equation are also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sean P Cook, Charles J Brokaw, Charles H Muller, and Donner F Babcock. Sperm chemotaxis: egg peptides control cytosolic calcium to regulate flagellar responses. Developmental biology, 165(1):10–19, 1994.

    Article  Google Scholar 

  2. Robert F Diegelmann, Melissa C Evans, et al. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci, 9(1):283–289, 2004.

    Article  Google Scholar 

  3. P. Friedl and D. Gilmour. Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol, 10(7):445–457, Jul 2009.

    Article  Google Scholar 

  4. G. Pandey and R. K. Jain. Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl Environ Microbiol, 68(12):5789–5795, Dec 2002.

    Article  Google Scholar 

  5. J. P. Armitage, T. P. Pitta, M. A. Vigeant, H. L. Packer, and R. M. Ford. Transformations in flagellar structure of rhodobacter sphaeroides and possible relationship to changes in swimming speed. J Bacteriol, 181(16):4825–4833, Aug 1999.

    Google Scholar 

  6. K. J. Duffy and R. M. Ford. Turn angle and run time distributions characterize swimming behavior for pseudomonas putida. J Bacteriol, 179(4):1428–1430, Feb 1997.

    Article  Google Scholar 

  7. C. V. Rao, J. R. Kirby, and A. P. Arkin. Design and diversity in bacterial chemotaxis: a comparative study in Escherichia coli and Bacillus subtilis. PLoS Biol, 2(2):E49, Feb 2004.

    Article  Google Scholar 

  8. G. L. Hazelbauer. Bacterial chemotaxis: the early years of molecular studies. Annu Rev Microbiol, 66:285–303, Oct 2012.

    Article  Google Scholar 

  9. D. E. Koshland. Bacterial Chemotaxis as a Model Behavioral System. Raven Press, New York, 1980.

    Google Scholar 

  10. H. C. Berg. Random Walks in Biology. Princeton University Press, 1983.

    Google Scholar 

  11. X. Xin and H. G. Othmer. A “trimer of dimers”-based model for the chemotactic signal transduction network in bacterial chemotaxis. Bull Math Biol, 74(10):2339–2382, Oct 2012.

    Article  MathSciNet  Google Scholar 

  12. J. Adler. Chemotaxis in bacteria. SCIENCE, 153:708–716, 1966.

    Article  Google Scholar 

  13. Julius Adler. Effect of amino acids and oxygen on chemotaxis in escherichia coli. Journal of bacteriology, 92(1):121–129, 1966.

    Google Scholar 

  14. Julius Adler. Chemotaxis in bacteria. Annual review of biochemistry, 44(1):341–356, 1975.

    Article  Google Scholar 

  15. E. O. Budrene and H. C. Berg. Complex patterns formed by motile cells of Escherichia coli. Nature, 349(6310):630–633, February 1991.

    Article  Google Scholar 

  16. E. O. Budrene and H. C. Berg. Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature, 376(6535):49–53, 1995.

    Article  Google Scholar 

  17. C. Xue, E. O. Budrene, and H. G. Othmer. Radial and spiral stream formation in Proteus mirabilis colonies. PLoS Comput Biol, 7(12):e1002332, 12 2011.

    Article  Google Scholar 

  18. B. Franz, C. Xue, K. J. Painter, and R. Erban. Travelling waves in hybrid chemotaxis models. Bull Math Biol, 76(2):377–400, Feb 2014.

    Article  MathSciNet  Google Scholar 

  19. X. Xue, C. Xue, and M. Tang. The role of intracellular signaling in the stripe formation in engineered E. coli populations. submitted, 2017.

    Google Scholar 

  20. A Decoene, A Lorz, S Martin, B Maury, and M Tang. Simulation of self-propelled chemotactic bacteria in a stokes flow. In ESAIM: proceedings, volume 30, pages 104–123. EDP Sciences, 2010.

    Google Scholar 

  21. A. Decoene, S. Martin, and B. Maury. Microscopic modelling of active bacterial suspensions. Mathematical Modelling of Natural Phenomena, 6:98–129, 2011.

    Article  MathSciNet  Google Scholar 

  22. Robert Dillon, Lisa Fauci, and III Donald Gaver. A microscale model of bacterial swimming, chemotaxis and substrate transport. Journal of Theoretical Biology, 177(4):325–340, 1995.

    Google Scholar 

  23. Heather Flores, Edgar Lobaton, Stefan Méndez-Diez, Svetlana Tlupova, and Ricardo Cortez. A study of bacterial flagellar bundling. Bulletin of Mathematical Biology, 67(1):137–168, 2005.

    Article  MathSciNet  Google Scholar 

  24. J. P. Hernández-Ortiz, Ch. G. Stoltz, and M. D. Graham. Transport and collective dynamics in suspensions of confined swimming particles. Physical Review Letters, 95:204501, 2005. (doi:10.1103/PhysRevLett.95.204501).

    Google Scholar 

  25. J. P. Hernández-Ortiz, P. T. Underhill, and M. D. Graham. Dynamics of confined suspensions of swimming particles. J. Phys.: Condens. Matter, 21(20):204107, 2009.

    Google Scholar 

  26. S. D. Ryan, B. M. Haines, L. Berlyand, F. Ziebert, and I. S. Aranson. Viscosity of bacterial suspensions: Hydrodynamic interactions and self-induced noise. Physical Review E, 83(050904(R)), 2011.

    Google Scholar 

  27. S. D. Ryan, A. Sokolov, L. Berlyand, and I. S. Aranson. Correlation properties of collective motion in bacterial suspensions. New Journal of Physics, 15:105021, 2013.

    Article  Google Scholar 

  28. H. G. Othmer, S. R. Dunbar, and W. Alt. Models of dispersal in biological systems. J. Math. Biol., 26(3):263–298, 1988.

    Article  MathSciNet  Google Scholar 

  29. H. Othmer and C. Xue. The mathematical analysis of biological aggregation and dispersal: progress, problems and perspectives. In M. Lewis, P. Maini, and S. Petrovskii, editors, Dispersal, individual movement and spatial ecology: A mathematical perspective. Springer, 2013.

    Google Scholar 

  30. H. C. Berg and D. Brown. Chemotaxis in Escherichia Coli analyzed by three-dimensional tracking. Nature, 239:502–507, 1972.

    Article  Google Scholar 

  31. R. M. Macnab. Sensing the environment: Bacterial chemotaxis. In R. Goldberg, editor, Biological Regulation and Development, pages 377–412, New York, 1980. Plenum Press.

    Chapter  Google Scholar 

  32. P. Cluzel, M. Surette, and S. Leibler. An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science, 287:1652–1655, 2000.

    Article  Google Scholar 

  33. Clinton H Durney. A two-component model for bacterial chemotaxis, 2013.

    Google Scholar 

  34. H. G. Othmer, X. Xin, and C. Xue. Excitation and adaptation in bacteria-a model signal transduction system that controls taxis and spatial pattern formation. Int J Mol Sci, 14(5):9205–9248, 2013.

    Article  Google Scholar 

  35. M. J. Tindall, S. L. Porter, P. K. Maini, G. Gaglia, and J. P. Armitage. Overview of mathematical approaches used to model bacterial chemotaxis I: the single cell. Bull Math Biol, 70(6):1525–1569, Aug 2008.

    Article  MathSciNet  Google Scholar 

  36. R. Erban and H. G. Othmer. From individual to collective behavior in bacterial chemotaxis. SIAM J. Appl. Math., 65(2):361–391, 2004.

    Article  MathSciNet  Google Scholar 

  37. R. Erban and H. Othmer. From signal transduction to spatial pattern formation in E. coli: A paradigm for multiscale modeling in biology. Multiscale Modeling & Simulation 3(2):362–394, 2005.

    Article  MathSciNet  Google Scholar 

  38. C. Xue. Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling. J Math Biol, 70(1–2):1–44, Jan 2015.

    Article  MathSciNet  Google Scholar 

  39. https://people.math.osu.edu/xue.41/pub.html.

  40. C. S. Patlak. Random walk with persistence and external bias. Bull. of Math. Biophys., 15:311–338, 1953.

    Article  MathSciNet  Google Scholar 

  41. E. F. Keller and L. A. Segel. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol., 26:399–415, 1970.

    Article  Google Scholar 

  42. E. F. Keller and L. A. Segel. Model for chemotaxis. J. Theor. Biol., 30:225–234, 1971.

    Article  Google Scholar 

  43. E. F. Keller and L. A. Segel. Traveling bands of chemotactic bacteria: A theoretical analysis. J. Theor. Biol., 30:235–248, 1971.

    Article  Google Scholar 

  44. Benoit Perthame. Pde models for chemotactic movements: parabolic, hyperbolic and kinetic. Applications of Mathematics, 49(6):539–564, 2004.

    Article  MathSciNet  Google Scholar 

  45. M. J. Tindall, P. K. Maini, S. L. Porter, and J. P. Armitage. Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations. Bull Math Biol, 70(6):1570–1607, Aug 2008.

    Article  MathSciNet  Google Scholar 

  46. Mercedes A Rivero, Robert T Tranquillo, Helen M Buettner, and Douglas A Lauffenburger. Transport models for chemotactic cell populations based on individual cell behavior. Chemical engineering science, 44(12):2881–2897, 1989.

    Article  Google Scholar 

  47. T. Hillen and H. G. Othmer. The diffusion limit of transport equations derived from velocity-jump processes. SIAM J. Appl. Math., 61(3):751–775, 2000.

    Article  MathSciNet  Google Scholar 

  48. H. G. Othmer and T. Hillen. The diffusion limit of transport equations II: chemotaxis equations. SIAM J. Appl. Math., 62:1222–1250, 2002.

    Article  MathSciNet  Google Scholar 

  49. F. A. C. C. Chalub, P. A. Markowich, B. Perthame, and C. Schmeiser. Kinetic models for chemotaxis and their drift-diffusion limits. Monatshefte für Mathematik, 142(1):123–141, 2004.

    Article  MathSciNet  Google Scholar 

  50. C. Xue and H. G. Othmer. Multiscale models of taxis-driven patterning in bacterial populations. SIAM J. Appl. Math., 70(1):133–167, 2009.

    Article  MathSciNet  Google Scholar 

  51. Yevgeniy V. Kalinin, Lili Jiang, Yuhai Tu, and Mingming Wu. Logarithmic sensing in Escherichia coli bacterial chemotaxis. Biophys J, 96(6):2439–2448, Mar 2009.

    Article  Google Scholar 

  52. C. Xue and X. Yang. Moment-flux models for bacterial chemotaxis in large signal gradients. J Math Biol, 73(4):977–1000, 2016.

    Article  MathSciNet  Google Scholar 

  53. J. E. Simons and P. A. Milewski. The volcano effect in bacterial chemotaxis. Mathematical and Computer Modelling, 53(7–8):1374–1388, 2011.

    Article  MathSciNet  Google Scholar 

  54. B. Franz, C. Xue, K. Painter, and R. Erban. Travelling waves in hybrid chemotaxis models. Bull. Math. Biol., 2014.

    Google Scholar 

Download references

Acknowledgements

I would like to thank Professor Hans Othmer and Professor Radek Erban for past collaboration and discussion on the described research. I also thank my student Clinton Durney for proofreading this chapter. This work was supported by the National Science Foundation under grant No. DMS-1312966 and NSF CAREER Award 1553637.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Xue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xue, C. (2018). Bacterial Chemotaxis: A Classic Example of Multiscale Modeling in Biology. In: Stolarska, M., Tarfulea, N. (eds) Cell Movement. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-96842-1_6

Download citation

Publish with us

Policies and ethics