Clinical Information Systems in the Era of Personalized Medicine

  • Jonathan Nowak
  • Lynn BryEmail author


Scientific and technical advances continue to further our understanding of how genetic alterations affect human health and the development of disease. Integrating genomic findings in the delivery of patient care represents an exciting and evolving area of medicine. The capacity to interpret and leverage this new source of information and to do so in a broad and high-throughput manner, via clinical information systems, remains a key challenge. In this chapter, we focus on common areas that influence effective use and development of clinical information systems to support the integration of genomic data in healthcare.


Clinical decision support system Clinical information system Clinical laboratory improvement amendments Data warehousing Genomic data standards Genomic testing Integrated reporting Laboratory information management system 


  1. 1.
    Irani Z, Love P. Evaluating information systems. Burlington: Elsevier Ltd; 2008.CrossRefGoogle Scholar
  2. 2.
    Centers for Medicare & Medicaid Services. Clinical laboratory improvement amendments. Retrieved from; 2014.
  3. 3.
    GenoLogics—A LIMS for the Next-Gen Omics lab. Retrieved from; 2014.
  4. 4.
    Sapio Sciences—The most configurable and flexible LIMS software available. Retrieved from; 2014.
  5. 5.
    Gale K. Laboratory and the art of enterprise integration. Healthc Financ Manage. 2009;63(10):36–8.PubMedGoogle Scholar
  6. 6.
    (HL7), H.L.S.I. Clinical genomics; 2013.Google Scholar
  7. 7.
    College of American Pathologists Molecular Pathology Checklist. Retrieved from; 2014.
  8. 8.
    (HGVS), H.G.V.S. Standards—definitions, symbols, nucleotides, codons, amino acids (v2.0); 2013.Google Scholar
  9. 9.
    International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011):931–45.CrossRefGoogle Scholar
  10. 10.
    Harrow J, et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 2012;22(9):1760–74.CrossRefGoogle Scholar
  11. 11.
    Genome Project. VCF (Variant Call Format) version 4.0; 2011.Google Scholar
  12. 12.
    (HL7), H.L.S.I. HL7 Version 3 Standard: clinical genomics; Pedigree, Release 1; 2013.Google Scholar
  13. 13.
    Lebo RV, Grody WW. Testing and reporting ACMG cystic fibrosis mutation panel results. Genet Test. 2007;11(1):11–31.CrossRefGoogle Scholar
  14. 14.
    IRB Guidebook: Chapter V Biomedical and behavioral research: an overview. Retrieved from; 2014.
  15. 15.
    Regenstrief Institute. Logical Observation Identifiers Names and Codes (LOINC); 2013.Google Scholar
  16. 16.
    Bosca D, Marco L, Burriel V, Jaijo T, Millán JM, Levin A, Pastor O, Robles M, Maldonado JA. Genetic testing information standardization in HL7 CDA and ISO13606. Stud Health Technol Inform. 2013;192:338–42.PubMedGoogle Scholar
  17. 17.
    Chute CG, Kohane IS. Genomic medicine, health information technology, and patient care. JAMA. 2013;309(14):1467–8.CrossRefGoogle Scholar
  18. 18.
    ASTM. Portable Document Format-Healthcare (PDF) a best practices guide. ASTM AIIMASTM—BP-01-08; 2013.Google Scholar
  19. 19.
    Hoffman MA. The genome-enabled electronic medical record. J Biomed Inform. 2007;40(1):44–6.CrossRefGoogle Scholar
  20. 20.
    Garg AX, et al. Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: a systematic review. JAMA. 2005;293(10):1223–38.CrossRefGoogle Scholar
  21. 21.
    Scheuner MT, et al. Are electronic health records ready for genomic medicine? Genet Med. 2009;11(7):510–7.CrossRefGoogle Scholar
  22. 22.
    Downing GJ, et al. Information management to enable personalized medicine: stakeholder roles in building clinical decision support. BMC Med Inform Decis Mak. 2009;9:44.CrossRefGoogle Scholar
  23. 23.
    Scheuner MT, Sieverding P, Shekelle PG. Delivery of genomic medicine for common chronic adult diseases: a systematic review. JAMA. 2008;299(11):1320–34.CrossRefGoogle Scholar
  24. 24.
    Ronquillo JG. How the electronic health record will change the future of health care. Yale J Biol Med. 2012;85(3):379–86.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Lucassen A, Hall A. Consent and confidentiality in clinical genetic practice: guidance on genetic testing and sharing genetic information. Clin Med. 2012;12(1):5–6.CrossRefGoogle Scholar
  26. 26.
    Ayuso C, et al. Informed consent for whole-genome sequencing studies in the clinical setting. Proposed recommendations on essential content and process. Eur J Hum Genet. 2013;21(10):1054–9.CrossRefGoogle Scholar
  27. 27.
    Bunnik EM, et al. The new genetics and informed consent: differentiating choice to preserve autonomy. Bioethics. 2013;27(6):348–55.CrossRefGoogle Scholar
  28. 28.
    Hinton RB Jr. The family history: reemergence of an established tool. Crit Care Nurs Clin North Am. 2008;20(2):149–58. vCrossRefGoogle Scholar
  29. 29.
    Gulley ML, et al. Clinical laboratory reports in molecular pathology. Arch Pathol Lab Med. 2007;131(6):852–63.PubMedGoogle Scholar
  30. 30.
    Ullman-Cullere MH, Mathew JP. Emerging landscape of genomics in the electronic health record for personalized medicine. Hum Mutat. 2011;32(5):512–6.CrossRefGoogle Scholar
  31. 31.
    Naidoo N, et al. Human genetics and genomics a decade after the release of the draft sequence of the human genome. Hum Genomics. 2011;5(6):577–622.CrossRefGoogle Scholar
  32. 32.
    Aquilante CL. Sulfonylurea pharmacogenomics in type 2 diabetes: the influence of drug target and diabetes risk polymorphisms. Expert Rev Cardiovasc Ther. 2010;8(3):359–72.CrossRefGoogle Scholar
  33. 33.
    Huang C, Florez JC. Pharmacogenetics in type 2 diabetes: potential implications for clinical practice. Genome Med. 2011;3(11):76.CrossRefGoogle Scholar
  34. 34.
    Wilcox AR, Neri PM, Volk LA, Newmark LP, Clark EH, Babb LJ, Varugheese M, Aronson SJ, Rehm HL, Bates DW. A novel clinician interface to improve clinician access to up-to-date genetic results. J Am Med Inform Assoc. 2014;21(e1):e117–21. Scholar
  35. 35.
    Wilkins BS, Clark DM. Making the most of bone marrow trephine biopsy. Histopathology. 2009;55(6):631–40.CrossRefGoogle Scholar
  36. 36.
    Cagle PT, et al. Template for reporting results of biomarker testing of specimens from patients with non-small cell carcinoma of the lung. Arch Pathol Lab Med. 2014;138(2):171–4.CrossRefGoogle Scholar
  37. 37.
    Bartley AN, et al. Template for reporting results of biomarker testing of specimens from patients with carcinoma of the colon and rectum. Arch Pathol Lab Med. 2014;138(2):166–70.CrossRefGoogle Scholar
  38. 38.
    Lemery S, Keegan P, Pazdur R. First FDA approval agnostic of cancer site–when a biomarker defines the indication. N Engl J Med. 2017;377(15):1409–12.CrossRefGoogle Scholar
  39. 39.
    Richards CS, et al. ACMG recommendations for standards for interpretation and reporting of sequence variations: revisions 2007. Genet Med. 2008;10(4):294–300.CrossRefGoogle Scholar
  40. 40.
    Kohane IS, Churchill SE, Murphy SN. A translational engine at the national scale: informatics for integrating biology and the bedside. J Am Med Inform Assoc. 2012;19(2):181–5.CrossRefGoogle Scholar
  41. 41.
    Masys DR, et al. Technical desiderata for the integration of genomic data into electronic health records. J Biomed Inform. 2012;45(3):419–22.CrossRefGoogle Scholar
  42. 42.
    Murphy S, Churchill S, Bry L, Chueh H, Weiss S, Lazarus R, Zeng Q, Dubey A, Gainer V, Mendis M, Glaser J, Kohane I. Instrumenting the health care enterprise for discovery research in the genomic era. Genome Res. 2009;19(9):1675–81.CrossRefGoogle Scholar
  43. 43.
    Aronson SJ, Clark EH, Babb LJ, Baxter S, Farwell LM, Funke BH, Hernandez AL, Joshi VA, Lyon E, Parthum AR, Russell FJ, Varugheese M, Venman TC, Rehm HL. The GeneInsight suite: a platform to support laboratory and provider use of DNA-based genetic testing. Hum Mutat. 2011;32(5):532–6.CrossRefGoogle Scholar
  44. 44.
    Welch BM, Kawamoto K. Clinical decision support for genetically guided personalized medicine: a systematic review. J Am Med Inform Assoc. 2013;20(2):388–400.CrossRefGoogle Scholar
  45. 45.
    Belle A, Kon MA, Najarian K. Biomedical informatics for computer-aided decision support systems: a survey. Scientific World Journal. 2013;2013:769639.CrossRefGoogle Scholar
  46. 46.
    Peterson JF, et al. Electronic health record design and implementation for pharmacogenomics: a local perspective. Genet Med. 2013;15(10):833–41.CrossRefGoogle Scholar
  47. 47.
    Pulley JM, Denny JC, Peterson JF, Bernard GR, Vnencak-Jones CL, Ramirez AH, Delaney JT, Bowton E, Brothers K, Johnson K, Crawford DC, Schildcrout J, Masys DR, Dilks HH, Wilke RA, Clayton EW, Shultz E, Laposata M, McPherson J, Jirjis JN, Roden DM. Operational implementation of prospective genotyping for personalized medicine: the design of the Vanderbilt PREDICT project. Clin Pharmacol Ther. 2012;92(1):87–95.CrossRefGoogle Scholar
  48. 48.
    Tural C, et al. Clinical utility of HIV-1 genotyping and expert advice: the Havana trial. AIDS. 2002;16(2):209–18.CrossRefGoogle Scholar
  49. 49.
    Lindsay J, et al. MatchMiner: An open source computational platform for real-time matching of cancer patients to precision medicine clinical trials using genomic and clinical criteria. bioRxiv. 2017;199489
  50. 50.
    Pathak J, et al. Evaluating phenotypic data elements for genetics and epidemiological research: experiences from the eMERGE and PhenX network projects. AMIA Summits Transl Sci Proc. 2011;2011:41–5.PubMedGoogle Scholar
  51. 51.
    Pathak J, et al. Mapping clinical phenotype data elements to standardized metadata repositories and controlled terminologies: the eMERGE network experience. J Am Med Inform Assoc. 2011;18(4):376–86.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PathologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations