Skip to main content

Solving Random Ordinary and Partial Differential Equations Through the Probability Density Function: Theory and Computing with Applications

  • Chapter
  • First Online:

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

This contribution provides a practical view to the computation of the first probability density function of the solution stochastic process to ordinary and partial differential equations with randomness using the Random Variable Transformation technique. The analysis is performed via a set of simple examples, belonging to different areas like Physics, Biology and Engineering, with the aim of illustrating key ideas from a practical standpoint.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The Whishart distribution is a probability distribution for random matrices. A random matrix is a matrix whose entries are random variables. We say that a k × k random matrix A is absolutely continuous (respectively discrete) if its vectorization, vec(A), is an absolutely continuous (respectively discrete) k 2 × 1 random vector. In this case, the density or mass function of A is defined as the density or mass function of vec(A). We say that a k × k random matrix A follows a Wishart distribution, A ∼Wishart(H, n), H being k × k symmetric and positive definite matrix and nk, if it is symmetric, positive definite and absolutely continuous, with density

    $$\displaystyle \begin{aligned} P_A(a)=c[\det(a)]^{\frac{n}{2}-\frac{k+1}{n}}e^{-\frac{n}{2}\text{tr}(H^{-1}a)}, \end{aligned}$$

    being c a constant depending on H and n.

References

  1. Soong, T.T.: Random Differential Equations in Science and Engineering. Academic, New York (1973)

    MATH  Google Scholar 

  2. Smith, R.C.: Uncertainty Quantification. Theory, Implementation and Applications. SIAM Computational Science & Engineering. SIAM, Philadelphia (2014)

    Google Scholar 

  3. Øksendal, B.: Stochastic Differential Equations. An Introduction with Applications. Stochastic Modelling and Applied Probability, vol. 23. Springer, Heidelberg (2003)

    Google Scholar 

  4. Kloeden, P., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (2011)

    MATH  Google Scholar 

  5. Allen, E.: Modeling with Itô Stochastic Differential Equations. Mathematical Modelling: Theory and Applications. Springer, Amsterdam (2007)

    Google Scholar 

  6. Papoulis, A., Pillai, U.: Probability, Random Variables and Stochastic Processes, 4th edn. McGraw-Hill, New York (2002)

    Google Scholar 

  7. Casella, G., Berger, R.: Statistical Inference. Cambridge Texts in Applied Mathematics. Brooks/Cole, New York (2002)

    Google Scholar 

  8. Kadry, S.: On the generalization of probabilistic transformation method. Appl. Math. Comput. 190(15), 1284–1289 (2007). https://doi.org/10.1016/j.amc.2011.12.088

    MathSciNet  MATH  Google Scholar 

  9. Lord, G.J., Powell, C.E., Shardlow, T.: An Introduction to Computational Stochastic PDEs. Cambridge Texts in Applied Mathematics. Cambridge University Press, New York (2014)

    Book  Google Scholar 

  10. Casabán, M.-C., Cortés, J.-C., Romero, J.-V., Roselló, M.-D.: Determining the first probability density function of linear random initial value problems by the random variable transformation (R.V.T.) technique: a comprehensive study. Abstr. Appl. Anal. 2014, 1–25, 248512 (2014). https://doi.org/10.1155/2013/248512

  11. Casabán, M.-C., Cortés, J.-C., Romero, J.-V., Roselló, M.-D.: Solving random homogeneous linear second-order differential equations: a full probabilistic description. Mediterr. J. Math. 13(6), 3817–3836 (2016). https://doi.org/10.1007/s00009-016-0716-6

    Article  MathSciNet  Google Scholar 

  12. Casabán, M.-C., Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., Roselló, M.-D., Villanueva, R.-J.: Computing probabilistic solutions of the Bernoulli random differential equation. J. Comput. Appl. Math. 309, 396–407 (2017). https://doi.org/10.1016/jcam.2016.02.034

    Article  MathSciNet  Google Scholar 

  13. Casabán, M.-C., Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., Roselló, M.-D., Villanueva, R.-J.: A comprehensive probabilistic solution of random SIS-type epidemiological models using the Random Variable Transformation technique. Commun. Nonlinear Sci. Numer. Simul. 32, 199–210 (2016). https://doi.org/10.1016/j.cnsns.2015.08.009

    Article  MathSciNet  Google Scholar 

  14. Dorini, F.A., Cecconello, M.S., Dorini, L.B.: On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Commun. Nonlinear Sci. Numer. Simul. 33, 160–173 (2016). https://doi.org/10.1016/j.cnsns.2015.09.009

    Article  MathSciNet  Google Scholar 

  15. Seber, G.A.F., Wild, C.J.: Nonlinear Regression. Wiley, Hoboken (2003)

    MATH  Google Scholar 

  16. Lesaffre, E., Lawson, A.B.: Bayesian Biostatistics. Statistics in Practice. Wiley, Hoboken (2012)

    Google Scholar 

  17. Hussein, A., Selim, M.M.: Solution of the stochastic generalized shallow-water wave equation using RVT technique. Eur. Phys. J. Plus 139, 249 (2015). https://doi.org/10.1140/epjp/i2015-15249-3

    Article  Google Scholar 

  18. Hussein, A., Selim, M.M.: Solution of the stochastic radiative transfer equation with Rayleigh scattering using RVT technique. Appl. Math. Comput. 218(13), 7193–7203 (2012). https://doi.org/10.1016/j.amc.2011.12.088

    MathSciNet  MATH  Google Scholar 

  19. Angulo Pava, J.: Nonlinear Dispersive Equations. Existence of Stability of Solitary and Periodic Travelling Wave Solutions. Mathematical Surveys and Monographs, vol. 156. American Mathematical Society, Providence (2009)

    Google Scholar 

  20. Hussein, A., Selim, M.M.: New soliton solutions for some important nonlinear partial differential equations using a generalized Bernoulli method. Int. J. Math. Anal. Appl. 1(1), 1–8 (2014)

    Google Scholar 

  21. Yang, X.-F., Deng, Z.-C., Wei, Y.: A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application. Adv. Difference Equ. 2015, 117 (2015). https://doi.org/10.1186/s13662-015-0452-4

  22. Loève, M.: Probability Theory, vol. 1. Springer, New York (1977)

    MATH  Google Scholar 

  23. Braumann, C.A., Villafuerte, L., Cortés, J.-C., Jódar, L.: Random differential operational calculus: theory and applications. Comput. Math. Appl. 59, 115–125 (2010). https://doi.org/10.1016/j.camwa.2009.08.061

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-C. Cortés .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Calatayud, J., Cortés, JC., Jornet, M., Navarro-Quiles, A. (2019). Solving Random Ordinary and Partial Differential Equations Through the Probability Density Function: Theory and Computing with Applications. In: Sadovnichiy, V., Zgurovsky, M. (eds) Modern Mathematics and Mechanics. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-96755-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96755-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96754-7

  • Online ISBN: 978-3-319-96755-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics