Advertisement

Electrical Conductivity Constraints on the Geometry of the Western LATEA Boundary from a Magnetotelluric Data Acquired Near Tahalgha Volcanic District (Hoggar, Southern Algeria)

  • A. BouzidEmail author
  • A. Bendekken
  • A. Deramchi
  • A. Abtout
  • N. Akacem
  • M. Djeddi
  • M. Hamoudi
Chapter
Part of the Springer Geology book series (SPRINGERGEOL)

Abstract

The lithospheric structure of the Hoggar massif remains relatively unknown. The lack of high-resolution geophysical studies devoted to it is the source of controversial debates about its underlying structure and its geodynamics. This study targets the western edge of the LATEA microcontinent at the intersection of the 4°50′ sub-meridian major fault and the 4°35′ fault with the oued Amded NE–SW lineament. The study area also includes the northern flank of the Tahalgha Cenozoic Volcanic District. The analysis and modeling of magnetotelluric data collected at 12 sites forming an EW profile of 75 km length made it possible to build a resistivity model over a hundred km of depth. The magnetotelluric data reveal a heterogeneous upper crust made up of probably very compact and mechanically strong, electrically resistive structures corresponding to hypovolcanic granitoid and batholiths, and others more conductive probably more inhomogeneous, weak and more fractured corresponding to the Paleoproterozoic metamorphic basement. On the contrary, the lower crust and the lithospheric mantle down to a depth of about 100 km are fairly homogeneous. The 4°50′ mega-fault is rooted into the lithospheric mantle to a depth of about 70 km. This is corroborated by potential field data to at least the base of the crust. By comparison, the 4°35′ fault does not appear as important. The fault network highlighted by the magnetotelluric data has probably been used to transport melt from the asthenosphere up to the surface to give rise to the Tahalgha volcanic district. The fluids released or the precipitated mineralization are at the origin of the strong fall of the resistivity which gives a signature so peculiar to these faults.

Keywords

Hoggar LATEA Tahalgha volcanic district 4°50′ fault Magnetotellurics 

Notes

Acknowledgements

This study was conducted in the framework of the Algerian/French PHC Tassili cooperation program n° 09 MDU 787: « architecture et evolution du Bouclier Touareg: le role des grands accidents lithosphériques». The field campaign was carried out with the support of CRAAG. We thank M. Hani for his help during the fieldwork. The civil and military authorities of the Wilaya of Tamanrasset are thanked for their assistance in achieving the field campaign. The authors are grateful to A. Bendaoud, J.-L. Bodinier, C. Tibéri, A. Lesquer, and G. Vasseur for their fruitful discussions about this work. We warmly thank Prof. J.-P. Liégeois for his constructive criticism that has resulted in a substantial improvement of the manuscript.

References

  1. Abdelsalam M, Liégeois J-P, Stern RJ (2002) The Saharan metacraton. J Afr Earth Sci 34:119–136.  https://doi.org/10.1016/S0899-5362(02)00013-1CrossRefGoogle Scholar
  2. Aït-Hamou F, Dautria JM (1994) Le magmatisme cénozoïque du Hoggar: une synthèse des données disponibles. Mise au point sur l’hypothèse d’un point chaud. Bull Serv Géol Algérie 5:49–68Google Scholar
  3. Aït-Hamou F, Dautria JM, Cantagrel JM, Dostal J, Briqueu L (2000) Nouvelles données géochronologiques et isotopiques sur le volcanisme cénozoïque de l’Ahaggar (Sahara algérien): des arguments en faveur d’un panache. C R Acad Sci Paris 330:829–836Google Scholar
  4. Ayadi A, Dorbath C, Lesquer A, Bezzeghoud M (2000) Crustal and upper mantle velocity structure of the Hoggar swell (central Sahara, Algeria). Phys Earth Planet Inter 118:111–123.  https://doi.org/10.1016/S0031-9201(99)00134-XCrossRefGoogle Scholar
  5. Azzouni-Sekkal A, Liégeois J-P, Bechiri-Benmerzoug F, Belaidi-Zinet S, Bonin B (2003) The ‘Taourirt’ magmatic province, a marker of the closing stage of the Pan-African orogeny in the Tuareg Shield: review of available data and Sr–Nd isotope evidence. J Afr Earth Sci 37:331–350CrossRefGoogle Scholar
  6. Bahr K (1988) Interpretation of the magnetotelluric impedance tensor: regional induction and local telluric distortion. J Geophys 62:119–127Google Scholar
  7. Bahr K (1991) Geological noise in magnetotelluric data: a classification of distortion types. Phys Earth Planet Inter 66:24–38.  https://doi.org/10.1016/0031-9201(91)90101-MCrossRefGoogle Scholar
  8. Bechiri-Benmerzoug F (2009) Pétrologie, géochimie isotopique et géochronologie des granitoïdes Pan-africains de type TTG de Silet: contribution à la connaissance de la structuration du bloc d’Iskel (Silet, Hoggar occidental). Doctoral dissertation, USTHB/FSTGAT, Algeria, 335 pGoogle Scholar
  9. Begg GC, Griffin WL et al (2009) The lithospheric architecture of Africa: seismic tomography, mantle petrology and tectonic evolution. Geosphere 5:23–50CrossRefGoogle Scholar
  10. Bendaoud A, Ouzegane K, Godard G, Liégeois J-P, Kienast J-R, Bruguier O, Drareni A (2008) Geochronology and metamorphic P-T-X evolution of the Eburnean granulite-facies metapelites of Tidjenouine (Central Hoggar, Algeria): witness of the LATEA metacratonic evolution. In: Ennih N, Liégeois J-P (eds) The boundaries of the West African craton. Geological Society of London Special Publication, vol 297, pp 111–146.  https://doi.org/10.1144/sp297.6
  11. Bertrand JM, Caby R, SONAREM Geologists, Compilers (1977) Carte géologique du Hoggar (Algeria). SONAREM, Algiers, scale 1:1,000,000, 2 sheetsGoogle Scholar
  12. Bibby HM, Caldwell TG, Brown C (2005) Determinable and non-determinable parameters of galvanic distortion in magnetotellurics. Geophys J Int 163:915–930.  https://doi.org/10.1111/j.1365-246X.2005.02779.xCrossRefGoogle Scholar
  13. Black R, Liégeois J-P (1993) Cratons, mobile belts, alkaline rocks and continental lithospheric mantle: the Pan-African testimony. J Geol Soc 150:89–98.  https://doi.org/10.1144/gsjgs.150.1.0088CrossRefGoogle Scholar
  14. Black R, Latouche L, Liégeois JP, Caby R, Bertrand JM (1994) Pan-African displaced terranes in the Tuareg shield (central Sahara). Geology 22:641–644.  https://doi.org/10.1130/0091-7613(1994)022%3c0641:padtit%3e2.3.co;2
  15. Bournas N, Galdeano A, Hamoudi M, Baker H (2003) Interpretation of the aeromagnetic map of Eastern Hoggar (Algeria) using the Euler deconvolution, analytic signal and local wavenumber methods. J Afr Earth Sci 37:191–205CrossRefGoogle Scholar
  16. Bouyahiaoui B, Djeddi M, Abtout A, Boukerbout H, Akacem N (2011) Etude de la croûte Archéenne du môle In-Ouzzal (Hoggar Central) par la méthode gravimétrique: identification des sources par la transformée en ondelettes continue. Bull Serv Géol Nat 22(2):259–274Google Scholar
  17. Bouzid A, Abtout A, Akacem N (2004) Electrical structure of the crust and upper mantle of the Hoggar shield from magnetotelluric data. In: Proceedings, 20th colloquium of African geology, Orléans, France, Abstracts, p 93Google Scholar
  18. Bouzid A, Akacem N, Hamoudi M, Ouzegane K, Abtout A, Kienast J-R (2008) Modélisation magnétotellurique de la structure géologique profonde de l’unité granulitique de l’In Ouzzal (Hoggar occidental) [in French with an abridged English version]. C R Geosci 340:711–722.  https://doi.org/10.1016/j.crte.2008.08.001CrossRefGoogle Scholar
  19. Bouzid A, Bayou B, Liégeois J-P, Bourouis S, Bougchiche SS, Bendekken A, Abtout A, Boukhlouf W, Ouabadi A (2015) Lithospheric structure of the Atakor metacratonic volcanic swell (Hoggar, Tuareg Shield, southern Algeria): electrical constraints from magnetotelluric data. In: Foulger GR, Lustrino M, King SD (eds) The interdisciplinary earth: a volume in honor of Don L. Anderson. Geological Society of America Special Paper 514 and American Geophysical Union Special Publication 71, pp 239–255.  https://doi.org/10.1130/2015.2514(15)
  20. Caby R (2003) Terrane assembly and geodynamic evolution of central-western Hoggar: a synthesis. J Afr Earth Sci 37:133–159CrossRefGoogle Scholar
  21. Cagniard L (1953) Principe de la méthode magnétotellurique, nouvelle méthode de prospection géophysique. Ann Geophys 9:95–125Google Scholar
  22. Caldwell TG, Bibby HM, Brown C (2004) The magnetotelluric phase tensor. Geophys J Int 158:457–469.  https://doi.org/10.1111/j.1365-246X.2004.xCrossRefGoogle Scholar
  23. Crough ST (1981) Free-air gravity over the Hoggar massif, northwest Africa: evidence for the alteration of the lithosphere. Tectonophysics 77:189–202.  https://doi.org/10.1016/0040-1951(81)90262-6CrossRefGoogle Scholar
  24. Dautria J-M (1988) Relations entre les hétérogénéités du manteau supérieur et le magmatisme en domaine continental distensif. Exemple des basaltes alcalins du Hoggar (Sahara central, Algérie) et de leurs enclaves. Ph.D. thesis. Université de Montpellier 2, 421 pGoogle Scholar
  25. Dautria JM, Girod M (1991) Relationships between Cainozoic magmatism and upper mantle heterogeneities as exemplified by the Hoggar volcanic area (Central Sahara, South Algeria). In: Kampunzu AB, Lubala RT (eds) Magmatism in extensional structural settings, Springer, Berlin, pp 250–269Google Scholar
  26. Dautria JM, Lesquer A (1989) An example of the relationship between rift and dome: recent geodynamic evolution of the Hoggar swell and of its nearby regions (Central Sahara, Southern Algeria and Eastern Niger). Tectonophysics 163:45–61.  https://doi.org/10.1016/0040-1951(89)90117-0
  27. Dautria JM, Dostal J, Dupuy C, Liotard JM (1988) Geochemistry and petrogenesis of alkali basalts from Tahalra (Hoggar, Northwest Africa). Chem Geol 69:17–35.  https://doi.org/10.1016/0009-2541(88)90155-6CrossRefGoogle Scholar
  28. Fishwick S, Bastow ID (2011) Towards a better understanding of African topography: a review of passive-source seismic studies of the African crust and upper mantle. In: van Hinsbergen DJJ, Buiter SJH, Torsvik TH, Gaina C, Webb SJ (eds) The formation and evolution of Africa: a synopsis of 3.8 Ga of earth history. Geological Society of London Special Publication, vol 357, pp 343–371.  https://doi.org/10.1144/sp357.19
  29. Gangopadhyay A, Pulliam J, Sen M-K (2007) Waveform modeling of teleseismic S, Sp, SsPmP, and shear-coupled PL waves for crust- and upper-mantle velocity structure beneath Africa. Geophys J Int 170:1210–1226.  https://doi.org/10.1111/j.1365-246X.2007.03470.xCrossRefGoogle Scholar
  30. Gokarn SG, Gupta G, Rao CK, Selvaraj C (2002) Electrical structure across the Indus Tsangposuture and Shyok suture zones in NW Himalaya using magnetotelluric studies. Geophy Res Lett 29(8):1251.  https://doi.org/10.1029/2001GL014325
  31. Groom RW, Bailey RC (1989) Decomposition of magnetotelluric impedance tensor in the presence of local three-dimensional galvanic distortion. J Geophys Res 94:1913–1925.  https://doi.org/10.1029/JB094iB02p01913CrossRefGoogle Scholar
  32. Groom RW, Bailey RC (1991) Analytic investigations of the effects of near-surface three-dimensional galvanic scatterers on MT tensor decompositions. Geophysics 56(4):496–518Google Scholar
  33. Haak V (1980) Relations between electrical conductivity and petrological parameters of the crust and upper mantle. Geophys Surv 4:57–69.  https://doi.org/10.1007/BF01452958CrossRefGoogle Scholar
  34. Hansen C (1992) Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev 34:561–580.  https://doi.org/10.1137/1034115CrossRefGoogle Scholar
  35. Jödicke H (1992) Water and graphite in the earth’s crust: an approach to interpretation of conductivity models. Surv Geophys 13:381–407.  https://doi.org/10.1007/BF01903484CrossRefGoogle Scholar
  36. Jones AG (1999) Imaging the continental upper mantle using electromagnetic methods. Lithos 48:57–80.  https://doi.org/10.1016/S0024-4937(99)00022-5CrossRefGoogle Scholar
  37. Jones AG (2013) Imaging and observing the electrical Moho. Tectonophysics 609:423–436.  https://doi.org/10.1016/j.tecto.2013.02.025CrossRefGoogle Scholar
  38. Jones AG, Ferguson IJ (2001) The electric Moho. Nature 409:331–333.  https://doi.org/10.1038/35053053CrossRefGoogle Scholar
  39. Jones AG, Jödicke H (1984) Magnetotelluric transfer function estimation improvement by a coherence-based rejection technique. In: Proceedings, 54th annual international society of exploration geophysicists meeting, Atlanta, Georgia, pp 51–55Google Scholar
  40. Jones AG, Kurtz RD, Boerner DE, Craven JA, McNeice GW, Gough DI, DeLaurier JM, Ellis RG (1992) Electromagnetic constraints on strikeslip fault geometry: the Fraser River fault system. Geology 20:561–564.  https://doi.org/10.1130/0091-7613(1992)020%3c0561:ecossf%3e2.3.co;2
  41. Kourim F, Bodinier J-L, Alard O, Bendaoud A, Vauchez A, Dautria J-M (2014) Nature and evolution of the lithospheric mantle beneath the Hoggar swell (Algeria): a record from mantle Xenoliths. J Petrol 55(11):2249–2280.  https://doi.org/10.1093/petrology/egu056CrossRefGoogle Scholar
  42. Krieger L, Peacock JR (2014) MTpy: a Python toolbox for magnetotellurics. Comput Geosci 72:167–175CrossRefGoogle Scholar
  43. Lastoviskova M (1983) Laboratory measurement of electrical properties of rocks and minerals. Geophys Surv 6:201–213.  https://doi.org/10.1007/BF01454001CrossRefGoogle Scholar
  44. Lesquer A, Bourmatte A, Dautria JM (1988) Deep structure of the Hoggar domal uplift (Central Sahara, South Algeria) from gravity, thermal and petrological data. Tectonophysics 152:71–87.  https://doi.org/10.1016/0040-1951(88)90030-3CrossRefGoogle Scholar
  45. Lesquer A, Bourmatte A, Ly S, Dautria JM (1989) First heat flow determination from the Central Sahara: relationship with the Pan-African belt and Hoggar domal uplift. J Afr Earth Sci 9:41–48.  https://doi.org/10.1016/0899-5362(89)90006-7CrossRefGoogle Scholar
  46. Liégeois JP, Latouche L, Boughrara M, Navez J, Guiraud M (2003) The LATEA metacraton (Central Hoggar, Tuareg shield, Algeria): behaviour of an old passive margin during the Pan-African orogeny. J Afr Earth Sci 37:161–190.  https://doi.org/10.1016/j.jafrearsci.2003.05.004CrossRefGoogle Scholar
  47. Liégeois J-P, Benhallou A, Azzouni-Sekkal A, Yahiaoui R, Bonin B (2005) The Hoggar swell and volcanism: reactivation of the Precambrian Tuareg shield during Alpine convergence and West African Cenozoic volcanism. In: Foulger GR, Natland JH, Presnall DC, Anderson DL (eds) Plates, plumes, and paradigms. Geological Society of America Special Paper 388, pp 379–400.  https://doi.org/10.1130/0-8137-2388-4.379
  48. Liégeois J-P, Abdelsalam MG, Ennih N, Ouabadi A (2013) Metacraton: nature, genesis and behavior. Gondwana Res 23:220–237.  https://doi.org/10.1016/j.gr.2012.02.016CrossRefGoogle Scholar
  49. Liu HL, Gao SS (2010) Spatial variations of crustal characteristics beneath the Hoggar swell, Algeria, revealed by systematic analyses of receiver functions from a single seismic station. Geochem Geophys Geosyst 11:Q08011.  https://doi.org/10.1029/2010GC003091CrossRefGoogle Scholar
  50. Mackie R, Rieven S, Rodi W (1997) User’s manual and software documentation for two-dimensional inversion of magnetotelluric data. Earth Resources Laboratory Rpt. Massachusetts Institute of Technology, Cambridge, p 13Google Scholar
  51. Marti A, Queralt P, Jones AG, Ledo J (2005) Improving Bahr’s invariant parameters using the WAL approach. Geophys J Int 163:38–41.  https://doi.org/10.1111/j.1365-246X.2005.02748.xCrossRefGoogle Scholar
  52. Meqbel NM, Egberta GD, Wannamaker PhE, Kelberta A, Schultz A (2014) Deep electrical resistivity structure of the northwestern U.S. derived from 3-D inversion of USArray magnetotelluric data. Earth Planet Sci Lett 402:290–304.  https://doi.org/10.1016/j.epsl.2013.12.026CrossRefGoogle Scholar
  53. Nover G (2005) Electrical proprieties of crustal and mantle rocks: a review of laboratory measurements and their explanation. Surv Geophys 26:593–651.  https://doi.org/10.1007/s10712-005-1759-6CrossRefGoogle Scholar
  54. Parkinson WD (1962) The influence of continents and oceans on geomagnetic variations. Geophys J Roy Astron Soc 6:441–449.  https://doi.org/10.1111/j.1365-246X.1962.tb02992.xCrossRefGoogle Scholar
  55. Pasyanos ME, Walter WR (2002) Crust and upper-mantle structure of North Africa, Europe and the Middle East from inversion of surface waves. Geophys J Int 149:463–481.  https://doi.org/10.1046/j.1365-246X.2002.01663.xCrossRefGoogle Scholar
  56. Pérez-Gussinyé M, Metois M, Fernàndez M, Vergés J, Fullea J, Lowry AR (2009) Effective elastic thickness of Africa and its relationship to other proxies for lithospheric structure and surface tectonics. Earth Planet Sci Lett 287(1–2):152–167CrossRefGoogle Scholar
  57. Priestley K, McKenzie D, Debayle E, Pilidou S (2008) The African upper mantle and its relationship to tectonics and surface geology. Geophys J Int 175:1108–1126CrossRefGoogle Scholar
  58. Rao CK, Jones GA, Moorkamp M (2007) The geometry of the Iapetus Suture zone in central Ireland deduced from a magnetotelluric study. Phy Earth Planet Inter 161:134–141.  https://doi.org/10.1016/j.pepi.2007.01.008
  59. Rao CK, Jones GA, Moorkamp M, Weckmann U (2014) Implications for the lithospheric geometry of the Iapetus suture beneath Ireland based on electrical resistivity models from deep-probing magnetotellurics. Geophy J Inter 198(2):737–759.  https://doi.org/10.1093/gji/ggu136
  60. Ritter O, Weckmann U, Vietor T, Haak V (2003) A magnetotelluric study of the Damara Belt in Namibia: 1. Regional scale conductivity anomalies. Phys Earth Planet Inter 138:71–90.  https://doi.org/10.1016/S0031-9201(03)00078-5CrossRefGoogle Scholar
  61. Roberts GG, White N (2010) Estimating uplift rate histories from river profiles using African examples. J Geophys Res 115:B02406.  https://doi.org/10.1029/2009JB006692CrossRefGoogle Scholar
  62. Rougier S, Missenard Y, Gautheron C, Barbarand J, Zeyen H, Pinna R, Liégeois J-P, Bonin B, Ouabadi A, Derder ME-M, Frison de Lamotte D (2013) Eocene exhumation of the Tuareg Shield (Sahara Desert, Africa). Geology 41:615–618.  https://doi.org/10.1130/G33731.1CrossRefGoogle Scholar
  63. Sebaï A, Stutzmann E, Montagnera J-P, Sicilia D, Beuclerc E (2006) Anisotropic structure of the African upper mantle from Rayleigh and Love wave tomography. Phys Earth Planet Inter 155:48–62.  https://doi.org/10.1016/j.pepi.2005.09.009CrossRefGoogle Scholar
  64. Shankland TL, Ander M (1983) Electrical conductivity, temperatures and fluids in the lower crust. J Geophys Res 88:9475–9484.  https://doi.org/10.1029/JB088iB11p09475CrossRefGoogle Scholar
  65. Swift CM Jr. (1967) A magnetotelluric investigation of an electrical conductivity anomaly in the southwestern United States. Ph.D. thesis. Massachusetts Institute of Technology, Cambridge, p 223Google Scholar
  66. Takherist D, Lesquer A (1989) Mise en évidence d’importantes variations régionales du flux de chaleur en Algérie. Can J Earth Sci 26(4):615–626.  https://doi.org/10.1139/e89-053CrossRefGoogle Scholar
  67. Tikhonov AN (1950) Determination of electrical characteristics of the deep strata of the earth’s crust. Dokl Akad Nauk SSSR 73:292–297Google Scholar
  68. Unsworth M, Bedrosian PA (2004) On the geoelectric structure of major strike-slip faults and shear zones. Earth Planet Space 56:1177–1184CrossRefGoogle Scholar
  69. Wannamaker PhE, Hasterok DP, Johnston JM, Stodt JA, Hall DB, Sodergren TL, Pellerin L, Maris V, Doerner WM, Groenewold KA, Unsworth MJ (2008) Lithospheric dismemberment and magmatic processes of the Great Basin–Colorado Plateau transition, Utah, implied from magnetotellurics. Geochem Geophys Geosyst 9:Q05019.  https://doi.org/10.1029/2007GC001886CrossRefGoogle Scholar
  70. Zerrouk S, Bendaoud A, Hamoudi M, Liégeois J-P, Boubekri H, Ben El Khaznadji R (2016) Mapping and discriminating the Pan-African granitoids in the Hoggar (southern Algeria) using Landsat 7 ETM+ data and airborne geophysics. J African Earth Sci 127:146–158.  https://doi.org/10.1016/j.jafrearsci.2016.10.003

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • A. Bouzid
    • 1
    Email author
  • A. Bendekken
    • 2
  • A. Deramchi
    • 1
    • 3
  • A. Abtout
    • 1
  • N. Akacem
    • 2
  • M. Djeddi
    • 3
  • M. Hamoudi
    • 3
  1. 1.Division Géophysique de SubsurfaceCRAAGAlgiersAlgeria
  2. 2.Unité de Recherche de TamanrassetCRAAGTamanrassetAlgeria
  3. 3.Département de Géophysique, FSTGAT, USTHBAlgiersAlgeria

Personalised recommendations