Skip to main content

miRNA Expression Assays

  • Chapter
  • First Online:

Abstract

MicroRNAs (miRNAs) are small noncoding RNAs able to modulate at transcriptional level the expression of their target genes. Deregulations in miRNA expression profiles have been associated with pathological phenotypes, a fact that promotes the possible evaluation of these sequences for diagnosis and prognosis and newly as therapeutic tools. In this sense, evaluation of miRNA expression has come to play an important role in the research field with the potential of translational relevance in the clinical area. In this chapter, we provide an overview of several of the most recently developed assays, methods, and technologies used to identify, characterize, and confirm miRNA expression in human pathologies. We also outline principal workflows for different preparations of biological samples, taking into account advantages and disadvantages of each approach. Furthermore, we discuss the diagnostic and therapeutic efficacy of miRNAs as well as their future roles in personalized medicine, from a technical perspective.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74.

    Article  CAS  PubMed  Google Scholar 

  2. Enfield KSS, Pikor LA, Martinez VD, Lam WL. Mechanistic roles of noncoding RNAs in lung cancer biology and their clinical implications. Genet Res Int. 2012;2012:16.

    Google Scholar 

  3. Shah MY, Calin GA. The mix of two worlds: non-coding RNAs and hormones. Nucleic Acid Ther. 2013;23(1):2–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Redis RS, Calin S, Yang Y, You MJ, Calin GA. Cell-to-cell miRNA transfer: from body homeostasis to therapy. Pharmacol Ther. 2012;136(2):169–74.

    Article  CAS  PubMed  Google Scholar 

  5. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–11.

    Article  CAS  PubMed  Google Scholar 

  6. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  7. Negrini M, Nicoloso MS, Calin GA. MicroRNAs and cancer–new paradigms in molecular oncology. Curr Opin Cell Biol. 2009;21(3):470–9.

    Article  CAS  PubMed  Google Scholar 

  8. Eastlack S, Alahari S. MicroRNA and breast cancer: understanding pathogenesis, improving management. Non-Coding RNA. 2015;1(1):17.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Irimie AI, Braicu C, Cojocneanu-Petric R, Berindan-Neagoe I, Campian RS. Novel technologies for oral squamous carcinoma biomarkers in diagnostics and prognostics. Acta Odontol Scand. 2015;73(3):161–8.

    Article  CAS  PubMed  Google Scholar 

  10. Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Genet. 2012;13(5):358–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Berindan-Neagoe I, Monroig Pdel C, Pasculli B, Calin GA. MicroRNAome genome: a treasure for cancer diagnosis and therapy. CA Cancer J Clin. 2014;64(5):311–36.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Braicu C, Catana C, Calin GA, Berindan-Neagoe I. NCRNA combined therapy as future treatment option for cancer. Curr Pharm Des. 2014;20(42):6565–74.

    Article  CAS  PubMed  Google Scholar 

  13. Catana CS, Calin GA, Berindan-Neagoe I. Inflamma-miRs in aging and breast cancer: are they reliable players? Front Med. 2015;2:85.

    Article  Google Scholar 

  14. Etheridge A, Lee I, Hood L, Galas D, Wang K. Extracellular microRNA: a new source of biomarkers. Mutat Res. 2011;717(1–2):85–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Krichevsky AM. MicroRNA profiling: from dark matter to white matter, or identifying new players in neurobiology. Sci World J. 2007;7:155–66.

    Article  Google Scholar 

  16. Berindan-Neagoe I, Calin GA. Molecular pathways: microRNAs, cancer cells, and microenvironment. Clin Cancer Res. 2014;20(24):6247–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Braicu C, Calin GA, Berindan-Neagoe I. MicroRNAs and cancer therapy – from bystanders to major players. Curr Med Chem. 2013;20(29):3561–73.

    Article  CAS  PubMed  Google Scholar 

  18. Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB, et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol. 2007;17(15):1298–307.

    Article  CAS  PubMed  Google Scholar 

  19. Mendell JT, Olson EN. MicroRNAs in stress signaling and human disease. Cell. 2012;148(6):1172–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shi XB, Xue L, Yang J, Ma AH, Zhao J, Xu M, Tepper CG, Evans CP, Kung HJ, deVere White RW. An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci U S A. 2007;104(50):19983–8.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cao P, Deng Z, Wan M, Huang W, Cramer SD, Xu J, Lei M, Sui G. MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1alpha/HIF-1beta. Mol Cancer. 2010;9:108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Poliseno L, Salmena L, Riccardi L, Fornari A, Song MS, Hobbs RM, Sportoletti P, Varmeh S, Egia A, Fedele G, et al. Identification of the miR-106b~25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal. 2010;3(117):ra29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zaman MS, Thamminana S, Shahryari V, Chiyomaru T, Deng G, Saini S, Majid S, Fukuhara S, Chang I, Arora S, et al. Inhibition of PTEN gene expression by oncogenic miR-23b-3p in renal cancer. PLoS One. 2012;7(11):e50203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mlcochova H, Hezova R, Stanik M, Slaby O. Urine microRNAs as potential noninvasive biomarkers in urologic cancers. Urol Oncol. 2014;32(1):41.e41–9.

    Article  CAS  Google Scholar 

  25. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101(9):2999–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang BF, Lu YJ, Wang ZG. MicroRNA and disease associations. Clin Exp Pharmacol Physiol. 2009;36(10):951–60.

    Article  CAS  PubMed  Google Scholar 

  27. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99(24):15524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A. 2005;102(39):13944–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M, et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 2005;353(17):1793–801.

    Article  CAS  PubMed  Google Scholar 

  30. Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V, Volinia S, Alder H, Liu CG, Rassenti L, et al. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res. 2006;66(24):11590–3.

    Article  CAS  PubMed  Google Scholar 

  31. Calin GA, Pekarsky Y, Croce CM. The role of microRNA and other non-coding RNA in the pathogenesis of chronic lymphocytic leukemia. Best Pract Res Clin Haematol. 2007;20(3):425–37.

    Article  CAS  PubMed  Google Scholar 

  32. Rossi S, Shimizu M, Barbarotto E, Nicoloso MS, Dimitri F, Sampath D, Fabbri M, Lerner S, Barron LL, Rassenti LZ, et al. microRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival. Blood. 2010;116(6):945–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–66.

    Article  CAS  PubMed  Google Scholar 

  34. Wang JL, Hu Y, Kong X, Wang ZH, Chen HY, Xu J, Fang JY. Candidate microRNA biomarkers in human gastric cancer: a systematic review and validation study. PLoS One. 2013;8(9):e73683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang Y, Li J, Tong L, Zhang J, Zhai A, Xu K, Wei L, Chu M. The prognostic value of miR-21 and miR-155 in non-small-cell lung cancer: a meta-analysis. Jpn J Clin Oncol. 2013;43(8):813–20.

    Article  PubMed  Google Scholar 

  36. Faruq O, Vecchione A. microRNA: diagnostic perspective. Front Med. 2015;2:51.

    Article  Google Scholar 

  37. Menendez P, Padilla D, Villarejo P, Palomino T, Nieto P, Menendez JM, Rodriguez-Montes JA. Prognostic implications of serum microRNA-21 in colorectal cancer. J Surg Oncol. 2013;108(6):369–73.

    Article  CAS  PubMed  Google Scholar 

  38. Lee JA, Lee HY, Lee ES, Kim I, Bae JW. Prognostic implications of MicroRNA-21 overexpression in invasive ductal carcinomas of the breast. J Breast Cancer. 2011;14(4):269–75.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S, Yoshida Y, Seto M. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 2004;64(9):3087–95.

    Article  CAS  PubMed  Google Scholar 

  40. Goblirsch M, Richtig G, Slaby O, Berindan-Neagoe I, Gerger A, Pichler M. MicroRNAs as a tool to aid stratification of colorectal cancer patients and to guide therapy. Pharmacogenomics. 2017;18(10):1027–38.

    Article  CAS  PubMed  Google Scholar 

  41. Leichter AL, Sullivan MJ, Eccles MR, Chatterjee A. MicroRNA expression patterns and signalling pathways in the development and progression of childhood solid tumours. Mol Cancer. 2017;16:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chang CC, Yang YJ, Li YJ, Chen ST, Lin BR, Wu TS, Lin SK, Kuo MY, Tan CT. MicroRNA-17/20a functions to inhibit cell migration and can be used a prognostic marker in oral squamous cell carcinoma. Oral Oncol. 2013;49(9):923–31.

    Article  CAS  PubMed  Google Scholar 

  43. Gao X, Zhang R, Qu X, Zhao M, Zhang S, Wu H, Jianyong L, Chen L. MiR-15a, miR-16-1 and miR-17-92 cluster expression are linked to poor prognosis in multiple myeloma. Leuk Res. 2012;36(12):1505–9.

    Article  CAS  PubMed  Google Scholar 

  44. Yu G, Tang JQ, Tian ML, Li H, Wang X, Wu T, Zhu J, Huang SJ, Wan YL. Prognostic values of the miR-17-92 cluster and its paralogs in colon cancer. J Surg Oncol. 2012;106(3):232–7.

    Article  CAS  PubMed  Google Scholar 

  45. Butz H, Nofech-Mozes R, Ding Q, Khella HWZ, Szabo PM, Jewett M, Finelli A, Lee J, Ordon M, Stewart R, et al. Exosomal microRNAs are diagnostic biomarkers and can mediate cell-cell communication in renal cell carcinoma. Eur Urol Focus. 2016;2(2):210–8.

    Article  PubMed  Google Scholar 

  46. Hanke M, Hoefig K, Merz H, Feller AC, Kausch I, Jocham D, Warnecke JM, Sczakiel G. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol. 2010;28(6):655–61.

    Article  CAS  PubMed  Google Scholar 

  47. Van Roosbroeck K, Fanini F, Setoyama T, Ivan C, Rodriguez-Aguayo C, Fuentes-Mattei E, Xiao L, Vannini I, Redis RS, D'Abundo L, et al. Combining anti-miR-155 with chemotherapy for the treatment of lung cancers. Clin Cancer Res. 2017;23(11):2891–904.

    Article  CAS  PubMed  Google Scholar 

  48. Blower PE, Chung JH, Verducci JS, Lin S, Park JK, Dai Z, Liu CG, Schmittgen TD, Reinhold WC, Croce CM, et al. MicroRNAs modulate the chemosensitivity of tumor cells. Mol Cancer Ther. 2008;7(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  49. Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak VP, Chekhun VF, Pogribny IP. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther. 2008;7(7):2152–9.

    Article  CAS  PubMed  Google Scholar 

  50. Xu K, Liang X, Shen K, Sun L, Cui D, Zhao Y, Tian J, Ni L, Liu J. MiR-222 modulates multidrug resistance in human colorectal carcinoma by down-regulating ADAM-17. Exp Cell Res. 2012;318(17):2168–77.

    Article  CAS  PubMed  Google Scholar 

  51. Zhong S, Li W, Chen Z, Xu J, Zhao J. MiR-222 and miR-29a contribute to the drug-resistance of breast cancer cells. Gene. 2013;531(1):8–14.

    Article  CAS  PubMed  Google Scholar 

  52. Yu PN, Yan MD, Lai HC, Huang RL, Chou YC, Lin WC, Yeh LT, Lin YW. Downregulation of miR-29 contributes to cisplatin resistance of ovarian cancer cells. Int J Cancer. 2014;134(3):542–51.

    Article  CAS  PubMed  Google Scholar 

  53. Chen Y, Ke G, Han D, Liang S, Yang G, Wu X. MicroRNA-181a enhances the chemoresistance of human cervical squamous cell carcinoma to cisplatin by targeting PRKCD. Exp Cell Res. 2014;320(1):12–20.

    Article  CAS  PubMed  Google Scholar 

  54. Ke G, Liang L, Yang JM, Huang X, Han D, Huang S, Zhao Y, Zha R, He X, Wu X. MiR-181a confers resistance of cervical cancer to radiation therapy through targeting the pro-apoptotic PRKCD gene. Oncogene. 2013;32(25):3019–27.

    Article  CAS  PubMed  Google Scholar 

  55. Woyengo TA, Ramprasath VR, Jones PJ. Anticancer effects of phytosterols. Eur J Clin Nutr. 2009;63(7):813–20.

    Article  CAS  PubMed  Google Scholar 

  56. Yu X, Chen Y, Tian R, Li J, Li H, Lv T, Yao Q. miRNA-21 enhances chemoresistance to cisplatin in epithelial ovarian cancer by negatively regulating PTEN. Oncol Lett. 2017;14(2):1807–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Son JW. Year-in-review of lung cancer. Tuberc Respir Dis. 2012;73(3):137–42.

    Article  Google Scholar 

  58. Kita Y, Vincent K, Natsugoe S, Berindan-Neagoe I, Calin GA. Epigenetically regulated microRNAs and their prospect in cancer diagnosis. Expert Rev Mol Diagn. 2014;14(6):673–83.

    Article  CAS  PubMed  Google Scholar 

  59. Strmsek Z, Kunej T. MicroRNA silencing by DNA methylation in human cancer: a literature analysis. Non-Coding RNA. 2015;1(1):44.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Irimie AI, Ciocan C, Gulei D, Mehterov N, Atanasov AG, Dudea D, Berindan-Neagoe I. Current insights into oral cancer epigenetics. Int J Mol Sci. 2018;19(3):670.

    Article  CAS  PubMed Central  Google Scholar 

  61. Wong KY, Yim RL, Kwong YL, Leung CY, Hui PK, Cheung F, Liang R, Jin DY, Chim CS. Epigenetic inactivation of the MIR129-2 in hematological malignancies. J Hematol Oncol. 2013;6:16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lu CY, Lin KY, Tien MT, Wu CT, Uen YH, Tseng TL. Frequent DNA methylation of MiR-129-2 and its potential clinical implication in hepatocellular carcinoma. Genes Chromosomes Cancer. 2013;52(7):636–43.

    CAS  PubMed  Google Scholar 

  63. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A. 2007;104(40):15805–10.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Chen H, Xu Z. Hypermethylation-associated silencing of miR-125a and miR-125b: a potential marker in colorectal cancer. Dis Markers. 2015;2015:345080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang Z, Chang C, Peng M, Lu Q. Translating epigenetics into clinic: focus on lupus. Clin Epigenetics. 2017;9:78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Suzuki H, Maruyama R, Yamamoto E, Kai M. Epigenetic alteration and microRNA dysregulation in cancer. Front Genet. 2013;4:258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Scott GK, Mattie MD, Berger CE, Benz SC, Benz CC. Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res. 2006;66(3):1277–81.

    Article  CAS  PubMed  Google Scholar 

  68. Roccaro AM, Sacco A, Jia X, Azab AK, Maiso P, Ngo HT, Azab F, Runnels J, Quang P, Ghobrial IM. microRNA-dependent modulation of histone acetylation in Waldenström macroglobulinemia. Blood. 2010;116(9):1506–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gong A-Y, Eischeid AN, Xiao J, Zhao J, Chen D, Wang Z-Y, Young CYF, Chen X-M. miR-17-5p targets the p300/CBP-associated factor and modulates androgen receptor transcriptional activity in cultured prostate cancer cells. BMC Cancer. 2012;12:492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sacco J, Adeli K. MicroRNAs: emerging roles in lipid and lipoprotein metabolism. Curr Opin Lipidol. 2012;23(3):220–5.

    Article  CAS  PubMed  Google Scholar 

  71. Romao JM, Jin W, Dodson MV, Hausman GJ, Moore SS, Guan LL. MicroRNA regulation in mammalian adipogenesis. Exp Biol Med (Maywood, NJ). 2011;236(9):997–1004.

    Article  CAS  Google Scholar 

  72. Ortega FJ, Mercader JM, Catalan V, Moreno-Navarrete JM, Pueyo N, Sabater M, Gomez-Ambrosi J, Anglada R, Fernandez-Formoso JA, Ricart W, et al. Targeting the circulating microRNA signature of obesity. Clin Chem. 2013;59(5):781–92.

    Article  CAS  PubMed  Google Scholar 

  73. McGregor RA, Choi MS. microRNAs in the regulation of adipogenesis and obesity. Curr Mol Med. 2011;11(4):304–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen Z, Shi H, Sun S, Xu H, Cao D, Luo J. MicroRNA-181b suppresses TAG via target IRS2 and regulating multiple genes in the Hippo pathway. Exp Cell Res. 2016;348(1):66–74.

    Article  CAS  PubMed  Google Scholar 

  75. Chu B, Wu T, Miao L, Mei Y, Wu M. MiR-181a regulates lipid metabolism via IDH1. Sci Rep. 2015;5:8801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li H, Chen X, Guan L, Qi Q, Shu G, Jiang Q, Yuan L, Xi Q, Zhang Y. MiRNA-181a regulates Adipogenesis by targeting tumor necrosis factor-α (TNF-α) in the porcine model. PLoS One. 2013;8(10):e71568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ouyang D, Xu L, Zhang L, Guo D, Tan X, Yu X, Qi J, Ye Y, Liu Q, Ma Y, et al. MiR-181a-5p regulates 3T3-L1 cell adipogenesis by targeting Smad7 and Tcf7l2. Acta Biochim Biophys Sin. 2016;48(11):1034–41.

    Article  CAS  PubMed  Google Scholar 

  78. Ono K, Kuwabara Y, Han J. MicroRNAs and cardiovascular diseases. FEBS J. 2011;278(10):1619–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Thum T, Catalucci D, Bauersachs J. MicroRNAs: novel regulators in cardiac development and disease. Cardiovasc Res. 2008;79(4):562–70.

    Article  CAS  PubMed  Google Scholar 

  80. Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13(5):613–8.

    Article  CAS  PubMed  Google Scholar 

  81. Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H, et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat Med. 2007;13(4):486–91.

    Article  CAS  PubMed  Google Scholar 

  82. Oliveira-Carvalho V, da Silva MM, Guimaraes GV, Bacal F, Bocchi EA. MicroRNAs: new players in heart failure. Mol Biol Rep. 2013;40(3):2663–70.

    Article  CAS  PubMed  Google Scholar 

  83. Fichtlscherer S, Zeiher AM, Dimmeler S. Circulating microRNAs: biomarkers or mediators of cardiovascular diseases? Arterioscler Thromb Vasc Biol. 2011;31(11):2383–90.

    Article  CAS  PubMed  Google Scholar 

  84. Zhu J, Yao K, Wang Q, Guo J, Shi H, Ma L, Liu H, Gao W, Zou Y, Ge J. Circulating miR-181a as a potential novel biomarker for diagnosis of acute myocardial infarction. Cell Physiol Biochem. 2016;40(6):1591–602.

    Article  CAS  PubMed  Google Scholar 

  85. Hu R, O’Connell RM. MicroRNA control in the development of systemic autoimmunity. Arthritis Res Ther. 2013;15(1):202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Meisgen F, Xu N, Wei T, Janson PC, Obad S, Broom O, Nagy N, Kauppinen S, Kemeny L, Stahle M, et al. MiR-21 is up-regulated in psoriasis and suppresses T cell apoptosis. Exp Dermatol. 2012;21(4):312–4.

    Article  CAS  PubMed  Google Scholar 

  87. Mi QS, He HZ, Dong Z, Isales C, Zhou L. microRNA deficiency in pancreatic islet cells exacerbates streptozotocin-induced murine autoimmune diabetes. Cell Cycle. 2010;9(15):3127–9.

    Article  CAS  PubMed  Google Scholar 

  88. Yoshizawa JM, Wong DT. Salivary microRNAs and oral cancer detection. Methods Mol Biol (Clifton, NJ). 2013;936:313–24.

    Article  CAS  Google Scholar 

  89. Allegra A, Alonci A, Campo S, Penna G, Petrungaro A, Gerace D, Musolino C. Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer (review). Int J Oncol. 2012;41(6):1897–912.

    Article  CAS  PubMed  Google Scholar 

  90. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9(3):189–98.

    Article  CAS  PubMed  Google Scholar 

  91. Li J, Smyth P, Flavin R, Cahill S, Denning K, Aherne S, Guenther SM, O’Leary JJ, Sheils O. Comparison of miRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded (FFPE) cells and snap frozen cells. BMC Biotechnol. 2007;7:36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu A, Xu X. MicroRNA isolation from formalin-fixed, paraffin-embedded tissues. Methods Mol Biol (Clifton, NJ). 2011;724:259–67.

    Article  CAS  Google Scholar 

  93. Nelson PT, Wang WX, Wilfred BR, Tang G. Technical variables in high-throughput miRNA expression profiling: much work remains to be done. Biochim Biophys Acta. 2008;1779(11):758–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mraz M, Malinova K, Mayer J, Pospisilova S. MicroRNA isolation and stability in stored RNA samples. Biochem Biophys Res Commun. 2009;390(1):1–4.

    Article  CAS  PubMed  Google Scholar 

  95. Wang K, Yuan Y, Cho JH, McClarty S, Baxter D, Galas DJ. Comparing the MicroRNA spectrum between serum and plasma. PLoS One. 2012;7(7):e41561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Becker C, Hammerle-Fickinger A, Riedmaier I, Pfaffl MW. mRNA and microRNA quality control for RT-qPCR analysis. Methods (San Diego, Calif). 2010;50(4):237–43.

    Article  CAS  Google Scholar 

  97. Rio DC, Ares M Jr, Hannon GJ, Nilsen TW. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc. 2010;2010(6):pdb.prot5439.

    Article  PubMed  Google Scholar 

  98. Ach RA, Wang H, Curry B. Measuring microRNAs: comparisons of microarray and quantitative PCR measurements, and of different total RNA prep methods. BMC Biotechnol. 2008;8:69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611–22.

    Article  CAS  PubMed  Google Scholar 

  100. Kim YK, Yeo J, Kim B, Ha M, Kim VN. Short structured RNAs with low GC content are selectively lost during extraction from a small number of cells. Mol Cell. 2012;46(6):893–5.

    Article  CAS  PubMed  Google Scholar 

  101. Yoo CE, Kim G, Kim M, Park D, Kang HJ, Lee M, Huh N. A direct extraction method for microRNAs from exosomes captured by immunoaffinity beads. Anal Biochem. 2012;431(2):96–8.

    Article  CAS  PubMed  Google Scholar 

  102. Robin JD, Ludlow AT, LaRanger R, Wright WE, Shay JW. Comparison of DNA quantification methods for next generation sequencing. Sci Rep. 2016;6:24067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bravo V, Rosero S, Ricordi C, Pastori RL. Instability of miRNA and cDNAs derivatives in RNA preparations. Biochem Biophys Res Commun. 2007;353(4):1052–5.

    Article  CAS  PubMed  Google Scholar 

  104. Pop LA, Pileczki V, Cojocneanu-Petric RM, Petrut B, Braicu C, Jurj AM, Buiga R, Achimas-Cadariu P, Berindan-Neagoe I. Normalization of gene expression measurement of tissue samples obtained by transurethral resection of bladder tumors. OncoTargets Ther. 2016;9:3369–80.

    Article  CAS  Google Scholar 

  105. Kim SW, Li Z, Moore PS, Monaghan AP, Chang Y, Nichols M, John B. A sensitive non-radioactive northern blot method to detect small RNAs. Nucleic Acids Res. 2010;38(7):e98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang B, Howel P, Bruheim S, Ju J, Owen LB, Fodstad O, Xi Y. Systematic evaluation of three microRNA profiling platforms: microarray, beads array, and quantitative real-time PCR array. PLoS One. 2011;6(2):e17167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Vaz C, Ahmad HM, Sharma P, Gupta R, Kumar L, Kulshreshtha R, Bhattacharya A. Analysis of microRNA transcriptome by deep sequencing of small RNA libraries of peripheral blood. BMC Genomics. 2010;11:288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Jensen SG, Lamy P, Rasmussen MH, Ostenfeld MS, Dyrskjot L, Orntoft TF, Andersen CL. Evaluation of two commercial global miRNA expression profiling platforms for detection of less abundant miRNAs. BMC Genomics. 2011;12:435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sablok G, Milev I, Minkov G, Minkov I, Varotto C, Yahubyan G, Baev V. isomiRex: web-based identification of microRNAs, isomiR variations and differential expression using next-generation sequencing datasets. FEBS Lett. 2013;587(16):2629–34.

    Article  CAS  PubMed  Google Scholar 

  110. Magee R, Telonis AG, Cherlin T, Rigoutsos I, Londin E. Assessment of isomiR discrimination using commercial qPCR methods. Non-Coding RNA. 2017;3(2):18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 2004;5(3):R13.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

    Article  CAS  PubMed  Google Scholar 

  113. Setoyama T, Ling H, Natsugoe S, Calin GA. Non-coding RNAs for medical practice in oncology. Keio J Med. 2011;60(4):106–13.

    Article  CAS  PubMed  Google Scholar 

  114. de Planell-Saguer M, Rodicio MC. Analytical aspects of microRNA in diagnostics: a review. Anal Chim Acta. 2011;699(2):134–52.

    Article  CAS  PubMed  Google Scholar 

  115. Schwarzkopf M, Pierce NA. Multiplexed miRNA northern blots via hybridization chain reaction. Nucleic Acids Res. 2016;44(15):e12.

    Google Scholar 

  116. Kumar P, Johnston BH, Kazakov SA. miR-ID: a novel, circularization-based platform for detection of microRNAs. RNA (New York, NY). 2011;17(2):365–80.

    Article  CAS  Google Scholar 

  117. Schmittgen TD, Jiang J, Liu Q, Yang L. A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res. 2004;32(4):e43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Reichenstein I, Aizenberg N, Goshen M, Bentwich Z, Avni YS. A novel qPCR assay for viral encoded microRNAs. J Virol Methods. 2010;163(2):323–8.

    Article  CAS  PubMed  Google Scholar 

  119. Ro S, Park C, Jin J, Sanders KM, Yan W. A PCR-based method for detection and quantification of small RNAs. Biochem Biophys Res Commun. 2006;351(3):756–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Leung AK, Sharp PA. Function and localization of microRNAs in mammalian cells. Cold Spring Harb Symp Quant Biol. 2006;71:29–38.

    Article  CAS  PubMed  Google Scholar 

  121. Nass D, Rosenwald S, Meiri E, Gilad S, Tabibian-Keissar H, Schlosberg A, Kuker H, Sion-Vardy N, Tobar A, Kharenko O, et al. MiR-92b and miR-9/9* are specifically expressed in brain primary tumors and can be used to differentiate primary from metastatic brain tumors. Brain Pathol (Zurich, Switzerland). 2009;19(3):375–83.

    Article  CAS  Google Scholar 

  122. Bustos-Sanmamed P, Laffont C, Frugier F, Lelandais-Briere C, Crespi M. Analyzing small and long RNAs in plant development using non-radioactive in situ hybridization. Methods Mol Biol (Clifton, NJ). 2013;959:303–16.

    Article  CAS  Google Scholar 

  123. Obernosterer G, Leuschner PJ, Alenius M, Martinez J. Post-transcriptional regulation of microRNA expression. RNA (New York, NY). 2006;12(7):1161–7.

    Article  CAS  Google Scholar 

  124. Shi Z, Johnson JJ, Stack MS. Fluorescence in situ hybridization for MicroRNA detection in archived oral cancer tissues. J Oncol. 2012;2012:903581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yauk CL, Rowan-Carroll A, Stead JD, Williams A. Cross-platform analysis of global microRNA expression technologies. BMC Genomics. 2010;11:330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Aldridge S, Hadfield J. Introduction to miRNA profiling technologies and cross-platform comparison. Methods Mol Biol (Clifton, NJ). 2012;822:19–31.

    Article  CAS  Google Scholar 

  127. Duttagupta R, DiRienzo S, Jiang R, Bowers J, Gollub J, Kao J, Kearney K, Rudolph D, Dawany NB, Showe MK, et al. Genome-wide maps of circulating miRNA biomarkers for ulcerative colitis. PLoS One. 2012;7(2):e31241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chen J, April CS, Fan JB. miRNA expression profiling using Illumina Universal BeadChips. Methods Mol Biol (Clifton, NJ). 2012;822:103–16.

    Article  CAS  Google Scholar 

  129. D’Andrade PN, Fulmer-Smentek S. Agilent microRNA microarray profiling system. Methods Mol Biol (Clifton, NJ). 2012;822:85–102.

    Article  Google Scholar 

  130. Benes V, Castoldi M. Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods (San Diego, Calif). 2010;50(4):244–9.

    Article  CAS  Google Scholar 

  131. Ono S, Lam S, Nagahara M, Hoon DSB. Circulating microRNA biomarkers as liquid biopsy for cancer patients: pros and cons of current assays. J Clin Med. 2015;4(10):1890–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. M'Boutchou MN, van Kempen LC. Analysis of the tumor microenvironment transcriptome via NanoString mRNA and miRNA expression profiling. Methods Mol Biol (Clifton, NJ). 2016;1458:291–310.

    Article  CAS  Google Scholar 

  133. Tam S, de Borja R, Tsao M-S, McPherson JD. Robust global microRNA expression profiling using next-generation sequencing technologies. Lab Investig. 2014;94(3):350–8.

    Article  CAS  PubMed  Google Scholar 

  134. Wang H, Ach RA, Curry B. Direct and sensitive miRNA profiling from low-input total RNA. RNA (New York, NY). 2007;13(1):151–9.

    Article  CAS  Google Scholar 

  135. Liu J, Jennings SF, Tong W, Hong H. Next generation sequencing for profiling expression of miRNAs: technical progress and applications in drug development. J Biomed Sci Eng. 2011;4(10):666–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Yang Q, Lu J, Wang S, Li H, Ge Q, Lu Z. Application of next-generation sequencing technology to profile the circulating microRNAs in the serum of preeclampsia versus normal pregnant women. Clin Chim Acta. 2011;412(23–24):2167–73.

    Article  CAS  PubMed  Google Scholar 

  137. Schulte JH, Marschall T, Martin M, Rosenstiel P, Mestdagh P, Schlierf S, Thor T, Vandesompele J, Eggert A, Schreiber S, et al. Deep sequencing reveals differential expression of microRNAs in favorable versus unfavorable neuroblastoma. Nucleic Acids Res. 2010;38(17):5919–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Urgese G, Paciello G, Acquaviva A, Ficarra E. isomiR-SEA: an RNA-Seq analysis tool for miRNAs/isomiRs expression level profiling and miRNA-mRNA interaction sites evaluation. BMC Bioinform. 2016;17:148.

    Article  CAS  Google Scholar 

  139. Amsel D, Vilcinskas A, Billion A. Evaluation of high-throughput isomiR identification tools: illuminating the early isomiRome of Tribolium castaneum. BMC Bioinform. 2017;18(1):359.

    Article  CAS  Google Scholar 

  140. Zhang Y, Zang Q, Xu B, Zheng W, Ban R, Zhang H, Yang Y, Hao Q, Iqbal F, Li A, et al. IsomiR Bank: a research resource for tracking IsomiRs. Bioinformatics (Oxford, England). 2016;32(13):2069–71.

    Article  CAS  Google Scholar 

  141. Lu C, Meyers BC, Green PJ. Construction of small RNA cDNA libraries for deep sequencing. Methods (San Diego, Calif). 2007;43(2):110–7.

    Article  CAS  Google Scholar 

  142. Buermans HP, Ariyurek Y, van Ommen G, den Dunnen JT, t Hoen PA. New methods for next generation sequencing based microRNA expression profiling. BMC Genomics. 2010;11:716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wang WC, Lin FM, Chang WC, Lin KY, Huang HD, Lin NS. miRExpress: analyzing high-throughput sequencing data for profiling microRNA expression. BMC Bioinform. 2009;10:328.

    Article  CAS  Google Scholar 

  144. Moxon S, Schwach F, Dalmay T, Maclean D, Studholme DJ, Moulton V. A toolkit for analysing large-scale plant small RNA datasets. Bioinformatics (Oxford, England). 2008;24(19):2252–3.

    Article  CAS  Google Scholar 

  145. Bargaje R, Hariharan M, Scaria V, Pillai B. Consensus miRNA expression profiles derived from interplatform normalization of microarray data. RNA (New York, NY). 2010;16(1):16–25.

    Article  CAS  Google Scholar 

  146. Meyer SU, Pfaffl MW, Ulbrich SE. Normalization strategies for microRNA profiling experiments: a ‘normal’ way to a hidden layer of complexity? Biotechnol Lett. 2010;32(12):1777–88.

    Article  CAS  PubMed  Google Scholar 

  147. Deo A, Carlsson J, Lindlof A. How to choose a normalization strategy for miRNA quantitative real-time (qPCR) arrays. J Bioinforma Comput Biol. 2011;9(6):795–812.

    Article  Google Scholar 

  148. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103(7):2257–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. microarrays Ssao. http://www-stat.stanford.edu/~tibs/SAM/index.html.

  150. microarrays Ppaf. http://www-stat.stanford.edu/~tibs/PAM/index.html.

  151. Liu CG, Calin GA, Meloon B, Gamliel N, Sevignani C, Ferracin M, Dumitru CD, Shimizu M, Zupo S, Dono M, et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci U S A. 2004;101(26):9740–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065–70.

    Article  CAS  PubMed  Google Scholar 

  153. Huang X, Liang M, Dittmar R, Wang L. Extracellular microRNAs in urologic malignancies: chances and challenges. Int J Mol Sci. 2013;14(7):14785–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhang L, Miller D, Yang Q, Wu B. MicroRNA regulatory networks as biomarkers in obesity: the emerging role. Methods Mol Biol (Clifton, NJ). 2017;1617:241–60.

    Article  CAS  Google Scholar 

  155. Mo YY. MicroRNA regulatory networks and human disease. Cell Mol Life Sci. 2012;69(21):3529–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell. 2011;146(3):353–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Irimie AI, Zimta AA, Ciocan C, Mehterov N, Dudea D, Braicu C, Berindan-Neagoe I. The unforeseen non-coding RNAs in head and neck cancer. Genes. 2018;9(3):134.

    Article  CAS  PubMed Central  Google Scholar 

  158. Ojamaa K. Signaling mechanisms in thyroid hormone-induced cardiac hypertrophy. Vasc Pharmacol. 2010;52(3–4):113–9.

    Article  CAS  Google Scholar 

  159. Callis TE, Pandya K, Seok HY, Tang RH, Tatsuguchi M, Huang ZP, Chen JF, Deng Z, Gunn B, Shumate J, et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest. 2009;119(9):2772–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science (New York, NY). 2005;309(5740):1577–81.

    Article  CAS  Google Scholar 

  161. Yue J. miRNA and vascular cell movement. Adv Drug Deliv Rev. 2011;63(8):616–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Li W, Szoka FC Jr. Lipid-based nanoparticles for nucleic acid delivery. Pharm Res. 2007;24(3):438–49.

    Article  CAS  PubMed  Google Scholar 

  163. Han D, Li J, Wang H, Su X, Hou J, Gu Y, Qian C, Lin Y, Liu X, Huang M, et al. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology (Baltimore, Md). 2017;66:1151.

    Article  CAS  Google Scholar 

  164. Li JF, Song YZ. Circular RNA hsa_circ_0001564 facilitates tumorigenesis of osteosarcoma via sponging miR-29c-3p. Tumour Biol. 2017;39(8):1010428317709989.

    Google Scholar 

  165. Walther W, Stein U. Viral vectors for gene transfer: a review of their use in the treatment of human diseases. Drugs. 2000;60(2):249–71.

    Article  CAS  PubMed  Google Scholar 

  166. Al-Dosari MS, Gao X. Nonviral gene delivery: principle, limitations, and recent progress. AAPS J. 2009;11(4):671–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Geisler A, Fechner H. MicroRNA-regulated viral vectors for gene therapy. World J Exp Med. 2016;6(2):37–54.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Rai K, Takigawa N, Ito S, Kashihara H, Ichihara E, Yasuda T, Shimizu K, Tanimoto M, Kiura K. Liposomal delivery of MicroRNA-7-expressing plasmid overcomes epidermal growth factor receptor tyrosine kinase inhibitor-resistance in lung cancer cells. Mol Cancer Ther. 2011;10(9):1720–7.

    Article  CAS  PubMed  Google Scholar 

  169. Gondi CS, Rao JS. Concepts in in vivo siRNA delivery for cancer therapy. J Cell Physiol. 2009;220(2):285–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lujambio A, Lowe SW. The microcosmos of cancer. Nature. 2012;482(7385):347–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ferracin M, Zagatti B, Rizzotto L, Cavazzini F, Veronese A, Ciccone M, Saccenti E, Lupini L, Grilli A, De Angeli C, et al. MicroRNAs involvement in fludarabine refractory chronic lymphocytic leukemia. Mol Cancer. 2010;9:123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ru P, Steele R, Newhall P, Phillips NJ, Toth K, Ray RB. miRNA-29b suppresses prostate cancer metastasis by regulating epithelial-mesenchymal transition signaling. Mol Cancer Ther. 2012;11(5):1166–73.

    Article  CAS  PubMed  Google Scholar 

  173. Kandalam MM, Beta M, Maheswari UK, Swaminathan S, Krishnakumar S. Oncogenic microRNA 17-92 cluster is regulated by epithelial cell adhesion molecule and could be a potential therapeutic target in retinoblastoma. Mol Vis. 2012;18:2279–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Fassina A, Marino F, Siri M, Zambello R, Ventura L, Fassan M, Simonato F, Cappellesso R. The miR-17-92 microRNA cluster: a novel diagnostic tool in large B-cell malignancies. Lab Invest. 2012;92(11):1574–82.

    Article  CAS  PubMed  Google Scholar 

  175. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8.

    Article  CAS  PubMed  Google Scholar 

  176. Slabakova E, Culig Z, Remsik J, Soucek K. Alternative mechanisms of miR-34a regulation in cancer. Cell Death Dis. 2017;8(10):e3100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zeng Y, Xu Y, Shu R, Sun L, Tian Y, Shi C, Zheng Z, Wang K, Luo H. Altered expression profiles of circular RNA in colorectal cancer tissues from patients with lung metastasis. Int J Mol Med. 2017;40(6):1818–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Cao Q, Mani RS, Ateeq B, Dhanasekaran SM, Asangani IA, Prensner JR, Kim JH, Brenner JC, Jing X, Cao X, et al. Coordinated regulation of polycomb group complexes through microRNAs in cancer. Cancer Cell. 2011;20(2):187–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Competitively Operational Program, 2014–2020, entitled “Clinical and economical impact of personalized targeted anti-microRNA therapies in reconverting lung cancer chemoresistance” (CANTEMIR), grant no. 35/01.09.2016, MySMIS-103375.

Dr. Calin is the Alan M. Gewirtz Leukemia & Lymphoma Society Scholar. He is supported as a fellow of the University of Texas MD Anderson Cancer Center Research Trust, as the University of Texas System Regents Research Scholar, and by the CLL Global Research Foundation. Work in Dr. Calin’s laboratory is supported in part by the National Institutes of Health/National Cancer Institute (CA135444); Department of Defense Breast Cancer Idea Award; Developmental Research Awards in Breast Cancer, Ovarian Cancer, Brain Cancer, Prostate Cancer, Multiple Myeloma, Leukemia (P50 CA100632), and Head and Neck (P50 CA097007) Specialized Program of Research Excellence grants; Sister Institution Network Fund grants in CLL and colon cancer; the Laura and John Arnold Foundation; the RGK Foundation; and the Estate of C. G. Johnson, Jr. This research is supported in part by the MD Anderson Cancer Center Support Grant CA016672.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. Calin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Braicu, C., Gulei, D., de Melo Maia, B., Berindan-Neagoe, I., Calin, G.A. (2019). miRNA Expression Assays. In: Netto, G., Kaul, K. (eds) Genomic Applications in Pathology. Springer, Cham. https://doi.org/10.1007/978-3-319-96830-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96830-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96829-2

  • Online ISBN: 978-3-319-96830-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics