Skip to main content

A Strong Averaging Principle for Lévy Diffusions in Foliated Spaces with Unbounded Leaves

  • Chapter
  • First Online:
Modern Mathematics and Mechanics

Abstract

This article extends a strong averaging principle for Lévy diffusions which live on the leaves of a foliated manifold subject to small transversal Lévy type perturbation to the case of non-compact leaves. The main result states that the existence of p-th moments of the foliated Lévy diffusion for \(p\geqslant 2\) and an ergodic convergence of its coefficients in L p implies the strong L p convergence of the fast perturbed motion on the time scale tε to the system driven by the averaged coefficients. In order to compensate the non-compactness of the leaves we use an estimate of the dynamical system for each of the increments of the canonical Marcus equation derived in da Costa and Högele (Potential Anal 47(3):277–311, 2017), the boundedness of the coefficients in L p and a nonlinear Gronwall-Bihari type estimate. The price for the non-compactness are slower rates of convergence, given as p-dependent powers of ε strictly smaller than 1∕4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amann, H.: Ordinary Differential Equations: An Introduction to Nonlinear Analysis. de Gruyter Studies in Mathematics, vol. 13. Walter de Gruyter & Co., Berlin (1990)

    Google Scholar 

  2. Applebaum, D.: Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  3. Arnold, V.: Mathematical Methods in Classical Mechanics, 2nd edn. Springer, Berlin (1989)

    Book  Google Scholar 

  4. Bakhtin, V., Kifer, Y.: Nonconvergence examples in averaging. Geometric and probabilistic structures in dynamics. Contemp. Math. 469, 1–17 (2008)

    Article  MathSciNet  Google Scholar 

  5. Borodin, A., Freidlin, M.: Fast oscillating random perturbations of dynamical systems with conservation laws. Ann. Inst. H. Poincaré. Prob. Statist. 31, 485–525 (1995)

    MathSciNet  MATH  Google Scholar 

  6. Cannas, A.: Lectures on Symplectic Geometry. Lecture Notes in Mathematics, vol. 1764. Springer, Berlin (2008)

    Google Scholar 

  7. Cerrai, S.: A Khasminskii type averaging principle for stochastic reaction-diffusion equations. Ann. Probab. 19(3), 899–948 (2009)

    Article  MathSciNet  Google Scholar 

  8. da Costa, P.H., Högele, M.A.: Strong averaging along foliated Lévy diffusions with heavy tails on compact leaves. Potential Anal. 47(3), 277–311 (2017)

    Article  MathSciNet  Google Scholar 

  9. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems. Springer, Berlin (1991)

    MATH  Google Scholar 

  10. Gargate, I.I.G., Ruffino, P.R.: An averaging principle for diffusions in foliated spaces. Ann. Probab. 44(1), 567–588 (2016)

    Article  MathSciNet  Google Scholar 

  11. Garnett, L.: Foliation, the ergodic theorem and Brownian motion. J. Funct. Anal. 51, 285–311 (1983)

    Article  MathSciNet  Google Scholar 

  12. Högele, M.A., Ruffino, P.R.: Averaging along foliated Lévy diffusions. Nonlinear Anal. 112, 1–14 (2015)

    Article  MathSciNet  Google Scholar 

  13. Kabanov, Y., Pergamenshchikov, S.: Two-Scale Stochastic Systems: Asymptotic Analysis and Control. Springer, Berlin (2003)

    Book  Google Scholar 

  14. Kakutani, S., Petersen, K.: The speed of convergence in the ergodic theorem. Monat. Mathematik 91, 11–18 (1981)

    Article  MathSciNet  Google Scholar 

  15. Khasminski, R., Krylov, N.: On averaging principle for diffusion processes with null-recurrent fast component. Stoch Proc. Appl. 93, 229–240 (2001)

    Article  MathSciNet  Google Scholar 

  16. Krengel, U.: On the speed of convergence of the ergodic theorem. Monat. Mathematik 86, 3–6 (1978)

    Article  MathSciNet  Google Scholar 

  17. Kulik, A.: Exponential ergodicity of the solutions of SDEs with a jump noise. Stoch. Proc. Appl. 119, 602–632 (2009)

    Article  MathSciNet  Google Scholar 

  18. Kunita, H.: Stochastic differential equations based on Lévy processes and stochastic flows of diffeomorphisms. In: Rao, M.M. (ed.) Real and Stochastic Analysis, pp. 305–373. Birkhäuser, Basel (2004)

    Chapter  Google Scholar 

  19. Kurtz, T.G., Pardoux, E., Protter, Ph.: Stratonovich stochastic differential equations driven by general semimartingales. Ann. lH.I.P. Sect. B 31(2), 351–377 (1995)

    Google Scholar 

  20. Li, X.-M.: An averaging principle for a completely integrable stochastic Hamiltonian systems. Nonlinearity 21, 803–822 (2008)

    Article  MathSciNet  Google Scholar 

  21. Namachchvaya, S., Sowers, R.: Rigorous stochastic averaging at a center with additive noise. Meccanica 37, 85–114 (2002)

    Article  MathSciNet  Google Scholar 

  22. Nash, J.: The imbedding problem for Riemannian manifolds. Ann. Math. 63(1), 20–63 (1956)

    Article  MathSciNet  Google Scholar 

  23. Pachpatte, B.G.: Inequalities for Differential and Integral Equations. Academic, San Diego (1998)

    MATH  Google Scholar 

  24. Protter, Ph.: Stochastic Integration and Differential Equations. Springer, Berlin (2004)

    MATH  Google Scholar 

  25. Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Methods in Nonlinear Dynamical Systems, 2nd edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  26. Sato, K.-I.: Lévy processes and infinitely divisible distributions. Probab. Theory Relat. Fields 111, 287321 (1998)

    Google Scholar 

  27. Sowers, R.: Stochastic averaging with a flattened Hamiltonian: a Markov process on a stratified space (a whiskered sphere). Trans. Am. Math. Soc. 354, 853–900 (2002)

    Article  MathSciNet  Google Scholar 

  28. Tondeur, P.: Foliations on Riemannian Manifolds. Universitext. Springer, Berlin (1988)

    Book  Google Scholar 

  29. Volsov, V.M.: Some types of calculation connected with averaging in the theory of non-linear vibrations. USSR Comput. Math. Math. Phys. 3(1), 1–64 (1962)

    Article  Google Scholar 

  30. Volsov, V.M., Morgunov, B.I.: Methods of calculating stationary resonance vibrational and rotational motions of certain non-linear systems. USSR Comput. Math. Math. Phys. 8(2), 1–62 (1968)

    Article  Google Scholar 

  31. Walcak, P.: Dynamics of Foliations, Groups and Pseudogroups. Birkhäuser, Basel (2004)

    Google Scholar 

  32. Xu, Y., Duan, J., Xu, W.: An averaging principle for stochastic dynamical systems with Lvy noise. Physica D 240, 1395–1401 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author PHC would like to thank the Department of Mathematics of Brasilia University for providing support. The authors MAH and PRR would like express his gratitude for the hospitality received at the Departameto de Matemática at Universidade de Brasília and the IMECC at UNICAMP in February 2018. The funding of MAH by the FAPA project “Stochastic dynamics of Lévy driven systems” at the School of Science at Universidad de los Andes is greatly acknowledged. The author PRR is partially supported by Brazilian CNPq proc. nr. 305462/2016-4, by FAPESP proc. nr. 2015/07278-0 and 2015/50122-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Högele .

Editor information

Editors and Affiliations

Appendix

Appendix

Proposition 16.13 (Pachpatte [23])

Let u, f, g and h be nonnegative continuous functions defined on \(\ensuremath {\mathbb {R}}^+\) . Let v be a continuous non-decreasing subadditive and submultiplicative function defined on \(\ensuremath {\mathbb {R}}^+\) and v(u) > 0 on (0, ). Let e, ϕ be continuous and nondecreasing functions defined on \(\ensuremath {\mathbb {R}}^+\) with p being strictly positive and ϕ(0) = 0. If

$$\displaystyle \begin{aligned} u(t) \leqslant e(t) + g(t) \int_0^t f(s) u(s) ds + \phi\Big(\int_0^t h(s) v(u(s)) ds\Big) \end{aligned} $$

for all \(t\geqslant 0\) , then for any \(0 \leqslant t \leqslant t_2\)

$$\displaystyle \begin{aligned} u(t) \leqslant a(t) \Big[e(t) + \phi\Big(F^{-1}\big(F(A(t)) + \int_0^t h(s) v(a(s)) ds \big)\Big)\Big], \end{aligned} $$

where

$$\displaystyle \begin{aligned} a(t) &:= 1+ g(t) \int_0^t f(s) \exp\Big(\int_s^t g(\ensuremath{\sigma}) f(\ensuremath{\sigma}) d\ensuremath{\sigma}\Big)ds,\\ A(t) &:= \int_0^t h(s) v(a(s) e(s)) ds,\\ F(t) &:= \int_{0}^t \frac{ds}{v(\phi(s))}, \end{aligned} $$

F −1 is the inverse of F and \(t_2\in \ensuremath {\mathbb {R}}^+\) such that

$$\displaystyle \begin{aligned} F(A(t)) + \int_0^t h(s) v(a(t)) ds \in \operatorname{\mathrm{dom}}(F^{-1}) \qquad \mathit{\mbox{ for all }}0\leqslant t\leqslant t_2. \end{aligned}$$

In the following special case of coefficients it is possible to drop the continuity assumption on u.

Corollary 16.14

Let Ψ a non-negative, measurable, increasing function and h be nonnegative, continuous, increasing function on the interval [0, T] satisfying for \(p\geqslant 2\) , ε > 0, c > 0 and any t ∈ [0, T] the inequality

$$\displaystyle \begin{aligned} \varPsi(t) \leqslant \varepsilon c t^p + \varepsilon c \Big(\int_0^t \varPsi(s) + \varPsi(s)^{\frac{p-1}{p}} ds\Big), \qquad t\in [0, T]. \end{aligned} $$
(16.49)

Then there is a constant k > 0 such that for any ε 0 ∈ (0, 1] such that ε 0T < k we have for all t ∈ [0, T] and ε ∈ (0, ε 0]

$$\displaystyle \begin{aligned} \varPsi(t) \leqslant C \Big(\varepsilon t^p+t^p (\varepsilon t)^{\frac{p-1}{p}}\Big). \end{aligned} $$

Proof

For e(t) = cεt p, g ≡ 1, f, h ≡ εc, ϕ(t) = t, \(w(t) = t^{\frac {p-1}{p}}\) we calculate the coefficients of Proposition 16.13

$$\displaystyle \begin{aligned} a(t) &:= 1+ \varepsilon c \int_0^t \exp(\varepsilon c (t-s)) ds = \exp(\varepsilon c t) \end{aligned} $$

and in the limit of εt being small (εt ≪ 1) we have

$$\displaystyle \begin{aligned} \varepsilon \int_0^t a(s)^{\frac{p-1}{p}} ds &= \varepsilon t \Big(\frac{\exp(c \frac{p-1}{p} \varepsilon t) -1}{c \frac{p-1}{p} \varepsilon t}\Big)\leqslant_{\varepsilon t\ll 1} 2 \varepsilon t. \end{aligned} $$

Applying the change of parameter r = εs it follows that

$$\displaystyle \begin{aligned} A(t) & := \int_0^t \exp(\varepsilon c \frac{p-1}{p} s) (e(s))^{\frac{p-1}{p}} ds = \int_0^t \exp( c \frac{p-1}{p} \varepsilon s ) (c \varepsilon s^p)^{\frac{p-1}{p}} ds \\ &= \varepsilon^{\frac{p-1}{p}}\int_0^{\varepsilon t} \exp( c \frac{p-1}{p} r ) c^{\frac{p-1}{p}}\left(\frac{r}{\varepsilon}\right)^{p-1} \frac{dr}{\varepsilon} \leqslant t \frac{1}{\varepsilon^p t}\int_0^{\varepsilon t} \exp( c \frac{p-1}{p} r ) (c r)^{\frac{p-1}{p}} dr \\ &\leqslant_{\varepsilon t \ll 1} 2 t \exp( c \frac{p-1}{p} \varepsilon t ) (c \varepsilon t)^{\frac{p-1}{p}} \leqslant C_1 t \exp( c \frac{p-1}{p} \varepsilon t ) (\varepsilon t)^{\frac{p-1}{p}}. \end{aligned} $$

Finally, we obtain

$$\displaystyle \begin{aligned} F(t) := \int_{0}^t s^{-\frac{p-1}{p}} ds = p r^{\frac{1}{p}} \qquad \mbox{ and }\quad F^{-1}(t) := \frac{t^p}{p^p}. \end{aligned}$$

In the sequel we follow the proof of Theorem 2.4.2 in Pachpatte [23] and define the continuous, positive, non-decreasing function

$$\displaystyle \begin{aligned} n(t) := e(t) + \phi\Big(\int_0^t h(s) w(u(s)) ds\Big) = e(t) + \varepsilon c \int_0^t h(s) u(s)^{\frac{p-1}{p}} ds, \qquad t\geqslant 0, \end{aligned}$$

such that inequality (16.49) can be restated as

$$\displaystyle \begin{aligned} u(t) \leqslant n(t) + g(t) \int_0^t f(s) u(s) ds = e(t) + \varepsilon c \int_0^t u(s) ds . \end{aligned} $$

It is well-known, see for instance [1], that this integral estimate implies the following Gronwall-Bellmann inequality also in the case of u being merely positive measurable. The main reason is that the integral is absolutely continuous with a bounded density. This result yields

$$\displaystyle \begin{aligned} u(t) \leqslant a(t) n(t), \qquad t\geqslant 0. \end{aligned}$$

The remainder of the proof of Theorem 2.4.2 in [23] does use the continuity of u and remains intact.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

da Costa, P.H., Högele, M.A., Ruffino, P.R. (2019). A Strong Averaging Principle for Lévy Diffusions in Foliated Spaces with Unbounded Leaves. In: Sadovnichiy, V., Zgurovsky, M. (eds) Modern Mathematics and Mechanics. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-96755-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96755-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96754-7

  • Online ISBN: 978-3-319-96755-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics