Skip to main content

Response Theory and Symmetry Protected Topological Phases

  • Chapter
  • First Online:
Topological Quantum Matter

Part of the book series: Springer Theses ((Springer Theses))

  • 927 Accesses

Abstract

The topologically ordered phases, discussed in the last chapter, are the fundamental zero-temperature phases—if you allow for arbitrary changes of your system (i.e., the Hamiltonian), you can continuously interpolate between all other phases. But this is a too restrictive view and would make us miss important phase differences, as between solids and liquids. In many situations there are symmetries that all physically realizable perturbations, at least on long length scales, uphold. In those situations it is natural to consider what the possible phases are if we restrict ourselves to systems with a certain symmetry, i.e., symmetry protected phases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A gap to all states is actually not needed. To be more precise, we need a gap to all exitations that can transport current. In a real quantum Hall system there is generically both charged excitations that are local and gapless excitations that cannot transport charge.

  2. 2.

    For Sr\(_{2}\)RuO\(_{4}\) there is also experiments to detect the presence of half-quantum vortices (see e.g., [25]) but these are not conclusive, see Ref. [26].

References

  1. A. Chan, T.L. Hughes, S. Ryu, E. Fradkin, Phys. Rev. B 87, 085132 (2013)

    Article  ADS  Google Scholar 

  2. X.G. Wen, A. Zee, Phys. Rev. B 46, 2290 (1992a)

    Article  ADS  Google Scholar 

  3. K.V. Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494 (1980)

    Google Scholar 

  4. Q. Niu, D.J. Thouless, Y.-S. Wu, Phys. Rev. B 31, 3372 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  5. R.B. Laughlin, Phys. Rev. B 23, 5632 (1981)

    Article  ADS  Google Scholar 

  6. D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. den Nijs, J. Phys. Rev. Lett. 49, 405 (1982). https://doi.org/10.1103/PhysRevLett.49.405

  7. J.E. Avron, R. Seiler, B. Simon, Phys. Rev. Lett. 51, 51 (1983). https://doi.org/10.1103/PhysRevLett.51.51

  8. M. Kohmoto, Anna. Phys. 160, 343 (1985). https://doi.org/10.1016/0003-4916(85)90148-4

    Article  ADS  MathSciNet  Google Scholar 

  9. S. Ryu, J.E. Moore, A.W.W. Ludwig, Phys. Rev. B 85, 045104 (2012). https://doi.org/10.1103/PhysRevB.85.045104

    Article  ADS  Google Scholar 

  10. C. Hoyos, D.T. Son, Phys. Rev. Lett. 108, 066805 (2012). https://doi.org/10.1103/PhysRevLett.108.066805

  11. X.G. Wen, A. Zee, Phys. Rev. Lett. 69, 953 (1992b). https://doi.org/10.1103/PhysRevLett.69.953

  12. T. Kvorning, T.H. Hansson, A. Quelle, C.M. Smith, Phys. Rev. Lett. 120, 217002 (2018). https://doi.org/10.1103/PhysRevLett.120.217002

  13. S. Moroz, A. Prem, V. Gurarie, L. Radzihovsky, Phys. Rev. B 95, 014508 (2017). https://doi.org/10.1103/PhysRevB.95.014508

    Article  ADS  Google Scholar 

  14. A. Kitaev, Ann. Phys. 321, 2 (2006). J. Spec. Issue. https://doi.org/10.1016/j.aop.2005.10.005

  15. H. Tou, Y. Kitaoka, K. Ishida, K. Asayama, N. Kimura, Y. Onuki, E. Yamamoto, Y. Haga, K. Maezawa, Phys. Rev. Lett. 80, 3129 (1998)

    Article  ADS  Google Scholar 

  16. M. Nishiyama, Y. Inada, G.-Q. Zheng, Phys. Rev. Lett. 98, 047002 (2007)

    Article  ADS  Google Scholar 

  17. Y. Maeno, S. Kittaka, T. Nomura, S. Yonezawa, K. Ishida, J. Phys. Soc. Jpn 81, 011009 (2012)

    Article  ADS  Google Scholar 

  18. M.H. Fischer, T. Neupert, C. Platt, A.P. Schnyder, W. Hanke, J. Goryo, R. Thomale, M. Sigrist, Phys. Rev. B 89, 020509 (2014)

    Article  ADS  Google Scholar 

  19. Y. Nishikubo, K. Kudo, M. Nohara, J. Phys. Soc. Jpn 80, 055002 (2011)

    Article  ADS  Google Scholar 

  20. M.L. Kiesel, C. Platt, W. Hanke, D.A. Abanin, R. Thomale, Phys. Rev. B 86, 020507 (2012)

    Article  ADS  Google Scholar 

  21. A.M. Black-Schaffer, C. Honerkamp, J. Phys. Condens. Matter 26, 423201 (2014)

    Article  Google Scholar 

  22. R. Nandkishore, L.S. Levitov, A.V. Chubukov, Nat. Phys. 8, 158 (2012)

    Article  Google Scholar 

  23. M.L. Kiesel, C. Platt, W. Hanke, R. Thomale, Phys. Rev. Lett. 111, 097001 (2013)

    Article  ADS  Google Scholar 

  24. L. Keldysh, Soviet. J. Exp. Theor. Phys. Lett. 29, 658 (1979)

    Google Scholar 

  25. J. Jang, D.G. Ferguson, V. Vakaryuk, R. Budakian, S.B. Chung, P.M. Goldbart, Y. Maeno 331, 186 (2011)

    Google Scholar 

  26. X. Cai, Y.A. Ying, N.E. Staley, Y. Xin, D. Fobes, T.J. Liu, Z.Q. Mao, Y. Liu, Phys. Rev. B 87, 081104 (2013)

    Article  ADS  Google Scholar 

  27. D. Robbes, Sens. Actuators Phys. 129, 86 (2006), eMSA (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Klein Kvorning .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Klein Kvorning, T. (2018). Response Theory and Symmetry Protected Topological Phases. In: Topological Quantum Matter. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-96764-6_3

Download citation

Publish with us

Policies and ethics