Skip to main content

The Role of Microenvironment in Regulation of Cell Infiltration in Glioblastoma

  • Chapter
  • First Online:
  • 903 Accesses

Abstract

Glioblastoma multiforme (GBM) is one of the deadliest human cancers and is characterized by fast growth and aggressive invasion. GBM also communicates with microglia and macrophages which are recruited by tumor cells to facilitate growth and invasion. In this study we investigate the biochemical and cell-mechanical interactions between the glioma cells and the microenvironment including resident glial cells and M1/M2 microglia that enhance tumor invasion. We develop various types of mathematical models that involve reaction-diffusion equations or multi-scale hybrid models for the important components in this mutual interaction. In particular, we investigate the dynamics of intracellular signaling including miR-451 and AMPK, biochemical interaction of a glioma with M1/M2 microglia via CSF-1-EGF-TGF-β signaling, and glioma cell infiltration through the narrow intercellular space via the regulation of myosin II. We show that these models can replicate the key features of the experimental findings and make novel predictions to guide future experiments aimed at the development of new anti-invasive strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R. Abe, S.C. Donnelly, T. Peng, R. Bucala, and C.N. Metz. Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J. Immunol., 166(12):7556–62, 2001.

    Article  Google Scholar 

  2. B.D. Aguda, Y. Kim, M.G. Hunter, A. Friedman, and C.B. Marsh. MicroRNA regulation of a cancer network: Consequences of the feedback loops involving miR-17-92, E2F, and Myc. PNAS, 105(50):19678–19683, 2008.

    Article  Google Scholar 

  3. Judit Anido, Andrea Sáez-Borderías, Alba Gonzàlez-Juncà, Laura Rodón, Gerard Folch, Maria A Carmona, Rosa M Prieto-Sánchez, Ignasi Barba, Elena Martínez-Sáez, Ludmila Prudkin, et al. Tgf-β receptor inhibitors target the cd44 high/id1 high glioma-initiating cell population in human glioblastoma. Cancer cell, 18(6):655–668, 2010.

    Article  Google Scholar 

  4. A. Bartocci, D.S. Mastrogiannis, G. Migliorati, R.J. Stockert, A.W. Wolkoff, and E.R. Stanley. Macrophages specifically regulate the concentration of their own growth factor in the circulation. Natl Acad Sci U S A, 84(17):6179–83, 1987.

    Article  Google Scholar 

  5. C. Beadle, M.C. Assanah, P. Monzo, R. Vallee, S.S. Rosenfield, and P. Canoll. The role of myosin II in glioma invasion of the brain. Mol. Biol. Cell, 19:3357–3368, 2008.

    Article  Google Scholar 

  6. L.T. Bemis and P. Schedin. Reproductive state of rat mammary gland stroma modulates human breast cancer cell migration and invasion. Cancer Res, 60(13):3414–8, 2000.

    Google Scholar 

  7. D. Bray. Cell movements. New York: Gerland, 1992.

    Google Scholar 

  8. D.R. Brown. Dependence of neurones on astrocytes in a coculture system renders neurones sensitive to transforming growth factor beta1-induced glutamate toxicity. J Neurochem, 72(3):943–53, 1999.

    Article  Google Scholar 

  9. J.J. Casciari, S.V. Sotirchos, and R.M. Sutherland. Glucose diffusivity in multicellular tumor spheroids. Cancer Research, 48(14):3905–3909, 1988.

    Google Scholar 

  10. M. A. J. Chaplain. Avascular growth, angiogenesis and vascular growth in solid tumours: The mathematical modeling of the stages of tumour development. Mathl. Comput. Modeling, 23(6):47–87, 1996.

    Article  MATH  Google Scholar 

  11. N.A. Charles, E.C. Holland, R. Gilbertson, R. Glass, and H. Kettenmann. The brain tumor microenvironment. Glia, 59:1169–1180, 2011.

    Article  Google Scholar 

  12. D. Chen, J.M. Roda, C.B. Marsh, T.D. Eubank, and A. Friedman. Hypoxia inducible factors-mediated inhibition of cancer by GM-CSF: a mathematical model. Bull Math Biol, 74(11):2752–2777, 2012.

    MathSciNet  MATH  Google Scholar 

  13. M.B Chen, M.X. Wei, J.Y. Han, X.Y. Wu, C. Li, J. Wang, W. Shen, and P.H. Lu. MicroRNA-451 regulates AMPK/mTORC1 signaling and fascin1 expression in HT-29 colorectal cancer. Cellular signalling, 26(1):102–109, 2014.

    Article  Google Scholar 

  14. A. Claes, A.J. Idema, and P. Wesseling. Diffuse glioma growth: a guerilla war. Acta Neuropathologica, 114(5):443–458, 2007.

    Article  Google Scholar 

  15. Salvatore J Coniglio, Eliseo Eugenin, Kostantin Dobrenis, E Richard Stanley, Brian L West, Marc H Symons, and Jeffrey E Segall. Microglial stimulation of glioblastoma invasion involves epidermal growth factor receptor (EGFR) and colony stimulating factor 1 receptor (CSF-1R) signaling. Molecular medicine, 18(3):519, 2012.

    Google Scholar 

  16. B.E. Crute, K. Seefeld, J. Gamble, B.E. Kemp, and L.A. Witters. Functional domains of the alpha1 catalytic subunit of the AMP-activated protein kinase. J Biol Chem, 273(52):35347–54, 1998.

    Article  Google Scholar 

  17. J. C. Dallon and H. G. Othmer. How cellular movement determines the collective force generated by the dictyostelium discoideum slug. J. Theor. Biol., 231:203–222, 2004.

    Article  MathSciNet  Google Scholar 

  18. J.F. de Groot and M.R. Gilbert. New molecular targets in malignant gliomas. Curr Opin Neurol, 20:712–718, 2007.

    Article  Google Scholar 

  19. Micah Dembo and Francis Harlow. Cell motion, contractile networks, and the physics of interpenetrating reactive flow. Biophys. J, 50:109–121, 1986.

    Article  Google Scholar 

  20. R.B. Dickinson and R.T. Tranquillo. A stochastic model for adhesion-mediated cell random motility and haptotaxis. J Math Biol, 31(6):563–600, 1993.

    Article  MATH  Google Scholar 

  21. Azadeh Farin, Satoshi O. Suzuki, Michael Weiker, James E. Goldman, Jeffrey N. Bruce, and Peter Canoll. Transplanted glioma cells migrate and proliferate on host brain vasculature: a dynamic analysis. Glia, 53(8):799–808, June 2006.

    Article  Google Scholar 

  22. A. Friedman, C. Huang, and J. Yong. Effective permeability of the boundary of a domain. Commun. In Partial differential equations, 20(1&2):59–102, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  23. E.A. Gaffney, K. Pugh, P.K. Maini, and F. Arnold. Investigating a simple model of cutaneous wound healing angiogenesis. J Math Biol, 45(4):337–74, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  24. M.P. Gantier, C.E. McCoy, I. Rusinova, D. Saulep, D. Wang, D. Xu, A.T. Irving, M.A. Behlke, P.J. Hertzog, F. Mackay, and B.R. Williams. Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic Acids Res, 39(13):5692–703, 2011.

    Article  Google Scholar 

  25. R.A. Gatenby and R.J. Gillies. Why do cancers have high aerobic glycolysis? Nat Rev Cancer, 4(11):891–9, 2004.

    Article  Google Scholar 

  26. J. Godlewski, A. Bronisz, M.O. Nowicki, E.A. Chiocca, and S. Lawler. microRNA-451: A conditional switch controlling glioma cell proliferation and migration. Cell Cycle, 9(14):2742–8, 2010.

    Article  Google Scholar 

  27. J. Godlewski, H.B. Newton, E.A. Chiocca, and S.E. Lawler. MicroRNAs and glioblastoma; the stem cell connection. Cell Death Differ, 17(2):221–8, 2010.

    Article  Google Scholar 

  28. J. Godlewski, M.O. Nowicki, A. Bronisz, G. Nuovo J. Palatini, M. D. Lay, J.V. Brocklyn, M.C. Ostrowski, E.A. Chiocca, and S.E. Lawler. MircroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Molecular Cell, 37:620–632, 2010.

    Article  Google Scholar 

  29. K. Gordon. Mathematical modelling of cell-cycle-dependent chemotherapy drugs-implications for cancer treatment. Ph.D. Thesis, University of Dundee, Dundee., pages –, 2006.

    Google Scholar 

  30. D.J. Gow, K.A. Sauter, C. Pridans, L. Moffat, A. Sehgal, B.M. Stutchfield, S. Raza, P.M. Beard, Y.T. Tsai, G. Bainbridge, P.L. Boner, G. Fici, D. Garcia-Tapia, R.A. Martin, T. Oliphant, J.A. Shelly, R. Tiwari, T.L. Wilson, L.B. Smith, N.A. Mabbott, and D.A. Hume. Characterisation of a novel fc conjugate of macrophage colony-stimulating factor. Molecular Therapy, 22(9):1580–1592, 2014.

    Article  Google Scholar 

  31. M.E. Gracheva and H.G. Othmer. A continuum model of motility in ameboid cells. Bull. Math. Biol., 66:167–194, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  32. M.G. Vander Heiden, L.C. Cantley, and C.B. Thompson. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324(5930):1029–33, 2009.

    Article  Google Scholar 

  33. B. Hong, B. Wiese, M. Bremer, H.E. Heissler, F. Heidenreich, J.K. Krauss, and M. Nakamura. Multiple microsurgical resections for repeated recurrence of glioblastoma multiforme. Am J Clin Oncol, 36(3):261–268, 2013.

    Article  Google Scholar 

  34. S. Ivkovic, C. Beadle, S. Noticewal, S.C. Massey, K.R. Swanson, L.N. Toro, A.R. Bresnick, P. Canoll, and S.S. Rosenfelda. Direct inhibition of myosin II effectively blocks glioma invasion in the presence of multiple motogens. Mol Biol Cell, 23(4):533–542, 2012.

    Article  Google Scholar 

  35. L.J. Kaufman, C.P. Brangwynne, K.E. Kasza, E. Filippidi, V.D. Gordon, T.S. Deisboeck, and D.A. Weitz. Glioma expansion in collagen i matrices: Analyzing collagen concentration-dependent growth and motility patterns. Biophys. J. BioFAST, 89:635–650, 2005.

    Article  Google Scholar 

  36. H.D. Kim, T.W. Guo, A.P. Wu, A. Wells, F.B. Gertler, and D.A. Lauffenburger. Epidermal growth factor-induced enhancement of glioblastoma cell migration in 3D arises from an intrinsic increase in speed but an extrinsic matrix and proteolysis-dependent increase in persistence. Mol Biol Cell, 19:4249–4259, 2008.

    Article  Google Scholar 

  37. J.W. Kim and C.V. Dang. Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res, 66(18):8927–30, 2006.

    Article  Google Scholar 

  38. Y. Kim. Regulation of cell proliferation and migration in glioblastoma: New therapeutic approach. Frontiers in Molecular and Cellular Oncology, 3:53, 2013.

    Google Scholar 

  39. Y. Kim and A. Friedman. Interaction of tumor with its microenvironment : A mathematical model. Bull. Math. Biol., 72(5):1029–1068, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  40. Y. Kim, H. Jeon, and H.G. Othmer. The role of the tumor microenvironment in glioblastoma: A mathematical model. IEEE Trans Biomed Eng, 64(3):519–527, 2017.

    Google Scholar 

  41. Y. Kim, S. Lawler, M.O. Nowicki, E.A Chiocca, and A. Friedman. A mathematical model of brain tumor : pattern formation of glioma cells outside the tumor spheroid core. J. Theo. Biol., 260:359–371, 2009.

    Google Scholar 

  42. Y. Kim and H.G. Othmer. A hybrid model of tumor-stromal interactions in breast cancer. Bull Math Biol, 75:1304–1350, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  43. Y. Kim, G. Powathil, H. Kang, D. Trucu, H. Kim, S. Lawler, and M. Chaplain. Strategies of eradicating glioma cells: A multi-scale mathematical model with miR-451-AMPK-mTOR control. PLoS One, 10(1):e0114370, 2015.

    Article  Google Scholar 

  44. Y. Kim and S. Roh. A hybrid model for cell proliferation and migration in glioblastoma. Discrete and Continuous Dynamical Systems-B, 18(4):969–1015, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  45. Y. Kim, S. Roh, S. Lawler, and A. Friedman. miR451 and AMPK/MARK mutual antagonism in glioma cells migration and proliferation. PLoS One, 6(12):e28293, 2011.

    Article  Google Scholar 

  46. Y. Kim, M. Stolarska, and H.G. Othmer. A hybrid model for tumor spheroid growth in vitro I: Theoretical development and early results. Math. Models Methods in Appl Scis, 17:1773–1798, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  47. Y. Kim, M. Stolarska, and H.G. Othmer. The role of the microenvironment in tumor growth and invasion. Prog Biophys Mol Biol, 106:353–379, 2011.

    Article  Google Scholar 

  48. Y. Kim, J. Wallace, F. Li, M. Ostrowski, and A. Friedman. Transformed epithelial cells and fibroblasts/myofibroblasts interaction in breast tumor: a mathematical model and experiments. J. Math. Biol., 61(3):401–421, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  49. S. Koka, J.B. Vance, and G.I. Maze. Bone growth factors: potential for use as an osseointegration enhancement technique (oet). J West Soc Periodontol Periodontal Abstr, 43(3):97–104, 1995.

    Google Scholar 

  50. Yoshihiro Komohara, Yukio Fujiwara, Koji Ohnishi, and Motohiro Takeya. Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy. Advanced drug delivery reviews, 2015.

    Google Scholar 

  51. M. Kovacs, J. Toth, C. Hetenyi, A. Malnasi-Csizmadia, and J.R. Sellers. Mechanism of blebbistatin inhibition of myosin II. JOURNAL OF BIOLOGICAL CHEMISTRY, 279(34):35557–35563, 2004.

    Article  Google Scholar 

  52. M. Kretzschmar. Transforming growth factor-beta and breast cancer: Transforming growth factor-beta/smad signaling defects and cancer. Breast Cancer Res, 2(2):107–115, 2000.

    Article  Google Scholar 

  53. J.E. Kudlow, C.Y. Cheung, and J.D. Bjorge. Epidermal growth factor stimulates the synthesis of its own receptor in a human breast cancer cell line. J Biol Chem, 261(9):4134–8, 1986.

    Google Scholar 

  54. L.A. Kunz-Schughart, S. Wenninger, T. Neumeier, P. Seidl, and R. Knuechel. Three-dimensional tissue structure affects sensitivity of fibroblasts to tgf-beta 1. Am J Physiol Cell Physiol, 284(1):C209–19, 2003.

    Article  Google Scholar 

  55. H.G. Lee and Y. Kim. The role of the microenvironment in regulation of cspg-driven invasive and non-invasive tumor growth in glioblastoma. Japan J. Indust. Appl. Math., 32(3):771–805, 2016.

    Article  MATH  Google Scholar 

  56. W. Lee, S. Lim, and Y. Kim. The role of myosin II in glioma invasion: A mathematical model. PLoS One, 12(2):e0171312, 2017.

    Article  Google Scholar 

  57. C.K. Li. The glucose distribution in 9l rat brain multicell tumor spheroids and its effect on cell necrosis. Cancer, 50(10):2066–73, 1982.

    Article  Google Scholar 

  58. H.Y. Li, Y. Zhang, J.H Cai, and H.L. Bian. MicroRNA-451 inhibits growth of human colorectal carcinoma cells via downregulation of PI3K/AKT pathway. Asian Pacific Journal of Cancer Prevention, 14(6):3631–3634, 2013.

    Article  Google Scholar 

  59. W. Li and M.B. Graeber. The molecular profile of microglia under the influence of glioma. Neuro Oncol, 14:958–978, 2012.

    Article  Google Scholar 

  60. S.C. Lin and D.G. Hardie. AMPK: Sensing Glucose as well as Cellular Energy Status. Cell Metab, 27(2):299–313, 2018.

    Article  Google Scholar 

  61. D.S. Markovic, R. Glass, M. Synowitz, N. Van Rooijen, and H. Kettenmann. Microglia stimulate the invasiveness of glioma cells by increasing the activity of metalloprotease-2. J Neuropathol Exp Neurol, 64:754–762, 2005.

    Article  Google Scholar 

  62. J. Massague. Tgf-beta signal transduction. Annual Review of Biochemistry, 67(1):753, 1998.

    Article  Google Scholar 

  63. J. Massagué. TGF [beta] in cancer. Cell, 134(2):215–230, 2008.

    Article  Google Scholar 

  64. J. Mercapide, .R. Cicco, J.S. Castresana, and A.J. Klein-Szanto. Stromelysin-1/matrix metalloproteinase-3 (mmp-3) expression accounts for invasive properties of human astrocytoma cell lines. Int J Cancer, 106(5):676–82, 2003.

    Article  Google Scholar 

  65. H.G. Moller, A.P. Rasmussen, H.H. Andersen, K.B. Johnsen, M. Henriksen, and M. Duroux. A systematic review of microrna in glioblastoma multiforme: micro-modulators in the mesenchymal mode of migration and invasion. Mol Neurobiol, 47(1):131–44, 2013.

    Article  Google Scholar 

  66. P. Namy, J. Ohayon, and P. Tracqui. Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields. J Theor Biol, 227(1):103–20, 2004.

    Article  MathSciNet  Google Scholar 

  67. A.K. Newell-Litwa, R. Horwitz, and M.L. Lamers. Non-muscle myosin II in disease: mechanisms and therapeutic opportunities. Dis Model Mech, 8(12):1495–1515, 2015.

    Article  Google Scholar 

  68. H. Oren, N. Duman, H. Abacioglu, H. Ozkan, and G. Irken. Association between serum macrophage colony-stimulating factor levels and monocyte and thrombocyte counts in healthy, hypoxic, and septic term neonates. Pediatrics, 108(2):329–332, 2001.

    Article  Google Scholar 

  69. M. R. Owen and J. A. Sherratt. Pattern formation and spatiotemporal irregularity in a model for macrophage-tumour interaction. J. Theor. Biol., 189:63–80, 1997.

    Article  Google Scholar 

  70. M.R. Owen, H.M. Byrne, and C.E. Lewis. Mathematical modelling of the use of macrophages as vehicles for drug delivery to hypoxic tumour sites. Journal of Theoretical Biology, 226(4):377–391, 2004.

    Article  MathSciNet  Google Scholar 

  71. A.J. Perumpanani and H.M. Byrne. Extracellular matrix concentration exerts selection pressure on invasive cells. Eur J Cancer, 35(8):1274–80, 1999.

    Article  Google Scholar 

  72. C. Peskin. The immersed boundary method. Acta Numerica, 11:479–517, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  73. G. J. Pettet, H. M. Byrne, D. L. S. McElwain, and J. Norbury. A model of wound healing angiogenesis in soft-tissue. Math. Bios, 136:35–64, 1996.

    Article  MATH  Google Scholar 

  74. J. Pinkas and B.A. Teicher. Tgf-beta in cancer and as a therapeutic target. Biochem Pharmacol, 72(5):523–9, 2006.

    Article  Google Scholar 

  75. G.G. Powathil, K.E. Gordon, L.A. Hill, and M.A. Chaplain. Modelling the effects of cell-cycle heterogeneity on the response of a solid tumour to chemotherapy: Biological insights from a hybrid multiscale cellular automaton model. J Theor Biol, 308:1–19, 2012.

    Article  MathSciNet  Google Scholar 

  76. S.M. Pyonteck, L. Akkari, A.J. Schuhmacher, R.L. Bowman, L. Sevenich, D.F. Quail, O.C. Olson, M.L. Quick, J.T. Huse, V. Teijeiro, M. Setty, C.S. Leslie, Y. Oei, A. Pedraza, J. Zhang, C.W. Brennan, J.C. Sutton, E.C. Holland, D. Daniel, and J.A. Joyce. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med, 19(10):1264–72, 2013.

    Article  Google Scholar 

  77. D.A. Reardon, K.L. Fink, T. Mikkelsen, T.F. Cloughesy, A. O’Neill, S. Plotkin, M. Glantz, P. Ravin, J.J. Raizer, K.M. Rich, D. Schiff, W.R. Shapiro, S. Burdette-Radoux, E.J. Dropcho, S.M. Wittemer, J. Nippgen, M. Picard, and L.B. Nabors. Randomized phase II study of cilengitide, and integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme. J Clin Oncol, 26:5610–5617, 2008.

    Article  Google Scholar 

  78. K.A. Rejniak and R.H. Dillon. A single cell-based model of the ductal tumour microarchitecture. Computational and Mathematical Methods in Medicine, 8(1):51–69, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  79. A.A.V. Los Reyes, E. Jung, and Y. Kim. Optimal control strategies of eradicating invisible glioblastoma cells after conventional surgery. J. Roy Soc Interface, 12:20141392, 2015.

    Article  Google Scholar 

  80. Z. Rong, U. Cheema, and P. Vadgama. Needle enzyme electrode based glucose diffusive transport measurement in a collagen gel and validation of a simulation model. Analyst, 131(7):816–21, 2006.

    Article  Google Scholar 

  81. S. Saffarian, I.E. Collier, B.L. Marmer, E.L. Elson, and G. Goldberg. Interstitial collagenase is a brownian ratchet driven by proteolysis of collagen. Science, 306(5693):108–11, 2004.

    Article  Google Scholar 

  82. Y. Sakamoto, S. Prudhomme, and M. H. Zaman. Viscoelastic gel-strip model for the simulation of migrating cells. Annals of Biomedical Engineering, 39(11):2735–2749, 2011.

    Article  Google Scholar 

  83. L.M. Sander and T.S. Deisboeck. Growth patterns of microscopic brain tumors. Phys. Rev. E, 66:051901, 2002.

    Article  Google Scholar 

  84. H. Schattler, Y. Kim, U. Ledzewicz, A.A.d. los Reyes V, and E. Jung. On the control of cell migration and proliferation in glioblastoma. Proceeding of the IEEE Conference on Decision and Control,, 978-1-4673-5716-6/13:1810–1815, 2013.

    Google Scholar 

  85. S. Sen, M. Dong, and S. Kumar. Isoform-specific contributions of a-cctinin to glioma cell mechanobiology. PLoS One, 4(12):e8427, 2009.

    Article  Google Scholar 

  86. J. A. Sherratt and J. D. Murray. Models of epidermal wound healing. Proc.R. Soc.Lond., B241:29–36, 1990.

    Article  Google Scholar 

  87. D.L. Silbergeld and M.R. Chicoine. Isolation and characterization of human malignant glioma cells from histologically normal brain. J Neurosurg, 86(3):525–31, 1997.

    Article  Google Scholar 

  88. Daniel J Silver, Florian A Siebzehnrubl, Michela J Schildts, Anthony T Yachnis, George M Smith, Amy A Smith, Bjorn Scheffler, Brent A Reynolds, Jerry Silver, and Dennis A Steindler. Chondroitin sulfate proteoglycans potently inhibit invasion and serve as a central organizer of the brain tumor microenvironment. The Journal of Neuroscience, 33(39):15603–15617, 2013.

    Article  Google Scholar 

  89. A.M. Stein, T. Demuth, D. Mobley, M. Berens, and L.M. Sander. A mathematical model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro experiment. Biophys J, 92(1):356–65, 2007.

    Article  Google Scholar 

  90. C. L. Stokes and D. A. Lauffenburger. Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J. theor. Biol, 152:377–403, 1991.

    Article  Google Scholar 

  91. L.M. Swift, H. Asfour, N.G. Posnack, A. Arutunyan, M.W. Kay, and N. Sarvazyan. Properties of blebbistatin for cardiac optical mapping and other imaging applications. Pflugers Arch., 464(5):503–512, 2012.

    Article  Google Scholar 

  92. B. Szomolay, T.D. Eubank, R.D. Roberts, C.B. Marsh, and A. Friedman. Modeling the inhibition of breast cancer growth by GM-CSF. J. Theor Biol, 303:141–151, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  93. S. Tang, H. Liu, G. Chen, Q. Roa, and Y. Geng. Internalization and half-life of membrane-bound macrophage colony-stimulating factor. Chinese Sc Bull, 45:1697–1703, 2000.

    Article  Google Scholar 

  94. R.G. Thorne, S. Hrabetov, and C. Nicholson. Diffusion of epidermal growth factor in rat brain extracellular space measured by integrative optical imaging. J Neurophysiol, 92(6):3471–81, 2004.

    Article  Google Scholar 

  95. J-W. Tsai, K. H. Bremner, and R. B. Vallee. Dual subcellular roles for lis1 and dynein in radial neuronal migration in live brain tissue. Nat. Neurosci., 10:970–979, 2007.

    Article  Google Scholar 

  96. J.C. Utting, A.M. Flanagan, A. Brandao-Burch, I.R. Orriss, and T.R. Arnett. Hypoxia stimulates osteoclast formation from human peripheral blood. Cell Biochem Funct, 28(5):374–380, 2010.

    Article  Google Scholar 

  97. M.M. Valter, O.D. Wiestler, and T. Pietsch. Differential control of vegf synthesis and secretion in human glioma cells by il-1 and egf. International Journal of Developmental Neuroscience, 17(5–6):565–577, 1999.

    Article  Google Scholar 

  98. L.M. Wakefield, D.M. Smith, T. Masui, C.C. Harris, and M.B. Sporn. Distribution and modulation of the cellular receptor for transforming growth factor-beta. J Cell Biol, 105(2):965–75, 1987.

    Article  Google Scholar 

  99. O. Warburg. On the origin of cancer cells. Science, 123(3191):309–14, 1956.

    Article  Google Scholar 

  100. A. Wesolowska, A. Kwiatkowska, L. Slomnicki, M. Dembinski, A. Master, M. Sliwa, K. Franciszkiewicz, S. Chouaib, and B. Kaminska. Microglia-derived TGF-beta as an important regulator of glioblastoma invasion–an inhibition of TGF-beta-dependent effects by shRNA against human TGF-beta type ii receptor. Oncogene, 27(7):918–30, 2008.

    Article  Google Scholar 

  101. E.A. Woodcock, S.L. Land, and R.K. Andrews. A low affinity, low molecular weight endothelin-a receptor present in neonatal rat heart. Clin Exp Pharmacol Physiol, 20(5):331–4, 1993.

    Article  Google Scholar 

  102. Xian-zong Ye, Sen-lin Xu, Yan-hong Xin, Shi-cang Yu, Yi-fang Ping, Lu Chen, Hua-liang Xiao, Bin Wang, Liang Yi, Qing-liang Wang, et al. Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via tgf-β1 signaling pathway. The Journal of Immunology, 189(1):444–453, 2012.

    Google Scholar 

  103. B.B. Zhang, G. Zhou, and C. Li. AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell metabolism, 9(5):407–416, 2009.

    Article  Google Scholar 

  104. Z. Zi, Z. Feng, D. A. Chapnick, M. Dahl, D. Deng, E. Klipp, A. Moustakas, and Xuedong Liu. Quantitative analysis of transient and sustained transforming growth factor-beta signaling dynamics. Molecular Systems Biology, 7(492):1–12, 2011.

    Google Scholar 

Download references

Acknowledgements

YJK was supported by the Basic Science Research Program through the National Research Foundation of Korea by the Ministry of Education (NRF-2015R1D1A1A0 1058702). WHL was supported by the National Institute for Mathematical Sciences (NIMS) Grant funded by the Korean government (Grant No. B18130000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangjin Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, Y. et al. (2018). The Role of Microenvironment in Regulation of Cell Infiltration in Glioblastoma. In: Stolarska, M., Tarfulea, N. (eds) Cell Movement. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-96842-1_2

Download citation

Publish with us

Policies and ethics