Circulating Tumor Cells: Enrichment and Genomic Applications

  • Dorraya El-Ashry
  • Marija Balic
  • Richard J. CoteEmail author


Recent technical advances have led to an increased interest in the detection and molecular characterization of circulating tumor cells (CTCs). Evaluation of CTCs carries great potential as a tool in cancer patient management and prognostication. Numerous clinical trials on early and metastatic cancer are employing CTCs to evaluate the efficacy of systemic therapy. There is also an increasing interest in using CTCs for detailed molecular and cellular characterization of both well-characterized and novel biomarkers. However, technical challenges have limited the opportunity to deeply probe these rare events, particularly as they occur in a background of millions of normal cells. More recently, the identification of tumor stromal cells, such as cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs), circulating in cancer patient blood along with and in association with CTCs has both opened doors to understanding the roles of CTC-associated cells in metastasis as well as raised questions about how to capture and characterize these circulating stromal cells (cStCs). Better characterization of both CTCs and CTC-associated circulating cells should clearly lead to a better understanding of cancer progression, the effects of therapy, and the identification of novel therapeutic targets. CTC and CTC-cStC evaluation is expected to become more widely used in both clinical and research settings.


Circulating tumor cells Capture and enrichment Detection and enumeration Stromal cells Cancer-associated fibroblasts CTC clusters Circulating cancer stem cells Epithelial-mesenchymal transition Genomic profiling Live cell capture and propagation 


  1. 1.
    Malanchi I, et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 2012;481(7379):85–9.CrossRefGoogle Scholar
  2. 2.
    Aceto N, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell. 2014;158(5):1110–22.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Duda DG, et al. Malignant cells facilitate lung metastasis by bringing their own soil. Proc Natl Acad Sci U S A. 2010;107(50):21677–82.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Jansson S, et al. Prognostic impact of circulating tumor cell apoptosis and clusters in serial blood samples from patients with metastatic breast cancer in a prospective observational cohort. BMC Cancer. 2016;16:433.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mu Z, et al. Detection and characterization of circulating tumor associated cells in metastatic breast cancer. Int J Mol Sci. 2016;17(10).Google Scholar
  6. 6.
    Wang C, et al. Longitudinally collected CTCs and CTC-clusters and clinical outcomes of metastatic breast cancer. Breast Cancer Res Treat. 2017;161(1):83–94.CrossRefGoogle Scholar
  7. 7.
    Braun S, et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med. 2005;353(8):793–802.CrossRefGoogle Scholar
  8. 8.
    Campton DE, et al. High-recovery visual identification and single-cell retrieval of circulating tumor cells for genomic analysis using a dual-technology platform integrated with automated immunofluorescence staining. BMC Cancer. 2015;15:360.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Alix-Panabieres C, Pantel K. Circulating tumor cells: liquid biopsy of cancer. Clin Chem. 2013;59(1):110–8.CrossRefGoogle Scholar
  10. 10.
    Balic M, et al. Micrometastasis: detection methods and clinical importance. Cancer Biomark. 2010;9(1–6):397–419.PubMedGoogle Scholar
  11. 11.
    Lin H, et al. Disseminated and circulating tumor cells: role in effective cancer management. Crit Rev Oncol Hematol. 2011;77(1):1–11.CrossRefGoogle Scholar
  12. 12.
    Rawal S, et al. Identification and quantitation of circulating tumor cells. Annu Rev Anal Chem (Palo Alto, Calif). 2017;10(1):321–43.CrossRefGoogle Scholar
  13. 13.
    Gabriel MT, et al. Circulating tumor cells: a review of non-EpCAM-based approaches for cell enrichment and isolation. Clin Chem. 2016;62(4):571–81.CrossRefGoogle Scholar
  14. 14.
    Rosenberg R, et al. Comparison of two density gradient centrifugation systems for the enrichment of disseminated tumor cells in blood. Cytometry. 2002;49(4):150–8.CrossRefGoogle Scholar
  15. 15.
    Cote RJ, et al. Immunopathology of adrenal and renal cortical tumors. Coordinated change in antigen expression is associated with neoplastic conversion in the adrenal cortex. Am J Pathol. 1990;136(5):1077–84.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Cote RJ, et al. Role of immunohistochemical detection of lymph-node metastases in management of breast cancer. International Breast Cancer Study Group. Lancet. 1999;354(9182):896–900.CrossRefGoogle Scholar
  17. 17.
    Nagrath S, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450(7173):1235–9.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cristofanilli M, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351(8):781–91.CrossRefGoogle Scholar
  19. 19.
    Liu Z, et al. Negative enrichment by immunomagnetic nanobeads for unbiased characterization of circulating tumor cells from peripheral blood of cancer patients. J Transl Med. 2011;9:70.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lustberg M, et al. Emerging technologies for CTC detection based on depletion of normal cells. Recent Results Cancer Res. 2012;195:97–110.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Naume B, et al. Immunomagnetic techniques for the enrichment and detection of isolated breast carcinoma cells in bone marrow and peripheral blood. J Hematother. 1997;6(2):103–14.CrossRefGoogle Scholar
  22. 22.
    Iinuma H, et al. Detection of tumor cells in blood using CD45 magnetic cell separation followed by nested mutant allele-specific amplification of p53 and K-ras genes in patients with colorectal cancer. Int J Cancer. 2000;89(4):337–44.CrossRefGoogle Scholar
  23. 23.
    Maheswaran S, et al. Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med. 2008;359(4):366–77.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sequist LV, et al. The CTC-chip: an exciting new tool to detect circulating tumor cells in lung cancer patients. J Thorac Oncol. 2009;4(3):281–3.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Fleischer RL. Cancer filter deja vu. Science. 2007;318(5858):1864.CrossRefGoogle Scholar
  26. 26.
    Vona G, et al. Isolation by size of epithelial tumor cells : a new method for the immunomorphological and molecular characterization of circulating tumor cells. Am J Pathol. 2000;156(1):57–63.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Paterlini-Brechot P, Benali NL. Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett. 2007;253(2):180–204.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Vona G, et al. Impact of cytomorphological detection of circulating tumor cells in patients with liver cancer. Hepatology. 2004;39(3):792–7.CrossRefGoogle Scholar
  29. 29.
    Lin HK, et al. Portable filter-based microdevice for detection and characterization of circulating tumor cells. Clin Cancer Res. 2010;16(20):5011–8.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zheng S, et al. Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. J Chromatogr A. 2007;1162(2):154–61.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ao Z, et al. Identification of cancer-associated fibroblasts in circulating blood from patients with metastatic breast Cancer. Cancer Res. 2015;75(22):4681–7.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Farace F, et al. A direct comparison of CellSearch and ISET for circulating tumour-cell detection in patients with metastatic carcinomas. Br J Cancer. 2011;105(6):847–53.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Davis JA, et al. Deterministic hydrodynamics: taking blood apart. Proc Natl Acad Sci U S A. 2006;103(40):14779–84.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Huang LR, et al. Continuous particle separation through deterministic lateral displacement. Science. 2004;304(5673):987–90.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Inglis DW, et al. Critical particle size for fractionation by deterministic lateral displacement. Lab Chip. 2006;6(5):655–8.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wang XB, et al. Cell separation by dielectrophoretic field-flow-fractionation. Anal Chem. 2000;72(4):832–9.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Becker FF, et al. Separation of human breast cancer cells from blood by differential dielectric affinity. Proc Natl Acad Sci U S A. 1995;92(3):860–4.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Gascoyne PR, et al. Dielectrophoretic separation of cancer cells from blood. IEEE Trans Ind Appl. 1997;33(3):670–8.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Balic M, et al. Novel immunofluorescence protocol for multimarker assessment of putative disseminating breast cancer stem cells. Appl Immunohistochem Mol Morphol. 2011;19(1):33–40.CrossRefGoogle Scholar
  40. 40.
    Raimondi C, et al. Epithelial-mesenchymal transition and stemness features in circulating tumor cells from breast cancer patients. Breast Cancer Res Treat. 2011;130(2):449–55.CrossRefGoogle Scholar
  41. 41.
    Cote RJ, et al. Detection of occult bone marrow micrometastases in patients with operable lung carcinoma. Ann Surg. 1995;222(4):415–23. discussion 423-5CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Bartkowiak K, et al. Discovery of a novel unfolded protein response phenotype of cancer stem/progenitor cells from the bone marrow of breast cancer patients. J Proteome Res. 2010;9(6):3158–68.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Tlsty TD. Stromal cells can contribute oncogenic signals. Semin Cancer Biol. 2001;11(2):97–104.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Allinen M, et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell. 2004;6(1):17–32.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Nguyen DX, Bos PD, Massague J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009;9(4):274–U65.CrossRefGoogle Scholar
  46. 46.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6(5):392–401.CrossRefGoogle Scholar
  48. 48.
    Orimo A, Weinberg RA. Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle. 2006;5(15):1597–601.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Jones ML, et al. Circulating fibroblast-like cells in men with metastatic prostate cancer. Prostate. 2013;73(2):176–81.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Adams DL, et al. Circulating giant macrophages as a potential biomarker of solid tumors. Proc Natl Acad Sci U S A. 2014;111(9):3514–9.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Nagaraj S, Gabrilovich DI. Myeloid-derived suppressor cells in human cancer. Cancer J. 2010;16(4):348–53.CrossRefGoogle Scholar
  53. 53.
    Drews-Elger K, et al. Infiltrating S100A8+ myeloid cells promote metastatic spread of human breast cancer and predict poor clinical outcome. Breast Cancer Res Treat. 2014;148(1):41–59.CrossRefGoogle Scholar
  54. 54.
    Azizi E, Wicha MS. Cancer stem cells–the evidence accumulates. Clin Chem. 2013;59(1):205–7.Google Scholar
  55. 55.
    Ginestier C, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Al-Hajj M, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Wang S, et al. CD133+ cancer stem cells in lung cancer. Front Biosci. 2013;18:447–53.CrossRefGoogle Scholar
  58. 58.
    Singh SK, et al. Cancer stem cells in nervous system tumors. Oncogene. 2004;23(43):7267–73.CrossRefGoogle Scholar
  59. 59.
    Schardt JA, et al. Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell. 2005;8(3):227–39.CrossRefGoogle Scholar
  60. 60.
    Cote RJ. Occult metastases: real harm or false alarm? J Thorac Cardiovasc Surg. 2003;126(2):332–3.CrossRefGoogle Scholar
  61. 61.
    Balic M, et al. Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res. 2006;12(19):5615–21.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Duru N, et al. HER2-associated radiation resistance of breast cancer stem cells isolated from HER2-negative breast cancer cells. Clin Cancer Res. 2012;18:6634.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Fillmore CM, Kuperwasser C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res. 2008;10(2):R25.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kakarala M, Wicha MS. Implications of the cancer stem-cell hypothesis for breast cancer prevention and therapy. J Clin Oncol. 2008;26(17):2813–20.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Abraham BK, et al. Prevalence of CD44+/CD24−/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res. 2005;11(3):1154–9.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Wicha MS. Cancer stem cells and metastasis: lethal seeds. Clin Cancer Res. 2006;12(19):5606–7.CrossRefGoogle Scholar
  67. 67.
    Giuliano AE, et al. Association of occult metastases in sentinel lymph nodes and bone marrow with survival among women with early-stage invasive breast cancer. JAMA. 2011;306(4):385–93.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Reuben JM, et al. Primary breast cancer patients with high risk clinicopathologic features have high percentages of bone marrow epithelial cells with ALDH activity and CD44CD24lo cancer stem cell phenotype. Eur J Cancer. 2011;47(10):1527–36.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Theodoropoulos PA, et al. Circulating tumor cells with a putative stem cell phenotype in peripheral blood of patients with breast cancer. Cancer Lett. 2010;288(1):99–106.CrossRefGoogle Scholar
  70. 70.
    Wang N, et al. Detection of circulating tumor cells and tumor stem cells in patients with breast cancer by using flow cytometry : a valuable tool for diagnosis and prognosis evaluation. Tumour Biol. 2012;33(2):561–9.CrossRefGoogle Scholar
  71. 71.
    Lim J, Thiery JP. Epithelial-mesenchymal transitions: insights from development. Development. 2012;139(19):3471–86.CrossRefGoogle Scholar
  72. 72.
    Lee K, Nelson CM. New insights into the regulation of epithelial-mesenchymal transition and tissue fibrosis. Int Rev Cell Mol Biol. 2012;294:171–221.CrossRefGoogle Scholar
  73. 73.
    Aktas B, et al. Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res. 2009;11(4):R46.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Ignatiadis M, et al. Prognostic value of the molecular detection of circulating tumor cells using a multimarker reverse transcription-PCR assay for cytokeratin 19, mammaglobin a, and HER2 in early breast cancer. Clin Cancer Res. 2008;14(9):2593–600.CrossRefGoogle Scholar
  75. 75.
    Yu M, et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. 2013;339(6119):580–4.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Mani SA, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Morel AP, et al. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One. 2008;3(8):e2888.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Wellner U, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 2009;11(12):1487–95.CrossRefGoogle Scholar
  79. 79.
    Scheel C, Weinberg RA. Phenotypic plasticity and epithelial-mesenchymal transitions in cancer and normal stem cells? Int J Cancer. 2011;129(10):2310–4.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Tiran V, et al. Primary patient-derived lung adenocarcinoma cell culture challenges the association of cancer stem cells with epithelial-to-mesenchymal transition. Sci Rep. 2017;7(1):10040.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Friedlein R, et al. Solution-processed, highly-oriented supramolecular architectures of functionalized porphyrins with extended electronic states. Chem Commun (Camb). 2005;15:1974–6.CrossRefGoogle Scholar
  82. 82.
    Cheung KJ, et al. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc Natl Acad Sci U S A. 2016;113(7):E854–63.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Jolly MK, et al. Inflammatory breast cancer: a model for investigating cluster-based dissemination. NPJ Breast Cancer. 2017;3:21.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Hou JM, et al. Circulating tumor cells as a window on metastasis biology in lung cancer. Am J Pathol. 2011;178(3):989–96.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    May CD, et al. Epithelial-mesenchymal transition and cancer stem cells: a dangerously dynamic duo in breast cancer progression. Breast Cancer Res. 2011;13(1):202.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Lorico A, Rappa G. Phenotypic heterogeneity of breast cancer stem cells. J Oncol. 2011;2011:135039.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Fehm T, et al. Determination of HER2 status using both serum HER2 levels and circulating tumor cells in patients with recurrent breast cancer whose primary tumor was HER2 negative or of unknown HER2 status. Breast Cancer Res. 2007;9(5):R74.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Fehm T, et al. HER2 status of circulating tumor cells in patients with metastatic breast cancer: a prospective, multicenter trial. Breast Cancer Res Treat. 2010;124(2):403–12.CrossRefGoogle Scholar
  89. 89.
    Tobin LA, et al. Targeting abnormal DNA repair in therapy-resistant breast cancers. Mol Cancer Res. 2012;10(1):96–107.CrossRefGoogle Scholar
  90. 90.
    Liedtke C, et al. Prognostic impact of discordance between triple-receptor measurements in primary and recurrent breast cancer. Ann Oncol. 2009;20(12):1953–8.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Nogami T, et al. The discordance between primary breast cancer lesions and pulmonary metastatic lesions in expression of aldehyde dehydrogenase 1-positive cancer cells. Breast Cancer. 2014;21(6):698–702.Google Scholar
  92. 92.
    Chakrabarty A, et al. Trastuzumab-resistant cells rely on a HER2-PI3K-FoxO-survivin axis and are sensitive to PI3K inhibitors. Cancer Res. 2013;73(3):1190–200.CrossRefGoogle Scholar
  93. 93.
    Sun YF, et al. Circulating tumor cells: advances in detection methods, biological issues, and clinical relevance. J Cancer Res Clin Oncol. 2011;137(8):1151–73.CrossRefGoogle Scholar
  94. 94.
    Klein CA. Parallel progression of primary tumours and metastases. Nat Rev Cancer. 2009;9(4):302–12.CrossRefGoogle Scholar
  95. 95.
    Klein CA, et al. Combined transcriptome and genome analysis of single micrometastatic cells. Nat Biotechnol. 2002;20(4):387–92.CrossRefGoogle Scholar
  96. 96.
    Husemann Y, et al. Systemic spread is an early step in breast cancer. Cancer Cell. 2008;13(1):58–68.CrossRefGoogle Scholar
  97. 97.
    Stoecklein NH, Klein CA. Genetic disparity between primary tumours, disseminated tumour cells, and manifest metastasis. Int J Cancer. 2010;126(3):589–98.CrossRefGoogle Scholar
  98. 98.
    Magbanua MJ, et al. Genomic profiling of isolated circulating tumor cells from metastatic breast cancer patients. Cancer Res. 2013;73(1):30–40.CrossRefGoogle Scholar
  99. 99.
    Fridlyand J, et al. Breast tumor copy number aberration phenotypes and genomic instability. BMC Cancer. 2006;6:96.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Paris PL, et al. Functional phenotyping and genotyping of circulating tumor cells from patients with castration resistant prostate cancer. Cancer Lett. 2009;277(2):164–73.CrossRefGoogle Scholar
  101. 101.
    Magbanua MJ, et al. Isolation and genomic analysis of circulating tumor cells from castration resistant metastatic prostate cancer. BMC Cancer. 2012;12:78.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Heitzer E, et al. Establishment of tumor-specific copy number alterations from plasma DNA of patients with cancer. Int J Cancer. 2013;133(2):346–56.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    van Beers EH, et al. A multiplex PCR predictor for aCGH success of FFPE samples. Br J Cancer. 2006;94(2):333–7.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Amado RG, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26(10):1626–34.CrossRefGoogle Scholar
  105. 105.
    Paez JG, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304(5676):1497–500.CrossRefGoogle Scholar
  106. 106.
    Punnoose EA, et al. Molecular biomarker analyses using circulating tumor cells. PLoS One. 2010;5(9):e12517.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Dharmasiri U, et al. High-throughput selection, enumeration, electrokinetic manipulation, and molecular profiling of low-abundance circulating tumor cells using a microfluidic system. Anal Chem. 2011;83(6):2301–9.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Yang MJ, et al. Enhancing detection of circulating tumor cells with activating KRAS oncogene in patients with colorectal cancer by weighted chemiluminescent membrane array method. Ann Surg Oncol. 2010;17(2):624–33.CrossRefGoogle Scholar
  109. 109.
    Mostert B, et al. KRAS and BRAF mutation status in circulating colorectal tumor cells and their correlation with primary and metastatic tumor tissue. Int J Cancer. 2013;133(1):130–41.CrossRefGoogle Scholar
  110. 110.
    Jiang Y, et al. Detection of androgen receptor mutations in circulating tumor cells in castration-resistant prostate cancer. Clin Chem. 2010;56(9):1492–5.CrossRefGoogle Scholar
  111. 111.
    Smirnov DA, et al. Global gene expression profiling of circulating tumor cells. Cancer Res. 2005;65(12):4993–7.CrossRefGoogle Scholar
  112. 112.
    Barbazan J, et al. Molecular characterization of circulating tumor cells in human metastatic colorectal cancer. PLoS One. 2012;7(7):e40476.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Sieuwerts AM, et al. mRNA and microRNA expression profiles in circulating tumor cells and primary tumors of metastatic breast cancer patients. Clin Cancer Res. 2011;17(11):3600–18.CrossRefGoogle Scholar
  114. 114.
    Munzone E, et al. Changes of HER2 status in circulating tumor cells compared with the primary tumor during treatment for advanced breast cancer. Clin Breast Cancer. 2010;10(5):392–7.CrossRefGoogle Scholar
  115. 115.
    Cayrefourcq L, et al. Establishment and characterization of a cell line from human circulating colon cancer cells. Cancer Res. 2015;75(5):892–901.CrossRefGoogle Scholar
  116. 116.
    Yu M, et al. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science. 2014;345(6193):216–20.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Gao D, et al. Organoid cultures derived from patients with advanced prostate cancer. Cell. 2014;159(1):176–87.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Zhang Z, et al. Expansion of CTCs from early stage lung cancer patients using a microfluidic co-culture model. Oncotarget. 2014;5(23):12383–97.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Jordan NV, et al. HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature. 2016;537(7618):102–6.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Cheung KJ, Ewald AJ. A collective route to metastasis: seeding by tumor cell clusters. Science. 2016;352(6282):167–9.CrossRefGoogle Scholar
  121. 121.
    Hodgkinson CL, et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat Med. 2014;20(8):897–903.CrossRefGoogle Scholar
  122. 122.
    Powell AA, et al. Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS One. 2012;7(5):e33788.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Ao Z, et al. Thermoresponsive release of viable microfiltrated circulating tumor cells (CTCs) for precision medicine applications. Lab Chip. 2015;15(22):4277–82.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Engler AJ, et al. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Pelham RJ, Wang YL. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A. 1997;94(25):13661–5.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Zeng YY, et al. Substrate stiffness regulates B-cell activation, proliferation, class switch, and T-cell-independent antibody responses in vivo. Eur J Immunol. 2015;45(6):1621–34.CrossRefGoogle Scholar
  127. 127.
    Narayanan K, et al. Extracellular matrix-mediated differentiation of human embryonic stem cells: differentiation to insulin-secreting beta cells. Tissue Eng Part A. 2014;20(1–2):424–33.CrossRefGoogle Scholar
  128. 128.
    Engler AJ, et al. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol. 2004;166(6):877–87.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Schrader J, et al. Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology. 2011;53(4):1192–205.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Tilghman RW, et al. Matrix rigidity regulates cancer cell growth and cellular phenotype. PLoS One. 2010;5(9):e12905.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Butcher DT, Alliston T, Weaver VM. A tense situation: forcing tumour progression. Nat Rev Cancer. 2009;9(2):108–22.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Caplan AI, Correa D. PDGF in bone formation and regeneration: new insights into a novel mechanism involving MSCs. J Orthop Res. 2011;29(12):1795–803.CrossRefGoogle Scholar
  133. 133.
    Correa D, et al. Mesenchymal stem cells regulate melanoma cancer cells extravasation to bone and liver at their perivascular niche. Int J Cancer. 2016;138(2):417–27.CrossRefGoogle Scholar
  134. 134.
    Correa D. Mesenchymal stem cells during tumor formation and dissemination. Curr Stem Cell Rep. 2016;2(2):174–82.CrossRefGoogle Scholar
  135. 135.
    Nguyen DX, Bos PD, Massague J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009;9(4):274–84.CrossRefGoogle Scholar
  136. 136.
    Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239–52.CrossRefGoogle Scholar
  137. 137.
    Dominici M, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.CrossRefGoogle Scholar
  138. 138.
    Kang Y, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003;3(6):537–49.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Caplan AI. Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng. 2005;11(7–8):1198–211.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9(5):641–50.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Sacchetti B, et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007;131(2):324–36.CrossRefGoogle Scholar
  142. 142.
    da Silva Meirelles L, Caplan AI, Nardi NB. In search of the in vivo identity of mesenchymal stem cells. Stem Cells. 2008;26(9):2287–99.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Dorraya El-Ashry
    • 1
  • Marija Balic
    • 2
  • Richard J. Cote
    • 3
    Email author
  1. 1.Department of Laboratory Medicine and Pathology, Masonic Comprehensive Cancer CenterUniversity of MinnesotaMinneapolisUSA
  2. 2.Division of Oncology, Department of Internal MedicineMedical University of GrazGrazAustria
  3. 3.Department of PathologyUniversity of Miami Miller School of MedicineMiamiUSA

Personalised recommendations