Skip to main content

Circulating Cell-Free DNA for Molecular Diagnostics and Therapeutic Monitoring

  • Chapter
  • First Online:
  • 1852 Accesses

Abstract

The presence of cell-free circulating DNA has been known for many years, but only recently has this knowledge been translated for diagnosis and therapeutic monitoring. However, the ability to detect and sequence rare DNA molecules in the circulation, such as fetal genetic anomalies and cancer DNA, required advances in technology that have only recently become available. In this chapter, we review the history of circulating DNA, technologies for identifying and measuring it, and applications, especially as a cancer biomarker, that promise to emerge as new standards of care for clinical medicine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mandel P, Metais P. Not AvailableC R Seances Soc Biol Fil. 1948;142(3–4):241–3.

    CAS  PubMed  Google Scholar 

  2. Lam NY, et al. Plasma DNA as a prognostic marker for stroke patients with negative neuroimaging within the first 24 h of symptom onset. Resuscitation. 2006;68(1):71–8.

    Article  CAS  PubMed  Google Scholar 

  3. Antonatos D, et al. Cell-free DNA levels as a prognostic marker in acute myocardial infarction. Ann N Y Acad Sci. 2006;1075:278–81.

    Article  CAS  PubMed  Google Scholar 

  4. Saukkonen K, et al. Association of cell-free plasma DNA with hospital mortality and organ dysfunction in intensive care unit patients. Intensive Care Med. 2007;33(9):1624–7.

    Article  CAS  PubMed  Google Scholar 

  5. Sandhu HS, et al. Measurement of circulating neuron-specific enolase mRNA in diabetes mellitus. Ann N Y Acad Sci. 2008;1137:258–63.

    Article  CAS  PubMed  Google Scholar 

  6. Choi JJ, Reich CF 3rd, Pisetsky DS. The role of macrophages in the in vitro generation of extracellular DNA from apoptotic and necrotic cells. Immunology. 2005;115(1):55–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stroun M, et al. The origin and mechanism of circulating DNA. Ann N Y Acad Sci. 2000;906:161–8.

    Article  CAS  PubMed  Google Scholar 

  8. Jahr S, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61(4):1659–65.

    CAS  PubMed  Google Scholar 

  9. Diehl F, et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci U S A. 2005;102(45):16368–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Diehl F, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14(9):985–90.

    Article  CAS  PubMed  Google Scholar 

  11. De Mattos-Arruda L, et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat Commun. 2015;6:8839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pan W, et al. Brain tumor mutations detected in cerebral spinal fluid. Clin Chem. 2015;61(3):514–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lo YM, et al. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet. 1999;64(1):218–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fleischhacker M, Schmidt B. Circulating nucleic acids (CNAs) and cancer--a survey. Biochim Biophys Acta. 2007;1775(1):181–232.

    CAS  PubMed  Google Scholar 

  15. Emlen W, Mannik M. Effect of DNA size and strandedness on the in vivo clearance and organ localization of DNA. Clin Exp Immunol. 1984;56(1):185–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chang CP, et al. Elevated cell-free serum DNA detected in patients with myocardial infarction. Clin Chim Acta. 2003;327(1–2):95–101.

    Article  CAS  PubMed  Google Scholar 

  17. Wimberger P, et al. Impact of platinum-based chemotherapy on circulating nucleic acid levels, protease activities in blood and disseminated tumor cells in bone marrow of ovarian cancer patients. Int J Cancer. 2011;128(11):2572–80.

    Article  CAS  PubMed  Google Scholar 

  18. Lo YM, et al. Plasma DNA as a prognostic marker in trauma patients. Clin Chem. 2000;46(3):319–23.

    CAS  PubMed  Google Scholar 

  19. Chiu TW, et al. Plasma cell-free DNA as an indicator of severity of injury in burn patients. Clin Chem Lab Med. 2006;44(1):13–7.

    Article  CAS  PubMed  Google Scholar 

  20. Rhodes A, et al. Plasma DNA concentration as a predictor of mortality and sepsis in critically ill patients. Crit Care. 2006;10(2):R60.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Herzenberg LA, et al. Fetal cells in the blood of pregnant women: detection and enrichment by fluorescence-activated cell sorting. Proc Natl Acad Sci U S A. 1979;76(3):1453–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lo YM, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350(9076):485–7.

    Article  CAS  PubMed  Google Scholar 

  23. Lo YM, Chiu RW. Prenatal diagnosis: progress through plasma nucleic acids. Nat Rev Genet. 2007;8(1):71–7.

    Article  CAS  PubMed  Google Scholar 

  24. Li Y, et al. Cell-free DNA in maternal plasma: is it all a question of size? Ann N Y Acad Sci. 2006;1075:81–7.

    Article  CAS  PubMed  Google Scholar 

  25. Lo YM, et al. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet. 1998;62(4):768–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lun FM, et al. Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma. Clin Chem. 2008;54(10):1664–72.

    Article  CAS  PubMed  Google Scholar 

  27. Chiu RW, et al. Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large scale validity study. BMJ. 2011;342:c7401.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lo YM. Fetal RhD genotyping from maternal plasma. Ann Med. 1999;31(5):308–12.

    Article  CAS  PubMed  Google Scholar 

  29. Fan HC, et al. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc Natl Acad Sci U S A. 2008;105(42):16266–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chiu RW, et al. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc Natl Acad Sci U S A. 2008;105(51):20458–63.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chiu RW, Lo YM. Clinical applications of maternal plasma fetal DNA analysis: translating the fruits of 15 years of research. Clin Chem Lab Med. 2013;51(1):197–204.

    CAS  PubMed  Google Scholar 

  32. Liao GJ, Gronowski AM, Zhao Z. Non-invasive prenatal testing using cell-free fetal DNA in maternal circulation. Clin Chim Acta. 2014;428:44–50.

    Article  CAS  PubMed  Google Scholar 

  33. (ACOG), A.C.o.O.a.G., Cell-free DNA Screening for Fetal Aneuploidy. Society for Maternal-Fetal Medicine, Committee on Genetics. 2015.

    Google Scholar 

  34. Lo YM, et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med. 2010;2(61):61ra91.

    Article  CAS  PubMed  Google Scholar 

  35. Leon SA, et al. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977;37(3):646–50.

    CAS  PubMed  Google Scholar 

  36. Allen D, et al. Role of cell-free plasma DNA as a diagnostic marker for prostate cancer. Ann N Y Acad Sci. 2004;1022:76–80.

    Article  CAS  PubMed  Google Scholar 

  37. Chun FK, et al. Circulating tumour-associated plasma DNA represents an independent and informative predictor of prostate cancer. BJU Int. 2006;98(3):544–8.

    Article  CAS  PubMed  Google Scholar 

  38. Schwarzenbach H, et al. Detection and monitoring of cell-free DNA in blood of patients with colorectal cancer. Ann N Y Acad Sci. 2008;1137:190–6.

    Article  CAS  PubMed  Google Scholar 

  39. Li BT, et al. A prospective study of total plasma cell-free DNA as a predictive biomarker for response to systemic therapy in patients with advanced non-small-cell lung cancers. Ann Oncol. 2016;27(1):154–9.

    Article  CAS  PubMed  Google Scholar 

  40. Giacona MB, et al. Cell-free DNA in human blood plasma: length measurements in patients with pancreatic cancer and healthy controls. Pancreas. 1998;17(1):89–97.

    Article  CAS  PubMed  Google Scholar 

  41. Chen X, et al. Detecting tumor-related alterations in plasma or serum DNA of patients diagnosed with breast cancer. Clin Cancer Res. 1999;5(9):2297–303.

    CAS  PubMed  Google Scholar 

  42. Heid CA, et al. Real time quantitative PCR. Genome Res. 1996;6(10):986–94.

    Article  CAS  PubMed  Google Scholar 

  43. Branford S. Chronic myeloid leukemia: molecular monitoring in clinical practice. Hematology Am Soc Hematol Educ Program. 2007:376–83.

    Google Scholar 

  44. Yu M, et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. 2013;339(6119):580–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Morley AA. Digital PCR: a brief history. Biomol Detect Quantif. 2014;1(1):1–2.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Vogelstein B, Kinzler KW. Digital PCR. Proc Natl Acad Sci U S A. 1999;96(16):9236–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17(6):333–51.

    Article  CAS  PubMed  Google Scholar 

  48. Forshew T, et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med. 2012;4(136):136ra68.

    Article  CAS  PubMed  Google Scholar 

  49. Kinde I, et al. Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci U S A. 2011;108(23):9530–5.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kennedy SR, et al. Detecting ultralow-frequency mutations by duplex sequencing. Nat Protoc. 2014;9(11):2586–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Leary RJ, et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med. 2012;4(162):162ra154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Castells A, et al. K-ras mutations in DNA extracted from the plasma of patients with pancreatic carcinoma: diagnostic utility and prognostic significance. J Clin Oncol. 1999;17(2):578–84.

    Article  CAS  PubMed  Google Scholar 

  53. Kopreski MS, et al. Somatic mutation screening: identification of individuals harboring K-ras mutations with the use of plasma DNA. J Natl Cancer Inst. 2000;92(11):918–23.

    Article  CAS  PubMed  Google Scholar 

  54. Dianxu F, et al. A prospective study of detection of pancreatic carcinoma by combined plasma K-ras mutations and serum CA19-9 analysis. Pancreas. 2002;25(4):336–41.

    Article  PubMed  Google Scholar 

  55. Garcia JM, et al. Extracellular tumor DNA in plasma and overall survival in breast cancer patients. Genes Chromosomes Cancer. 2006;45(7):692–701.

    Article  CAS  PubMed  Google Scholar 

  56. Boddy JL, et al. Prospective study of quantitation of plasma DNA levels in the diagnosis of malignant versus benign prostate disease. Clin Cancer Res. 2005;11(4):1394–9.

    Article  CAS  PubMed  Google Scholar 

  57. Schwarzenbach H, et al. Comparative evaluation of cell-free tumor DNA in blood and disseminated tumor cells in bone marrow of patients with primary breast cancer. Breast Cancer Res. 2009;11(5):R71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schwarzenbach H, et al. Cell-free tumor DNA in blood plasma as a marker for circulating tumor cells in prostate cancer. Clin Cancer Res. 2009;15(3):1032–8.

    Article  CAS  PubMed  Google Scholar 

  59. Toro PV, et al. Comparison of cell stabilizing blood collection tubes for circulating plasma tumor DNA. Clin Biochem. 2015;48:993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bettegowda C, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hadano N, et al. Prognostic value of circulating tumour DNA in patients undergoing curative resection for pancreatic cancer. Br J Cancer. 2016;115(1):59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gerlinger M, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366(10):883–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yachida S, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010;467(7319):1114–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Higgins MJ, et al. Detection of tumor PIK3CA status in metastatic breast cancer using peripheral blood. Clin Cancer Res. 2012;18(12):3462–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. De Mattos-Arruda L, et al. Capturing intra-tumor genetic heterogeneity by de novo mutation profiling of circulating cell-free tumor DNA: a proof-of-principle. Ann Oncol. 2014;25(9):1729–35.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Rothé F, Laes J-F, Lambrechts D, Smeets D, Vincent D, Maetens M, Fumagalli D, Michiels S, Stylianos D, Moerman C, Detiffe J-P, Larsimont D, Awada A, Piccart M, Sotiriou C, Ignatiadis M. Plasma circulating tumor DNA as an alternative to metastatic biopsies for mutational analysis in breast cancer. Ann Oncol. 2014;25:1959.

    Article  PubMed  Google Scholar 

  67. Parsons HA, et al. Individualized molecular analyses guide efforts (IMAGE): a prospective study of molecular profiling of tissue and blood in metastatic triple negative breast cancer. Clin Cancer Res. 2017;23(2):379–86.

    Google Scholar 

  68. Tomasetti C, et al. Only three driver gene mutations are required for the development of lung and colorectal cancers. Proc Natl Acad Sci U S A. 2015;112(1):118–23.

    Article  CAS  PubMed  Google Scholar 

  69. Ryan BM, et al. A prospective study of circulating mutant KRAS2 in the serum of patients with colorectal neoplasia: strong prognostic indicator in postoperative follow up. Gut. 2003;52(1):101–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang S, et al. Potential clinical significance of a plasma-based KRAS mutation analysis in patients with advanced non-small cell lung cancer. Clin Cancer Res. 2010;16(4):1324–30.

    Article  CAS  PubMed  Google Scholar 

  71. Diehl F, et al. Analysis of mutations in DNA isolated from plasma and stool of colorectal cancer patients. Gastroenterology. 2008;135(2):489–98.

    Article  CAS  PubMed  Google Scholar 

  72. Husain H, et al. Monitoring daily dynamics of early tumor response to targeted therapy by detecting circulating tumor DNA in urine. Clin Cancer Res. 2017;23:4716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Oshiro C, et al. PIK3CA mutations in serum DNA are predictive of recurrence in primary breast cancer patients. Breast Cancer Res Treat. 2015;150(2):299–307.

    Article  PubMed  Google Scholar 

  74. Olsson E, et al. Serial monitoring of circulating tumor DNA in patients with primary breast cancer for detection of occult metastatic disease. EMBO Mol Med. 2015;7(8):1034–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pietrasz D, et al. Plasma circulating tumor DNA in pancreatic cancer patients is a prognostic marker. Clin Cancer Res. 2017;23(1):116–23.

    Article  CAS  PubMed  Google Scholar 

  76. Tie J, et al. Circulating tumor DNA as an early marker of therapeutic response in patients with metastatic colorectal cancer. Ann Oncol. 2015;26:1715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Garcia-Murillas I, et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Transl Med. 2015;7(302):302ra133.

    Article  PubMed  Google Scholar 

  78. Lebofsky R, et al. Circulating tumor DNA as a non-invasive substitute to metastasis biopsy for tumor genotyping and personalized medicine in a prospective trial across all tumor types. Mol Oncol. 2015;9(4):783–90.

    Article  CAS  PubMed  Google Scholar 

  79. Taniguchi K, et al. Quantitative detection of EGFR mutations in circulating tumor DNA derived from lung adenocarcinomas. Clin Cancer Res. 2011;17(24):7808–15.

    Article  CAS  PubMed  Google Scholar 

  80. Piotrowska Z, et al. Heterogeneity underlies the emergence of EGFRT790 wild-type clones following treatment of T790M-positive cancers with a third-generation EGFR inhibitor. Cancer Discov. 2015;5(7):713–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ishii H, et al. Digital PCR analysis of plasma cell-free DNA for non-invasive detection of drug resistance mechanisms in EGFR mutant NSCLC: correlation with paired tumor samples. Oncotarget. 2015;6(31):30850–8.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Que D, et al. EGFR mutation status in plasma and tumor tissues in non-small cell lung cancer serves as a predictor of response to EGFR-TKI treatment. Cancer Biol Ther. 2016;17(3):320–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Oxnard GR, et al. Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin Cancer Res. 2014;20(6):1698–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chabon JJ, et al. Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients. Nat Commun. 2016;7:11815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rosell R, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012;13(3):239–46.

    Article  CAS  PubMed  Google Scholar 

  86. FDA, Editor. 2016. https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm504488.htm

  87. Chu D, et al. ESR1 mutations in circulating plasma tumor DNA from metastatic breast cancer patients. Clin Cancer Res. 2016;22(4):993–9.

    Google Scholar 

  88. Schiavon G, et al. Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer. Sci Transl Med. 2015;7(313):313ra182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fribbens C, et al. Plasma ESR1 mutations and the treatment of estrogen receptor-positive advanced breast cancer. J Clin Oncol. 2016;34:2961.

    Article  CAS  PubMed  Google Scholar 

  90. Wang P, et al. Sensitive detection of mono- and polyclonal ESR1 mutations in primary tumors, metastatic lesions and cell free DNA of breast cancer patients. Clin Cancer Res. 2016;22(5):1130–7.

    Google Scholar 

  91. Diaz LA Jr, et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 2012;486(7404):537–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Misale S, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 2012;486(7404):532–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Xu JM, et al. PIK3CA mutations contribute to acquired cetuximab resistance in patients with metastatic colorectal cancer. Clin Cancer Res. 2017;23:4602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Siravegna G, et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat Med. 2015;21(7):795–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shinozaki M, et al. Utility of circulating B-RAF DNA mutation in serum for monitoring melanoma patients receiving biochemotherapy. Clin Cancer Res. 2007;13(7):2068–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cohen JD, et al. Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers. Proc Natl Acad Sci U S A. 2017;114(38):10202–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Desmedt C, Brown DN, Szekely B, Smeets D, Szasz MA, Adnet P, Rothé F, Nagy Z, Farago Z, Tokes A, Zardavas D, Zoppoli G, Ignatiadis M, Pusztai L, Piccart M, Larsimont D, Lambrechts D, Kulka J, Sotiriou C. Unraveling breast cancer progression through geographical and temporal sequencing, in AACR 2014. San Diego; 2014.

    Google Scholar 

  98. Lee J, et al. A polycythemia vera JAK2 mutation masquerading as a duodenal cancer mutation. J Natl Compr Cancer Netw. 2016;14(12):1495–8.

    Article  Google Scholar 

  99. Steensma DP, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Guo S, et al. Identification of methylation haplotype blocks aids in deconvolution of heterogeneous tissue samples and tumor tissue-of-origin mapping from plasma DNA. Nat Genet. 2017;49(4):635–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. O'Driscoll L, et al. Feasibility and relevance of global expression profiling of gene transcripts in serum from breast cancer patients using whole genome microarrays and quantitative RT-PCR. Cancer Genomics Proteomics. 2008;5(2):94–104.

    PubMed  Google Scholar 

  102. Schutz E, et al. Graft-derived cell-free DNA, a noninvasive early rejection and graft damage marker in liver transplantation: a prospective, observational, multicenter cohort study. PLoS Med. 2017;14(4):e1002286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Simo-Servat O, Simo R, Hernandez C. Circulating biomarkers of diabetic retinopathy: an overview based on physiopathology. J Diabetes Res. 2016;2016:5263798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bradshaw G, et al. Dysregulated MicroRNA expression profiles and potential cellular, circulating and polymorphic biomarkers in Non-Hodgkin Lymphoma. Genes (Basel). 2016;7(12):130.

    Article  CAS  Google Scholar 

  105. Sapp RM, et al. Circulating microRNAs in acute and chronic exercise: more than mere biomarkers. J Appl Physiol (1985). 2017;122(3):702–17.

    Article  CAS  Google Scholar 

  106. Zonta E, Nizard P, Taly V. Assessment of DNA integrity, applications for cancer research. Adv Clin Chem. 2015;70:197–246.

    Article  PubMed  Google Scholar 

  107. Visvanathan K, et al. Monitoring of serum DNA methylation as an early independent marker of response and survival in metastatic breast cancer: TBCRC 005 prospective biomarker study. J Clin Oncol. 2017;35(7):751–8.

    Article  CAS  PubMed  Google Scholar 

  108. Tang Y, et al. Promoter DNA methylation analysis reveals a combined diagnosis of CpG-based biomarker for prostate cancer. Oncotarget. 2017;8(35):58199–209.

    Google Scholar 

  109. Hagrass HA, Pasha HF, Ali AM. Estrogen receptor alpha (ERalpha) promoter methylation status in tumor and serum DNA in Egyptian breast cancer patients. Gene. 2014;552(1):81–6.

    Article  CAS  PubMed  Google Scholar 

  110. Grumaz S, et al. Next-generation sequencing diagnostics of bacteremia in septic patients. Genome Med. 2016;8(1):73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shoham Y, et al. Admission cell free DNA as a prognostic factor in burns: quantification by use of a direct rapid fluorometric technique. Biomed Res Int. 2014;2014:306580.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Lam NY, et al. Time course of early and late changes in plasma DNA in trauma patients. Clin Chem. 2003;49(8):1286–91.

    Article  CAS  PubMed  Google Scholar 

  113. Hu Q, et al. Elevated levels of plasma mitochondrial DNA are associated with clinical outcome in intra-abdominal infections caused by severe trauma. Surg Infect. 2017;18:610.

    Article  Google Scholar 

  114. Long Y, et al. Diagnosis of sepsis with cell-free DNA by next-generation sequencing technology in ICU patients. Arch Med Res. 2016;47(5):365–71.

    Article  CAS  PubMed  Google Scholar 

  115. Hou YQ, et al. Branched DNA-based Alu quantitative assay for cell-free plasma DNA levels in patients with sepsis or systemic inflammatory response syndrome. J Crit Care. 2016;31(1):90–5.

    Article  CAS  PubMed  Google Scholar 

  116. Rainer TH, et al. Plasma beta-globin DNA as a prognostic marker in chest pain patients. Clin Chim Acta. 2006;368(1–2):110–3.

    Article  CAS  PubMed  Google Scholar 

  117. O’Connell GC, et al. Circulating extracellular DNA levels are acutely elevated in ischaemic stroke and associated with innate immune system activation. Brain Inj. 2017:1–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Ho Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hunter, N.B., Beaver, J.A., Park, B.H. (2019). Circulating Cell-Free DNA for Molecular Diagnostics and Therapeutic Monitoring. In: Netto, G., Kaul, K. (eds) Genomic Applications in Pathology. Springer, Cham. https://doi.org/10.1007/978-3-319-96830-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96830-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96829-2

  • Online ISBN: 978-3-319-96830-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics