Skip to main content

General Principles of Radiation Oncology

  • Chapter
  • First Online:
  • 1495 Accesses

Abstract

This chapter discusses the general management and thought process used by radiation oncologists. Several broad and basic principles of radiation oncology are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kirkpatrick JP, van der Kogel AJ, Schultheiss TE. Radiation dose-volume effects in the spinal cord. Int J Radiat Oncol Biol Phys. 2010;76:S42–9.

    Article  Google Scholar 

  2. Bhandare N, Jackson A, Eisbruch A, et al. Radiation therapy and hearing loss. Int J Radiat Oncol Biol Phys. 2010;76:S50–7.

    Article  Google Scholar 

  3. Marks LB, Yorke ED, Jackson A, et al. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76:S10–9.

    Article  Google Scholar 

  4. Murphy JD, Christman-Skieller C, Kim J, et al. A dosimetric model of duodenal toxicity after stereotactic body radiotherapy for pancreatic cancer. Int J Radiat Oncol Biol Phys. 2010;78:1420–6.

    Article  Google Scholar 

  5. Chun SG, Hu C, Choy H, et al. Impact of intensity-modulated radiation therapy technique for locally advanced non-small-cell lung cancer: a secondary analysis of the NRG oncology RTOG 0617 randomized clinical trial. J Clin Oncol. 2017;35:56–62.

    Article  Google Scholar 

  6. Rice DC, Smythe WR, Liao Z, et al. Dose-dependent pulmonary toxicity after postoperative intensity-modulated radiotherapy for malignant pleural mesothelioma. Int J Radiat Oncol Biol Phys. 2007;69:350–7.

    Article  Google Scholar 

  7. Kim DW, Cho LC, Straka C, et al. Predictors of rectal tolerance observed in a dose-escalated phase 1-2 trial of stereotactic body radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2014;89:509–17.

    Article  Google Scholar 

  8. Verma J, Sulman EP, Jhingran A, et al. Dosimetric predictors of duodenal toxicity after intensity modulated radiation therapy for treatment of the para-aortic nodes in gynecologic cancer. Int J Radiat Oncol Biol Phys. 2014;88:357–62.

    Article  Google Scholar 

  9. Bakitas M, Lyons KD, Hegel MT, et al. Effects of a palliative care intervention on clinical outcomes in patients with advanced cancer: the Project ENABLE II randomized controlled trial. JAMA. 2009;302:741–9.

    Article  CAS  Google Scholar 

  10. Bakitas MA, Tosteson TD, Li Z, et al. Early versus delayed initiation of concurrent palliative oncology care: patient outcomes in the ENABLE III randomized controlled trial. J Clin Oncol. 2015;33:1438–45.

    Article  Google Scholar 

  11. Temel JS, Greer JA, Muzikansky A, et al. Early palliative care for patients with metastatic non-small-cell lung cancer. N Engl J Med. 2010;363:733–42.

    Article  CAS  Google Scholar 

  12. Bentzen SM, Constine LS, Deasy JO, et al. Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): an introduction to the scientific issues. Int J Radiat Oncol Biol Phys. 2010;76:S3–9.

    Article  Google Scholar 

  13. Jackson A, Marks LB, Bentzen SM, et al. The lessons of QUANTEC: recommendations for reporting and gathering data on dose-volume dependencies of treatment outcome. Int J Radiat Oncol Biol Phys. 2010;76:S155–60.

    Article  Google Scholar 

  14. Liu M, Moiseenko V, Agranovich A, et al. Normal Tissue Complication Probability (NTCP) modeling of late rectal bleeding following external beam radiotherapy for prostate cancer: a test of the QUANTEC-recommended NTCP model. Acta Oncol. 2010;49:1040–4.

    Article  Google Scholar 

  15. Mukesh M, Harris E, Jena R, et al. Relationship between irradiated breast volume and late normal tissue complications: a systematic review. Radiother Oncol. 2012;104:1–10.

    Article  Google Scholar 

  16. Lee TF, Fang FM. Quantitative analysis of normal tissue effects in the clinic (QUANTEC) guideline validation using quality of life questionnaire datasets for parotid gland constraints to avoid causing xerostomia during head-and-neck radiotherapy. Radiother Oncol. 2013;106:352–8.

    Article  Google Scholar 

  17. Wedenberg M. Assessing the uncertainty in QUANTEC's dose-response relation of lung and spinal cord with a bootstrap analysis. Int J Radiat Oncol Biol Phys. 2013;87:795–801.

    Article  Google Scholar 

  18. Appelt AL, Vogelius IR, Farr KP, et al. Towards individualized dose constraints: adjusting the QUANTEC radiation pneumonitis model for clinical risk factors. Acta Oncol. 2014;53:605–12.

    Article  Google Scholar 

  19. Moiseenko V, Einck J, Murphy J, et al. Clinical evaluation of QUANTEC guidelines to predict the risk of cardiac mortality in breast cancer patients. Acta Oncol. 2016;55:1506–10.

    Article  Google Scholar 

  20. Gabrys HS, Buettner F, Sterzing F, et al. Parotid gland mean dose as a xerostomia predictor in low-dose domains. Acta Oncol. 2017;56:1197–203.

    Article  Google Scholar 

  21. Krishnan MS, Epstein-Peterson Z, Chen YH, et al. Predicting life expectancy in patients with metastatic cancer receiving palliative radiotherapy: the TEACHH model. Cancer. 2014;120:134–41.

    Article  Google Scholar 

  22. Kumar P, Wright AA, Hatfield LA, et al. Family perspectives on hospice care experiences of patients with cancer. J Clin Oncol. 2017;35:432–9.

    Article  Google Scholar 

  23. Dean M, Jimenez R, Mellon E, Fields E, Yechieli R, Mak R. CB-CHOP: a simple acronym for evaluating a radiation treatment plan. Appl Rad Oncol. 2017;6(4):28–30.

    Google Scholar 

  24. Barnes JB, Johnson SB, Dahiya RS, et al. Concomitant weekly cisplatin and thoracic radiotherapy for Pancoast tumors of the lung: pilot experience of the San Antonio Cancer Institute. Am J Clin Oncol. 2002;25:90–2.

    Article  Google Scholar 

  25. Stahel RA, Riesterer O, Xyrafas A, et al. Neoadjuvant chemotherapy and extrapleural pneumonectomy of malignant pleural mesothelioma with or without hemithoracic radiotherapy (SAKK 17/04): a randomised, international, multicentre phase 2 trial. Lancet Oncol. 2015;16:1651–8.

    Article  Google Scholar 

  26. Stahl M, Walz MK, Riera-Knorrenschild J, et al. Preoperative chemotherapy versus chemoradiotherapy in locally advanced adenocarcinomas of the oesophagogastric junction (POET): long-term results of a controlled randomised trial. Eur J Cancer. 2017;81:183–90.

    Article  CAS  Google Scholar 

  27. van Hagen P, Hulshof MC, van Lanschot JJ, et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med. 2012;366:2074–84.

    Article  Google Scholar 

  28. Ajani JA, Winter K, Okawara GS, et al. Phase II trial of preoperative chemoradiation in patients with localized gastric adenocarcinoma (RTOG 9904): quality of combined modality therapy and pathologic response. J Clin Oncol. 2006;24:3953–8.

    Article  CAS  Google Scholar 

  29. Gerard JP, Azria D, Gourgou-Bourgade S, et al. Clinical outcome of the ACCORD 12/0405 PRODIGE 2 randomized trial in rectal cancer. J Clin Oncol. 2012;30:4558–65.

    Article  CAS  Google Scholar 

  30. Rodel C, Graeven U, Fietkau R, et al. Oxaliplatin added to fluorouracil-based preoperative chemoradiotherapy and postoperative chemotherapy of locally advanced rectal cancer (the German CAO/ARO/AIO-04 study): final results of the multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2015;16:979–89.

    Article  Google Scholar 

  31. Bujko K, Wyrwicz L, Rutkowski A, et al. Long-course oxaliplatin-based preoperative chemoradiation versus 5 x 5 Gy and consolidation chemotherapy for cT4 or fixed cT3 rectal cancer: results of a randomized phase III study. Ann Oncol. 2016;27:834–42.

    Article  CAS  Google Scholar 

  32. Ansari N, Solomon MJ, Fisher RJ, et al. Acute adverse events and postoperative complications in a randomized trial of preoperative short-course radiotherapy versus long-course chemoradiotherapy for T3 adenocarcinoma of the rectum: Trans-Tasman Radiation Oncology Group Trial (TROG 01.04). Ann Surg. 2017;265:882–8.

    Article  Google Scholar 

  33. Mak RH, Hunt D, Shipley WU, et al. Long-term outcomes in patients with muscle-invasive bladder cancer after selective bladder-preserving combined-modality therapy: a pooled analysis of Radiation Therapy Oncology Group protocols 8802, 8903, 9506, 9706, 9906, and 0233. J Clin Oncol. 2014;32:3801–9.

    Article  Google Scholar 

  34. Moore DH, Ali S, Koh WJ, et al. A phase II trial of radiation therapy and weekly cisplatin chemotherapy for the treatment of locally-advanced squamous cell carcinoma of the vulva: a gynecologic oncology group study. Gynecol Oncol. 2012;124:529–33.

    Article  CAS  Google Scholar 

  35. Moore DH, Thomas GM, Montana GS, et al. Preoperative chemoradiation for advanced vulvar cancer: a phase II study of the Gynecologic Oncology Group. Int J Radiat Oncol Biol Phys. 1998;42:79–85.

    Article  CAS  Google Scholar 

  36. Keys HM, Bundy BN, Stehman FB, et al. Cisplatin, radiation, and adjuvant hysterectomy compared with radiation and adjuvant hysterectomy for bulky stage IB cervical carcinoma. N Engl J Med. 1999;340:1154–61.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas G. Zaorsky .

Editor information

Editors and Affiliations

Dose Constraints

Dose Constraints

QUANTEC Dose Constraints

Critical structure

Volume

Dose/volume

Max dose

Toxicity rate

Toxicity endpoint

Brain

  

<60 Gy

<3%

Symptomatic necrosis

Brain

  

72 Gy

5%

Symptomatic necrosis

Brain

  

90 Gy

10%

Symptomatic necrosis

Brain stem

  

<54 Gy

<5%

Neuropathy or necrosis

Brain stem

D1–10 cc

<= 59 Gy

 

<5%

Neuropathy or necrosis

Brain stem

  

<64 Gy

<5%

Neuropathy or necrosis

Optic nerve/chiasm

  

<55 Gy

<3%

Optic neuropathy

Optic nerve/chiasm

  

55–60 Gy

3–7%

Optic neuropathy

Optic nerve/chiasm

  

>60 Gy

>7–20%

Optic neuropathy

Spinal cord

  

50 Gy

0.2%

Myelopathy

Spinal cord

  

60 Gy

6%

Myelopathy

Spinal cord

  

69 Gy

50%

Myelopathy

Cochlea

Mean

<=45 Gy

 

<30%

Sensory-neural hearing loss

Parotid, bilateral

Mean

<=25 Gy

 

<20%

Long-term salivary function <25%

Parotid, bilateral

Mean

<=39 Gy

 

<50%

Long-term salivary function <25%

Parotid, unilateral

Mean

<=20 Gy

 

<20%

Long-term salivary function <25%

Pharyngeal constrictors

Mean

<=50 Gy

 

<20%

Symptomatic dysphagia and aspiration

Larynx

  

<66 Gy

<20%

Vocal dysfunction

Larynx

Mean

<50 Gy

 

<30%

Aspiration

Larynx

Mean

<44 Gy

 

<20%

Edema

Larynx

V50

<27%

 

<20%

Edema

Lung

V20

<=30%

 

<20%

Symptomatic pneumonitis

Lung

Mean

7 Gy

 

5%

Symptomatic pneumonitis

Lung

Mean

13 Gy

 

10%

Symptomatic pneumonitis

Lung

Mean

20 Gy

 

20%

Symptomatic pneumonitis

Lung

Mean

24 Gy

 

30%

Symptomatic pneumonitis

Lung

Mean

27 Gy

 

40%

Symptomatic pneumonitis

Esophagus

Mean

<34 Gy

 

5–20%

Grade 3+ esophagitis

Esophagus

V35

<50%

 

<30%

Grade 2+ esophagitis

Esophagus

V50

<40%

 

<30%

Grade 2+ esophagitis

Esophagus

V70

<20%

 

<30%

Grade 2+ esophagitis

Heart (Pericardium)

Mean

<26 Gy

 

<15%

Pericarditis

Heart (Pericardium)

V30

<46%

 

<15%

Pericarditis

Heart

V25

<10%

 

<1%

Long-term cardiac mortality

Liver

Mean

<30–32 Gy

 

<5%

RILD (in normal liver function)

Liver

Mean

<42 Gy

 

<50%

RILD (in normal liver function)

Liver

Mean

<28 Gy

 

<5%

RILD (in Child-Pugh A or HCC)

Liver

Mean

<36 Gy

 

<50%

RILD (in Child-Pugh A or HCC)

Kidney, bilateral

Mean

<15–18 Gy

 

<5%

Clinical dysfunction

Kidney, bilateral

Mean

<28 Gy

 

<50%

Clinical dysfunction

Kidney, bilateral

V12

<55%

 

<5%

Clinical dysfunction

Kidney, bilateral

V20

<32%

 

<5%

Clinical dysfunction

Kidney, bilateral

V23

<30%

 

<5%

Clinical dysfunction

Kidney, bilateral

V28

<20%

 

<5%

Clinical dysfunction

Stomach

D100

<45 Gy

 

<7%

Ulceration

Small bowel (individual loops)

V15

<120 cc

 

<10%

Grade 3+ toxicity

Small bowel (peritoneal cavity)

V45

<195 cc

 

<10%

Grade 3+ toxicity

Rectum

V50

<50%

 

<10%

Grade 3+ toxicity

Rectum

V60

<35%

 

<10%

Grade 3+ toxicity

Rectum

V65

<25%

 

<10%

Grade 3+ toxicity

Rectum

V70

<20%

 

<10%

Grade 3+ toxicity

Rectum

V75

<15%

 

<10%

Grade 3+ toxicity

Bladder (bladder cancer)

  

<65

<6%

Grade 3+ toxicity

Bladder (prostate cancer)

V65

<50%

  

Grade 3+ toxicity

Bladder (prostate cancer)

V70

<35%

  

Grade 3+ toxicity

Bladder (prostate cancer)

V75

<25%

  

Grade 3+ toxicity

Bladder (prostate cancer)

V80

<15%

  

Grade 3+ toxicity

Penile bulb

Mean dose to 95% gland

<50 Gy

 

<35%

Severe erectile dysfunction

Penile bulb

D90

<50 Gy

 

<35%

Severe erectile dysfunction

Penile bulb

D60–70

<70 Gy

 

<55%

Severe erectile dysfunction

Site

Organ at risk

Dose constraint 1

Dose constraint 2

Dose constraint 3

Notes

Pediatrics

Long bone

V40 < 64%

Mean < 37 Gy

Max 59 Gy

 

Pediatrics

Kidney

V10 < 80%

   

Pediatrics

Flat bone

Minimize V35

   

Pediatrics

VB

V18 all or none

  

18 Gy over entirety if receiving any RT; this will prevent scoliosis

Pediatrics

Skin/lymphedema

   

Keep longitudinal 2–3 cm strip of extremity to <15 Gy

Pediatrics

Soft tissue (to prevent RT-induced sarcoma)

V60

   

CNS

Cauda equina

0.03 cc < 16 Gy

5 cc < 14 Gy

  

CNS (SRS)

Brain stem

0.5 cc < 10 Gy

   

CNS (SRS)

Optic nerves/Chiasm

0.2 cc < 8 Gy

   

CNS (SRS)

Spinal cord

0.35 cc < 10 Gy

Max 18 Gy / 3 fx (RTOG 0236, 0618)

 

Kilpatrick (2010) [1]

H&N

Mandible

0.1 cc < 70 Gy

   

H&N

Temporal Lobe

0.03 cc < 68 Gy

1 cc < 58 Gy

  

H&N/Lung

Brachial Plexus

0.1 cc < 66 Gy

   

H&N

Brainstem

0.1 cc < 55 Gy

   

H&N

Optic Nerves/Chiasm

0.1 cc < 55 Gy

   

H&N

Spinal cord (+ 3 mm)

0.1 cc < 50 Gy

  

PRV

H&N

Uninvolved constrictor

Mean < 45 Gy

   

H&N

Contralateral SMG

Mean < 39 Gy

   

H&N

GSL

Mean < 35 Gy

   

H&N

Cochlea [2]

Mean < 35 Gy

<12–14 Gy/1 fx

 

For mean < 45 Gy, risk of hearing loss <30%.

H&N

Oral cavity

Mean < 30–40 Gy

   

H&N

Lacrimal gland

Mean < 34 Gy

   

H&N

Combination parotid [3]

Mean < 25 Gy

   

H&N

Contralateral parotid

Mean < 20 Gy

   

GI

Small bowel/Stomach

1 cc < 60 Gy

V50 < 2%

  

GI

Duodenum

2 cc < 55 Gy

   

GI

Liver

V30 < 60%

Mean < 25 Gy

  

GI (SBRT)

Liver

700 cc < 21 Gy

   

GI (SBRT)

Duodenum

V15 < 9cc/1 fx

V20 < 3cc/1 fx

Dmax <23 Gy

  

Murphy (2010) [4]

GI

Kidney [3]

    

GI

Kidney

V18 < 66%

   

GI

Bladder

V40 < 35%

  

Same as prostate

GI

Femoral heads

1 cc < 45 Gy

V40 < 35%

  

GI

Heart

V40 < 100%

V50 < 33%

  

GI

Lung

V5 < 50%

V20 < 20%

Mean < 12 Gy

 

Thoracic

Lung (−PTV)

V5 < 60%

V20 < 30%

Mean < 18 Gy

Lung V5 not associated with toxicity per secondary analysis of RTOG 0617 [5]

Thoracic

Lung [3]

   

<20% risk of pneumonitis

Thoracic

Contra lung after EPP [6]

V20 < 7%

  

Rice (2007) [6]

Thoracic

Heart

V45 < 2/3

V50 < 25%

V60 < 30%

RTOG 0617

Thoracic

Heart

V30 < 50%

V45 < 35%

 

RTOG 1308

Thoracic

Heart

    

Thoracic

Esophagus

V60 < 30%

Mean < 34 Gy

  

Thoracic

Spinal cord

0.1 cc < 45 Gy

  

Max dose 54 Gy has <1% RT myelopathy per QUANTEC

Breast

Heart

V30 < 1%

Mean < 4 Gy

 

NSABP B51

Breast

Lung

V20 < 15%

   

Breast

Breast

0.03 cc < 115%

  

NSABP B51

GU

Bladder

V40 < 50%

V65 < 25%

  

GU

Femoral heads

V50 < 10%

   

GU

Rectum

V40 < 35%

V65 < 17%

  

GU

Rectum

V50 < 3cc (50 Gy SBRT)

V24 < 35% of rectal wall circumference

 

Kim (2014). Using 45–50 Gy/5 fractions for prostate cancer [7]

GU

Penile bulb

    

GU

Kidney

    

GU (HDR)

Bladder

V75 < 1 cc

   

GU (HDR)

Rectum

V100 < 1 cc

   

GU (HDR)

Urethra

V125 < 1 cc

V150 = 0 cc

  

GYN

Rectum

V40 < 60%

  

RTOG 0724 (postop cervix)

GYN

Rectum

V40 < 80%

  

RTOG 1203 (cervix + endometrial)

GYN

Bowel space (SB, colon, sigmoid)

V40 < 30%

  

RTOG 0724, RTOG 1203

GYN

Bladder

V45 < 35%

  

RTOG 0724, RTOG 1203

GYN

Bone marrow

V10 < 90%

V40 < 37%

 

RTOG 1203

GYN

Bladder pt

<75 Gy, <80% of dose,

D2cc < 90 Gy

  

GYN

Rectal pt

<70 Gy, <70% of dose

D2cc < 75 Gy

  

GYN

Sigmoid

 

D2cc <75 Gy

  

GYN

Small bowel

D2cc < 60 Gy

V55 < 15 cc

 

Verma (2014) [8]

Gyn (HDR)

Rectum/Sigmoid

2cc < 75 Gy

  

D2cc = the minimum dose to the maximally irradiated 2cc

Gyn (HDR)

Bladder

2cc < 90 Gy

   

Gyn (HDR)

Upper vagina

Point <120 Gy

   

Gyn (HDR)

Lower vagina

Point <90 Gy

   
figure g
figure h
figure i
figure j
figure k
figure l
figure m

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zaorsky, N.G., Trifiletti, D.M., Golden, D.W. (2019). General Principles of Radiation Oncology. In: Trifiletti, D., Zaorsky, N. (eds) Absolute Clinical Radiation Oncology Review. Springer, Cham. https://doi.org/10.1007/978-3-319-96809-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96809-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96808-7

  • Online ISBN: 978-3-319-96809-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics