Skip to main content

Dissociations Between System 1 and System 2

  • Chapter
  • First Online:
Dual-Process Theories of Numerical Cognition

Part of the book series: SpringerBriefs in Philosophy ((BRIEFSPHILOSOPH))

  • 225 Accesses

Abstract

Calculation ability represents an extremely complex cognitive process. It has been understood to represent a multifactor skill, including verbal, spatial, memory, and executive function abilities. In this chapter, we will deal with it by calculation disturbances are analyzed. Specifically, evidence from brain-damaged patients indicates that deficits in mathematics can follow injury to either cerebral hemisphere, but that the nature of the impairment will differ depending upon the locus of the cerebral insult.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ansari, D. (2003). Atypical trajectories of number development: The case of Williams syndrome. London: University College of London, Institute of Child Health.

    Google Scholar 

  • Ansari, D., Donlan, C., Thomas, M. S. C., Ewing, S., Peen, T., & Karmiloff-Smith, A. (2003). What makes counting count? Verbal and visuo-spatial contributions to typical and atypical number development. Journal of Experimental Child Psychology, 85, 50–62.

    Article  Google Scholar 

  • Ardila, A., & Rosselli, M. (1995). Spatial acalculia. International Journal of Neuroscience, 78, 177–184.

    Article  Google Scholar 

  • Badian, N. A. (1983). Dyscalculia and nonverbal disorders of learning. In H. R. Miklebust (Ed.), Progress in Learning Disabilities (Vol. 5, pp. 129–146). New York: Grune and Stratton.

    Google Scholar 

  • Benson, D. F., & Denckla, M. B. (1969). Verbal paraphasias as a source of calculations disturbances. Archives of Neurology, 21, 96–102.

    Article  Google Scholar 

  • Berger, H. (1926). Uber Rechenstorunger bei Herderkraunkunger des Grosshirns. Arch. Psychiatr. Nervenkr., 78, 236–263.

    Article  Google Scholar 

  • Boller, F., & Grafman, J. (1983). Acalculia: Historical development and current significance. Brain and Cognition, 2, 205–223.

    Article  Google Scholar 

  • Burbaud, P., Camus, O., Guehl, D., Bioulac, B., Caillé, J. M., & Allard, M. (1999). A functional magnetic resonance imaging study of mental subtraction in human subjects. Neuroscience Letters, 273, 195–199.

    Article  Google Scholar 

  • Burbaud, P., Degreze, P., Lafon, P., Franconi, J. M., Bouligand, B., Bioulac, B., et al. (1995). Lateralization of prefrontal activation during internal mental calculation: A functional magnetic resonance imaging study. Journal of Neurophysiology, 74(5), 2194–2200.

    Article  Google Scholar 

  • Calabria, M., & Rossetti, Y. (2005). Interference between number processing and line bisection: A methodology. Neuropsychologia, 43, 779–783.

    Article  Google Scholar 

  • Cappelletti, M., & Cipolotti, L. (2006). Unconscious processing of Arabic numerals in unilateral neglect. Neuropsychologia, 44, 1999–2006.

    Article  Google Scholar 

  • Cavézian, C., Rossetti, Y., Danckert, J., d’Amato, T., Dalery, J., & Saoud, M. (2007). Exaggerated leftward bias in the mental number line of patients with schizophrenia. Brain and Cognition, 63, 85–90.

    Article  Google Scholar 

  • Chochon, F., Cohen, L., van de Moortele, P. F., & Dehaene, S. (1999). Differential contributions of the left and right inferior parietal lobules to number processing. Journal of Cognitive Neuroscience, 11, 617–630.

    Article  Google Scholar 

  • Cipolotti, L., Butterworth, B., & Denes, G. (1991). A specific deficit for numbers in a case of dense acalculia. Brain, 114, 2619–2637.

    Article  Google Scholar 

  • Cipolotti, L., Warrington, E. K., & Butterworth, B. (1995). Selective impairment in manipulating Arabic numerals. Cortex, 31, 73–86.

    Article  Google Scholar 

  • Clark, J. M., & Campbell, J. I. D. (1991). Integrated versus modular theories of number skills and acalculia. Brain and Cognition, 17, 204–239.

    Article  Google Scholar 

  • Cohen, L., & Dehaene, S. (1996). Cerebral networks for number processing. Evidence from a case of posterior callosal lesion. Neurocase, 2, 155–174.

    Article  Google Scholar 

  • Cohen, L., Dehaene, S., & Verstichel, P. (1994). Number words and number nonwords: A case of deep dyslexia extending to arabic numerals. Brain, 117, 267–279.

    Article  Google Scholar 

  • Cohn, R. (1971). Arithemtic and learning disabilities. In H. Myklebust (Ed.), Progress in learning disabilities. New York: Grune & Stratton.

    Google Scholar 

  • Collington, R., LeClerq, C., & Mahy, J. (1977). Etude de la semologie des troubles du calcul observes au cours des lesions corticales. Acta Neurologica Belgica, 77, 257–275.

    Google Scholar 

  • Dagenbach, D., & McCloskey, M. (1992). The organization of numberfacts in memory: Evidence from a brain-damaged patient. Brain and Cognition, 20, 345–366.

    Article  Google Scholar 

  • De Hevia, M. D., Girelli, L., & Vallar, G. (2006). Numbers and space: A cognitive illusion? Experimental Brain Research, 168, 254–264.

    Article  Google Scholar 

  • Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–42.

    Article  Google Scholar 

  • Dehaene, S. (2003). The neural basis of the weber-fechner law: A logarithmic mental number line. Trends in Cognitive Sciences, 7(4), 145–147.

    Article  Google Scholar 

  • Dehaene, S. (2011). The number sense. How the mind creates mathematics. Revised and updated edition. New York: Oxford University Press.

    Google Scholar 

  • Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and numerical magnitude. Journal of Experimental Psychology: General, 122, 371–396.

    Google Scholar 

  • Dehaene, S., & Cohen, L. (1991). Two mental caculation systems: A case study of severe acalculia with preserved approximation. Neuropsychologia, 29(11), 1045–1074.

    Article  Google Scholar 

  • Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of number processing. Mathematical Cognition, 1, 83–120.

    Google Scholar 

  • Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: Double dissociations between gerstmann’s acalculia and subcortical acalculia. Cortex, 33, 219–250.

    Article  Google Scholar 

  • Dehaene, S., Naccache, L., Clec’H, G. L., Koechlin, E., Mueller, M., Dehaene- Lambertz, G., van de Moortele, P. F., & Bihan, D. L. (1998). Imaging unconscious priming. Nature, 395(6702), 597–600.

    Google Scholar 

  • Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487–506.

    Article  Google Scholar 

  • Dehaene, S., Spelke, E. S., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of mathematical thinking: Behavioral and brain-imaging evidence. Science, 284, 970–974.

    Article  Google Scholar 

  • Delazer, M., & Benke, T. (1997). Arithmetic facts without meaning. Cortex, 33, 697–710.

    Article  Google Scholar 

  • Delazer, M., Karner, E., Zamarian, L., Donnemiller, E., & Benke, T. (2005). Number processing in posterior cortical atrophy—A neuropsychological case study. Neuropsychologia, 44, 36–51.

    Article  Google Scholar 

  • Eger, E., Sterzer, P., Russ, M. O., Giraud, A.-L., & Kleinschmidt, A. (2003). A supramodal number representation in human intraparietal cortex. Neuron, 37(4), 719–725.

    Article  Google Scholar 

  • Fayol, M., Barrouillet, P., & Marinthe, C. (1998). Predicting arithmetic achievement from neuropsychological performance: A longitudinal study. Cognition, 68, 63–70.

    Article  Google Scholar 

  • Ferro, J. M., & Botelho, M. A. S. (1980). Alexia for arithmetical signs: A cause of disturbed calculation. Cortex, 16, 175–180.

    Article  Google Scholar 

  • Fischer, M. H. (2001). Number processing induces spatial performance biases. Neurology, 57, 822–826.

    Article  Google Scholar 

  • Fisher, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 6, 555–556.

    Article  Google Scholar 

  • Gallistel, C. R., & Gelman, R. (2000). Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Sciences, 4, 59–65.

    Article  Google Scholar 

  • Galton, F. (1880). Visualised numerals. Nature, 21, 252–256.

    Article  Google Scholar 

  • Gazzaniga, M. S., & Hillyard, S. A. (1971). Language and speech capacity in the right hemisphere. Neuropsychologia, 9, 273–280.

    Article  Google Scholar 

  • Gazzaniga, M. S., & Smylie, C. E. (1984). Dissociation of language and cognition: A psychological profile of two disconnected hemispheres. Brain, 107, 145–153.

    Article  Google Scholar 

  • Geary, D. C., Hamson, C. O., & Hoard, M. K. (2000). Numerical and arithmetical cognition: A longitudinal study of process and concept deficits in children with learning disability. Journal of Experimental Child Psychology, 77, 236–263.

    Article  Google Scholar 

  • Gevers, W., Reynvoet, B., & Fias, W. (2003). The mental representation of ordinal sequences is spatially organized. Cognition, 87, 87–95.

    Article  Google Scholar 

  • Ghatan, P. H., Hsieh, J. C., Petersson, K. M., Stone-Elander, S., & Ingvar, M. (1998). Coexistence of attention-based facilitation and inhibition in the human cortex. NeuroImage, 7, 23–29.

    Article  Google Scholar 

  • Gibbon, J. (1977). Scalar expectancy theory and weber’s law in animal timing. Psychological Review, 84, 279–335.

    Article  Google Scholar 

  • Goldstein, K. (1948). Language and language disturbances. New York: Grune and Stratton.

    Google Scholar 

  • Grafman, J. (1988). Acalculia. In F. Boller, J. Grafman, G. Rizzolatti, & H. Goodglass (Eds.), Handbook of neuropsychology (Vol. 1, pp. 121–136). Amsterdam: Elsevier.

    Google Scholar 

  • Grafman, J., Kampen, D., Rosenberg, J., Salazar, A. M., & Boller, F. (1989). The progressive breakdown of number processing and calculation ability: A case study. Cortex, 25, 121–133.

    Article  Google Scholar 

  • Hecaen, H., Angelerges, T., & Houllier, S. (1961). Les varietes cliniques des acalculies au cours des lesions retrorolandiques. Reviews Neurology, 105, 85–103.

    Google Scholar 

  • Henschen, S. E. (1925). Clinical and anatomical contributions on brain pathology. Archives of neurology and psychiatry, 13, 226–249.

    Article  Google Scholar 

  • Jewell, G., & McCourt, M. E. (2000). Pseudoneglect: A review and meta-analysis of performance factors in line bisection tasks. Neuropsychologia, 38, 93–110.

    Article  Google Scholar 

  • Johnson, P. J., & Myklebust, H. R. (1967). Learning disabilities. New York: Grune & Stratton.

    Google Scholar 

  • Jong, B. M. D., van Zomeren, A. H., Willemsen, H. T. M., & Paans, A. M. J. (1996). Brain activity related to serial cognitive performance resembles circuitry of higher order motor control. Experimental Brain Research, 109, 136–140.

    Article  Google Scholar 

  • Karmiloff-Smith, A. (1998). Development itself is the key to understanding development disorders. Trends in Cognitive Sciences, 2, 389–398.

    Article  Google Scholar 

  • Laing, E., Hulme, C., Grant, J., & Karmiloff-Smith, A. (2001). Learning to read in Williams Syndrome: Looking beneath the surface of atypical reading development. Journal of Child Psychology and Psychiatry, 42, 729–739.

    Article  Google Scholar 

  • Lee, K. M. (2000). Cortical areas differentially involved in multiplication and subtraction: A functional magnetic resonance imaging study and correlation with a case of selective acalculia. Annals of Neurology, 48, 657–661.

    Article  Google Scholar 

  • Lefevre, J., Bisanz, J., Daley, K. E., Buffone, L., Greenham, S. L., & Sadesky, G. S. (1996). Multiple routes to solution of single-digit multiplication problems. Journal of Experimental Psychology: General, 3, 284–306.

    Article  Google Scholar 

  • Lemer, C., Dehaene, S., Spelke, E. S., & Cohen, L. (2003). Approximate quantities and exact number words: Dissociable systems. Neuropsychologia, 41, 1942–1958.

    Article  Google Scholar 

  • Lewandowsky, M., & Stadelmann, E. (1908). Ãœber einen bemerkenswerten Fall von Hirnblutung und über Rechenstörungen bei Herderkrankung des Gehirns. Journal für Psychologie und Neurologie, 11, 249–265.

    Google Scholar 

  • Loftus, A. M., Nicholls, M. E. R., Mattingley, J. B., & Bradshaw, J. L. (2008). Left to right: Representational biases for numbers and the effect of visuomotor adaptation. Cognition, 3, 1048–1058.

    Article  Google Scholar 

  • Luria, A. R. (1973). The working brain. New York: Basic Books.

    Google Scholar 

  • Luria, A. R. (1976). Basic problems in neurolinguistics. New York: Mouton.

    Book  Google Scholar 

  • McCloskey, M., Aliminosa, D., & Sokol, S. M. (1991). Facts, rules, and procedures in normal calculation: Evidence from multiple single-patient studies of impaired arithmetic facts retrieval. Brain and Cognition, 17, 154–203.

    Article  Google Scholar 

  • McCloskey, M., Caramazza, A., & Basili, A. (1985). Cognitive mechanisms in number processing and calculation: Evidence from dyscalculia. Brain and Cognition, 4, 171–196.

    Article  Google Scholar 

  • Menon, V., Rivera, S. M., White, C. D., Glover, G. H., & Reiss, A. L. (2000). Dissociating prefrontal and parietal cortex activation during arithmetic processing. NeuroImage, 12, 357–365.

    Article  Google Scholar 

  • Molko, N., Cachia, A., Rivière, D., Mangin, J.-F., Bruandet, M., Bihan, D. L., et al. (2003). Functional and structural alterations of the intraparietal sulcus in a developmental dyscaculia of genetic origin. Neuron, 40(4), 847–858.

    Article  Google Scholar 

  • Naccache, L., & Dehaene, S. (2001). The priming methode: Imaging unconscious repetition priming reveals an abstract representation of number in parietal lobes. Cerebral Cortex, 11, 966–974.

    Article  Google Scholar 

  • Paterson, S. J., Brown, J. H., Gsodl, M. K., Johnson, M. H., & Karmiloff-Smith, A. (1999). Cognitive modularity and genetic disorders. Science, 286, 2355–2358.

    Article  Google Scholar 

  • Paterson, S. (2001). Language and number in down syndrome: The complex developmental trajectory from infancy to adulthood. Down Syndrome Research and Pratice, 7, 79–86.

    Article  Google Scholar 

  • Paterson, S. J., Girelli, L., Butterworth, B., & Karmiloff-Smith, A. (2006). Are numerical impairments syndrome specific? Evidence from Williams syndrome and down’s syndrome. Journal of Child Psychology and Psychiatry, 47, 190–204.

    Article  Google Scholar 

  • Pesenti, M., Seron, X., & van den Linden, M. (1994). Selective impairment as evidence for mental organisation of number facts: Bb, a case of preserved subtraction? Cortex, 30, 661–671.

    Article  Google Scholar 

  • Pesenti, M., Thioux, M., Seron, X., & de Volder, A. (2000). Neuroanatomical substrates of arabic number processing, numerical comparison and simple addition: A pet study. Journal of Cognitive Neuroscience, 12, 461–479.

    Article  Google Scholar 

  • Piazza, M., Izard, V., Pinel, P., Bihan, D. L., & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44(3), 547–555.

    Article  Google Scholar 

  • Piazza, M., Mechelli, A., Butterworth, B., & Price, C. J. (2002). Are subitizing and counting implemented as separate or functionally overlapping processes? NeuroImage, 15, 435–446.

    Article  Google Scholar 

  • Pinel, P., Dehaene, S., Rivière, D., & Bihan, D. L. (2001). Modulation of parietal activation by semantic distance in a number comparison task. Neuroimage, 14, 1013–1026.

    Article  Google Scholar 

  • Pinel, P., Piazza, M., Bihan, D. L., & Dehaene, S. (2004). Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron, 41, 983–993.

    Article  Google Scholar 

  • Priftis, K., Zorzi, M., Meneghello, F., Marenzi, R., & Umiltà, C. (2006). Explicit versus implicit processing of representational space in neglect: Dissociations in accessing the mental number line. Journal of Cognitive Neuroscience, 18, 680–688.

    Article  Google Scholar 

  • Rivera, S. M., Menon, V., White, C. D., Glaser, B., & Reiss, A. L. (2002). Functional brain activation during arithmetic processing in females with fragile x syndrome is related to fmr1 protein expression. Human Brain Mapping, 16, 206–218.

    Article  Google Scholar 

  • Roland, P. E., & Friberg, L. (1985). Localization of cortical areas activated by thinking. Journal of Neurophysiology, 53, 1219–1243.

    Article  Google Scholar 

  • Rosselli, M., & Ardila, A. (1989). Calculation deficits in patients with right and left hemisphere damage. Neuropsychologia, 27, 607–618.

    Article  Google Scholar 

  • Rossetti, Y., Jacquin-Courtois, S., Rode, G., Ota, H., Michel, C., & Boisson, D. (2004). Is action the link between number and space representation? Visuo-manual adaptation improves number bisection in unilateral neglect. Psychological Science, 15, 426–430.

    Article  Google Scholar 

  • Rueckert, L., Lange, N., Partiot, A., Appollonio, I., Litvar, I., Bihan, D. L., et al. (1996). Visualizing cortical activation during mental calculation with funtional mri. NeuroImage, 3, 97–103.

    Article  Google Scholar 

  • Rusconi, E., Kwan, B., Giordano, B. L., Umiltà, C., & Butterworth, B. (2006). Spatial representation of pitch height: The SMARC effect. Cognition, 99, 113–129.

    Article  Google Scholar 

  • Seron, X., Pesenti, M., Noël, M.-P., Deloche, G., & Cornet, J. A. (1992). Images of numbers, or when 98 is upper left and 6 sky blue. Cognition, 44, 159–196.

    Article  Google Scholar 

  • Seymour, S. E., Reuter-Lorenz, P. A., & Gazzaniga, M. S. (1994). The disconnection syndrome: Basic findings confirmed. Brain, 117, 105–115.

    Article  Google Scholar 

  • Simon, O., Mangin, J. F., Cohen, L., Bihan, D. L., & Dehaene, S. (2002). Topographical layout of eye, calculation, and language-related areas in the human parietal lobe. Neuron, 33, 475–487.

    Article  Google Scholar 

  • Stanescu-Cosson, R., Pinel, P., van de Moortele, P., Bihan, D. L., Cohen, L., & Dehaene, S. (2000). Understanding dissociations in dyscalculia: A brain imaging study of the impact of number size calculation. Brain, 123, 2240–2255.

    Article  Google Scholar 

  • Temple, C. (1991). Procedural dyscalculia and number fact dyscalculia: Double dissociation in developmental dyscalculia. Cognitive Neuropsychology, 8, 155–176.

    Article  Google Scholar 

  • Temple, C. M., & Carney, R. (1996). Reading skills in children with Turner’s syndrome: An analysis of hyperplexia. Cortex, 32, 335–345.

    Article  Google Scholar 

  • Temple, C. M., & Marriot, A. J. (1998). Arithmetical Ability and Disability in Turner’s syndrome: a cognitive neuropsychological analysis. Developmental Neuropsychology, 14, 47–67.

    Article  Google Scholar 

  • Turner, H. (1938). A syndrome of infantilism, congenital webbed neck and cubitus valgus. Endocrinology, 28, 566–574.

    Article  Google Scholar 

  • van Harskamp, N. J., Rudge, P., & Cipolotti, L. (2002). Are multiplication facts implemented by the left supramarginal and angular gyri? Neuropsychologia, 40, 1786–1793.

    Article  Google Scholar 

  • Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Science, 7(11), 483–488.

    Article  Google Scholar 

  • Warrington, E. K. (1982). The fractionation of arithmetical skills: A single case study. Quaterly Journal of Experimental Psychology, 34, 31–51.

    Article  Google Scholar 

  • Zamarian, L., Egger, C., & Delazer, M. (2007). The mental representation of ordered sequences in visual neglect. Cortex, 43, 542–550.

    Article  Google Scholar 

  • Zorzi, M., Priftis, K., & Umilta, C. (2002). Neglects disrupts the mental number line. Nature, 417, 138–139.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Graziano .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Graziano, M. (2018). Dissociations Between System 1 and System 2. In: Dual-Process Theories of Numerical Cognition. SpringerBriefs in Philosophy. Springer, Cham. https://doi.org/10.1007/978-3-319-96797-4_4

Download citation

Publish with us

Policies and ethics