Skip to main content

Forensic Radiology and Identification

  • Chapter
  • First Online:
Radiology in Forensic Medicine

Abstract

Personal identification represents one of the most crucial activities of forensic pathologists, odontologists, radiologists and/or anthropologists. It is also one of the least standardised procedures, as it takes into consideration, case by case, the comparison between different anatomical and acquired features that require critical judgment by an expert operator.

The identification of an unknown decedent is crucial both from a juridical point of view, concerning criminal, civil, insurance matters, and for ethical reasons as well, not least providing closure to relatives. Especially in the modern scenarios of mass migrations, the personal identification of dead migrants may provide some relief to relatives in the countries of origin or of destination who do not know if their loved ones are dead or alive (Cattaneo et al., Forensic Sci Int 250:e1–e2, 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kahana T, Hiss J (1997) Identification of human remains: forensic radiology. J Clin Forensic Med 4:7–15

    Article  CAS  PubMed  Google Scholar 

  2. Blau S, Robertson S, Johnstone M (2008) Disaster victim identification: new applications for post-mortem computed tomography. J Forensic Sci 53:956–961

    Article  PubMed  Google Scholar 

  3. Adams BJ (2003) Establishing personal identification based on specific patterns of missing, filled, and unrestored teeth. Forensic Sci 48(3):487–496

    Google Scholar 

  4. Yoshino M, Miyasaka S, Sato H, Seta S (1987) Classification system of frontal sinus patterns by radiography. Its application to identification of unknown skeletal remains. Forensic Sci Int 34(4):289–299

    Article  CAS  PubMed  Google Scholar 

  5. De Angelis D, Cattaneo C, Grandi M (2007) Dental superimposition: a pilot study for standardising the method. Int J Legal Med 121(6):501–506

    Article  PubMed  Google Scholar 

  6. Fischman SL (1985) The use of medical and dental radiographs in identification. Int Dent J 35:301–306

    CAS  PubMed  Google Scholar 

  7. Kahana T, Hiss J, Smith P (1998) Quantitative assessment of trabecular bone pattern identification. J Forensic Sci 43:1144–1147

    Article  CAS  PubMed  Google Scholar 

  8. Modesti LDM, Vieira GM, Galvão MF, de Amorim RFB (2014) Human identification by oral prosthesis analysis with probability rates higher than DNA analysis. J Forensic Sci 59:825–829

    Article  PubMed  Google Scholar 

  9. Pfaefli M, Vock P, Dirnhofer R, Braun M, Bolliger SA, Thali MJ (2007) Post-mortem radiological CT identification based on classical ante-mortem X-ray examinations. Forensic Sci Int 171:111–117

    Article  Google Scholar 

  10. Christensen AM (2005) Testing the reliability of frontal sinuses in positive identification. J Forensic Sci 50:18–22

    Article  PubMed  Google Scholar 

  11. Kullman L, Eklund B, Grundin R (1990) Value of the frontal sinus in identification of unknown persons. J Forensic Odontostomatol 8:3–10

    CAS  PubMed  Google Scholar 

  12. Patil N, Karjodkar FR, Sontakke S, Sansare K, Salvi R (2012) Uniqueness of radiographic patterns of the frontal sinus for personal identification. Imaging Sci Dent 42:213–217

    Article  PubMed  PubMed Central  Google Scholar 

  13. Brogdon BG (1998) Forensic radiology. CRC Press, New York

    Book  Google Scholar 

  14. Tatlisumak E, Ovali GY, Aslan A, Asirdizer M, Zeyfeoglu Y, Tarhan S (2007) Identification of unknown bodies by using CT images of frontal sinus. Forensic Sci Int 166:42–48

    Article  PubMed  Google Scholar 

  15. Beaini TL, Duailibi-Neto EF, Chilvarquer I, Melani RF (2015) Human identification through frontal sinus 3D superimposition: pilot study with cone beam computer tomography. J Forensic Legal Med 36:63–69

    Article  Google Scholar 

  16. Brogdon BG (1998) The scope of forensic radiology. Clin Lab Med 18:203–240

    Article  CAS  PubMed  Google Scholar 

  17. Kuehn CM, Taylor KM, Mann FA, Wilson AJ, Harruff RC (2002) Validation of chest X-ray comparisons for unknown decedent identification. J Forensic Sci 47:725–729

    Article  PubMed  Google Scholar 

  18. Valenzuela A (1997) Radiographic comparison of the lumbar spine for positive identification of human remains: a case report. Am J Forensic Med Pathol 18:215–217

    Article  CAS  PubMed  Google Scholar 

  19. Stephan CN, Winburn AP, Christensen AF, Tyrrell AJ (2011) Skeletal identification by radiographic comparison: blind tests of a morphoscopic method using ante mortem chest radiographs. J Forensic Sci:320–332

    Google Scholar 

  20. Koot MG, Sauer NJ, Fenton TW (2005) Radiographic human identification using bones of the hand: a validation study. J Forensic Sci 50(2):263–268

    Article  PubMed  Google Scholar 

  21. Mundorff AZ, Vidoli G, Melinek J (2006) Anthropological and radiographic comparison of vertebrae for identification of decomposed human remains. J Forensic Sci 51:1002–1004

    Article  PubMed  Google Scholar 

  22. Dean DE, Tatarek NE, Rich J et al (2005) Human identification from the ankle with pre- and postsurgical radiographs. J Clin Forensic Med 12:5–9

    Article  PubMed  Google Scholar 

  23. Stephan CN, Amidan B, Rease H, Guyomarc’h P, Pulsipher T, Byrd JE (2014) Morphometric comparison of clavicle outlines from 3D bone scans and 2D chest radiographs: a shortlisting tool to assist radiographic identification of human skeletons. J Forensic Sci 59:306–313

    Article  PubMed  Google Scholar 

  24. Mann RW (1998) Use of bone trabeculae to establish positive identification. Forensic Sci Int 98:91–99

    Article  CAS  PubMed  Google Scholar 

  25. Cattaneo C (2007) Forensic anthropology: developments of a classical discipline in the new millennium. Forensic Sci Int 165:185–193

    Article  PubMed  Google Scholar 

  26. Rogers TL, Allard TT (2004) Expert testimony and positive identification of human remains through cranial suture patterns. J Forensic Sci 49:203–207

    PubMed  Google Scholar 

  27. Ross AH, Lanfear AK, Maxwell AB (2016) Establishing standards for side by side radiographic comparisons. Am J Forensic Med Pathol 37:86–94

    Article  PubMed  Google Scholar 

  28. Grivas CR, Komar DA (2008) Kumho, Daubert, and the nature of scientific inquiry: implications for forensic anthropology. J Forensic Sci 53(4):771–776

    Article  PubMed  Google Scholar 

  29. Dirnhofer R, Jackowski C, Vock P, Potter K, Thali MJ (2006) VIRTOPSY: minimally invasive, imaging-guided virtual autopsy. Radiographics 26(5):1305–1333

    Article  PubMed  Google Scholar 

  30. Cattaneo C, De Angelis D, Ruspa M, Gibelli D, Cameriere R, Grandi M (2008) How old am I? Age estimation in living adults: a case report. J Forensic Odontostomatol 26(2):39–43

    CAS  PubMed  Google Scholar 

  31. De Angelis D, Gibelli D, Fabbri P, Cattaneo C (2015) Dental age estimation helps create a new identity. Am J Forensic Med Pathol 36(3):219–220

    Article  PubMed  Google Scholar 

  32. Cunha E, Baccino E, Martrille L, Ramsthaler F, Prieto J, Schuliar Y, Lynnerup N, Cattaneo C (2009) The problem of aging human remains and living individuals: a review. Forensic Sci Int 193(1–3):1–13

    Article  CAS  PubMed  Google Scholar 

  33. Schmeling A, Grundmann C, Fuhrmann A, Kaatsch HJ, Knell B, Ramsthaler F, Reisinger W, Reipert T, Ritz-Timme S, Rosing FW, Rotzscher K, Geserick G (2008) Criteria for age estimation in living individuals. Int J Legal Med 122(6):457–460

    Article  CAS  PubMed  Google Scholar 

  34. Schmeling A, Shulz R, Reisinger W, Mulher M, Wernecke KG, Geserick G (2004) Studies on the time frame for ossification of the medial clavicular epiphyseal cartilage in conventional radiography. Int J Legal Med 118:5–8

    Article  PubMed  Google Scholar 

  35. Gibelli D, De Angelis D, Cattaneo C (2015) Radiological pitfalls of age estimation in adopted children: a case report. Minerva Pediatr 67(2):203–208

    CAS  PubMed  Google Scholar 

  36. Schulz R, Zwiesigk P, Schiborr M, Schmidt S, Schmeling A (2008) Ultrasound studies on the time course of clavicular ossification. Int J Legal Med 122(2):163–167

    Article  PubMed  Google Scholar 

  37. Bilgili Y, Hizel S, Kara SA, Sanli C, Erdal HH, Altinok D (2003) Accuracy of skeletal age assessment in children from birth to 6 years of age with the ultrasonographic version of the Greulich-Pyle atlas. J Ultrasound Med 22(7):683–690

    Article  PubMed  Google Scholar 

  38. Greulich WW, Pyle SI (1959) Radiographic atlas of skeletal development of the hand and wrist. Stanford University Press, Stanford

    Book  Google Scholar 

  39. Tanner JM, Whitehouse RH (1984) Growth and development reference charts. Castlemead Publications, Hertford

    Google Scholar 

  40. Roche AF, Chumlea WC, Thissen D (1988) Assessing the skeletal maturity of the hand wrist: Fels method. Charles C Thomas, New York

    Google Scholar 

  41. Santos C, Ferreira M, Alves FC, Cunha E (2011) Comparative study of Greulich and Pyle Atlas and Maturos 4.0 program for age estimation in a Portuguese sample. Forensic Sci Int 212(1–3):276.e1–276.e7

    Google Scholar 

  42. Alcina M, Lucea A, Salicrú M, Turbón D (2018) Reliability of the Greulich and Pyle method for chronological age estimation and age majority prediction in a Spanish sample. Int J Legal Med 132:1139–1149

    Article  CAS  PubMed  Google Scholar 

  43. Zabet D, Rérolle C, Pucheux J, Telmon N, Saint-Martin P (2015) Can the Greulich and Pyle method be used on French contemporary individuals? Int J Legal Med 129(1):171–177

    Article  PubMed  Google Scholar 

  44. De Donno A, Santoro V, Lubelli S, Marrone M, Lozito P, Introna F (2013) Age assessment using the Greulich and Pyle method on a heterogeneous sample of 300 Italian healthy and pathologic subjects. Forensic Sci Int 229(1–3):157.e1–157.e6

    Google Scholar 

  45. Santoro V, Roca R, De Donno A, Fiandaca C, Pinto G, Tafuri S, Introna F (2012) Applicability of Greulich and Pyle and Demirijan aging methods to a sample of Italian population. Forensic Sci Int 221(1–3):153.e1–153.e5

    Google Scholar 

  46. Tisè M, Mazzarini L, Fabrizzi G, Ferrante L, Giorgetti R, Tagliabracci A (2011) Applicability of Greulich and Pyle method for age assessment in forensic practice on an Italian sample. Int J Legal Med 125(3):411–416

    Article  PubMed  Google Scholar 

  47. Schmidt S, Koch B, Schulz R, Reisinger W, Schmeling A (2008) Studies in use of the Greulich-Pyle skeletal age method to assess criminal liability. Leg Med (Tokyo) 10(4):190–195

    Article  Google Scholar 

  48. Hackman L, Black S (2013) The reliability of the Greulich and Pyle atlas when applied to a modern Scottish population. J Forensic Sci 58(1):114–119

    Article  PubMed  Google Scholar 

  49. van Rijn RR, Lequin MH, Thodberg HH (2009) Automatic determination of Greulich and Pyle bone age in healthy Dutch children. Pediatr Radiol 39(6):591–597

    Article  PubMed  Google Scholar 

  50. Lynnerup N, Belard E, Buch-Olsen K, Sejrsen B, Damgaard-Pedersen K (2008) Intra- and interobserver error of the Greulich-Pyle method as used on a Danish forensic sample. Forensic Sci Int 179(2–3):242.e1–242.e6

    CAS  Google Scholar 

  51. Groell R, Lindbichler F, Riepl T, Gherra L, Roposch A, Fotter R (1999) The reliability of bone age determination in central European children using the Greulich and Pyle method. Br J Radiol 72(857):461–464

    Article  CAS  PubMed  Google Scholar 

  52. Cantekin K, Celikoglu M, Miloglu O, Dane A, Erdem A (2012) Bone age assessment: the applicability of the Greulich-Pyle method in eastern Turkish children. J Forensic Sci 57(3):679–682

    Article  PubMed  Google Scholar 

  53. Gungor OE, Celikoglu M, Kale B, Gungor AY, Sari Z (2015) The reliability of the Greulich and Pyle atlas when applied to a Southern Turkish population. Eur J Dent 9(2):251–254

    Article  PubMed  PubMed Central  Google Scholar 

  54. Koc A, Karaoglanoglu M, Erdogan M, Kosecik M, Cesur Y (2001) Assessment of bone ages: is the Greulich-Pyle method sufficient for Turkish boys? Pediatr Int 43(6):662–665

    Article  CAS  PubMed  Google Scholar 

  55. Elamin F, Abdelazeem N, Elamin A, Saif D, Liversidge HM (2017) Skeletal maturity of the hand in an East African group from Sudan. Am J Phys Anthropol 163(4):816–823

    Article  PubMed  Google Scholar 

  56. Garamendi PM, Landa MI, Ballesteros J, Solano MA (2005) Reliability of the methods applied to assess age minority in living subjects around 18 years old. A survey on a Moroccan origin population. Forensic Sci Int 154(1):3–12

    Article  CAS  PubMed  Google Scholar 

  57. Keny SM, Sonawane DV, Pawar E, Saraogi AA, Singh V, Khan F, Bande PP, Chandanwale A (2018) Comparison of two radiological methods in the determination of skeletal maturity in the Indian pediatric population. J Pediatr Orthop B 27:362–365

    PubMed  Google Scholar 

  58. Mohammed RB, Rao DS, Goud AS, Sailaja S, Thetay AA, Gopalakrishnan M (2015) Is Greulich and Pyle standards of skeletal maturation applicable for age estimation in South Indian Andhra children? J Pharm Bioallied Sci 7(3):218–225

    Article  PubMed  PubMed Central  Google Scholar 

  59. Patel PS, Chaudhary AR, Dudhia BB, Bhatia PV, Soni NC, Jani YV (2015) Accuracy of two dental and one skeletal age estimation methods in 6-16 year old Gujarati children. J Forensic Dent Sci 7(1):18–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Awais M, Nadeem N, Husen Y, Rehman A, Beg M, Khattak YJ (2014) Comparison between Greulich-Pyle and Girdany-Golden methods for estimating skeletal age of children in Pakistan. J Coll Physicians Surg Pak 24(12):889–893

    PubMed  Google Scholar 

  61. Manzoor Mughal A, Hassan N, Ahmed A (2014) The applicability of the Greulich & Pyle Atlas for bone age assessment in primary school-going children of Karachi, Pakistan. Pak J Med Sci 30(2):409–411

    PubMed  PubMed Central  Google Scholar 

  62. Rikhasor RM, Qureshi AM, Rathi SL, Channa NA (1999) Skeletal maturity in Pakistani children. J Anat 195(Pt 2):305–308

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gunawardena SA, Liyanage UA, Weeratna JB, Mendis NDNA, Perera HJM, Jayasekara RW, Fernando R (2017) Forensic age estimation in anti-piracy trials in Seychelles: experiences and challenges faced. Forensic Sci Int 270:278.e1–278.e7

    Article  CAS  Google Scholar 

  64. Saadé A, Baron P, Noujeim Z, Azar D (2017) Dental and skeletal age estimations in Lebanese children: a retrospective cross-sectional study. J Int Soc Prev Community Dent 7(3):90–97

    PubMed  PubMed Central  Google Scholar 

  65. Lin FQ, Zhang J, Zhu Z, Wu YM (2015) Comparative study of Gilsanz-Ratib digital atlas and Greulich-Pyle atlas for bone age estimation in a Chinese sample. Ann Hum Biol 42(6):523–527

    Article  PubMed  Google Scholar 

  66. Moradi M, Sirous M, Morovatti P (2012) The reliability of skeletal age determination in an Iranian sample using Greulich and Pyle method. Forensic Sci Int 223(1–3):372.e1–372.e4

    Google Scholar 

  67. Kim JR, Lee YS, Yu J (2015) Assessment of bone age in prepubertal healthy Korean children: comparison among the Korean standard bone age chart, Greulich-Pyle method, and Tanner-Whitehouse method. Korean J Radiol 16(1):201–205

    Article  PubMed  PubMed Central  Google Scholar 

  68. Oh Y, Lee R, Kim HS (2012) Evaluation of skeletal maturity score for Korean children and the standard for comparison of bone age and chronological age in normal children. J Pediatr Endocrinol Metab 25(3–4):279–284

    PubMed  Google Scholar 

  69. Ontell FK, Ivanovic M, Ablin DS, Barlow TW (1996) Bone age in children of diverse ethnicity. AJR Am J Roentgenol 167(6):1395–1398

    Article  CAS  PubMed  Google Scholar 

  70. Paxton ML, Lamont AC, Stillwell AP (2013) The reliability of the Greulich-Pyle method in bone age determination among Australian children. J Med Imaging Radiat Oncol 57(1):21–24

    Article  PubMed  Google Scholar 

  71. Kotwicki T (2008) Improved accuracy in Risser sign grading with lateral spinal radiography. Eur Spine J 17(12):1676–1685

    Article  PubMed  PubMed Central  Google Scholar 

  72. Saunders E (1837) The teeth a test of age, considered with reference to the factory children. Addressed to the members of both Houses of Parliament. H. Renshaw, London

    Google Scholar 

  73. DH Ubelaker (1999) cited in Senn DR, Weems RA (2013) Manual of forensic odontology CRC Press: Boca Raton

    Google Scholar 

  74. Meinl A, Tangl S, Huber C, Maurer B, Watzek G (2007) The chronology of third molar mineralization in the Austrian population—a contribution to forensic age assessment. Forensic Sci Int 169(2–3):161–167

    Article  CAS  PubMed  Google Scholar 

  75. Lunt RC, Law DB (1974) A review of the chronology of eruption of deciduous teeth. J Am Dent Assoc 89:872–879

    Article  CAS  PubMed  Google Scholar 

  76. Moorrees CFA, Fanning EA, Hunt EE (1963) Formation and resorption of three deciduous teeth in children. Am J Phys Anthrop 21(2):205–213

    Article  CAS  PubMed  Google Scholar 

  77. Liversidge HM, Marsden PH (2010) Estimating age and the likelihood of having attained 18 years of age using mandibular third molars. Br Dent J 209(8):E13

    Article  CAS  PubMed  Google Scholar 

  78. Cameriere R, Ferrante L, De Angelis D, Scarpino F, Galli F (2008) The comparison between measurement of open apices of third molars and Demirjian stages to test chronological age of over 18 year olds in living subjects. Int J Legal Med 122(6):493–497

    Article  CAS  PubMed  Google Scholar 

  79. Daubert v. Merrell Dow Pharmaceuticals (1993) Supreme Court of the United States. 113 S.Ct. 2786

    Google Scholar 

  80. Cattaneo C, Grandi M (2004) Antropologia e Odontologia Forense, Guida alla studio dei resti umani. Testo atlante. Monduzzi Editore, Bologna

    Google Scholar 

  81. Cattaneo C, Tidball Binz M, Penados L, Prieto J, Finegan O, Grandi M (2015) The forgotten tragedy of unidentified in the Mediterranean. Forensic Sci Int 250:e1–e2

    Article  CAS  PubMed  Google Scholar 

  82. Rich J, Tatarek NE, Powers RH, Brogdon BG, Lewis BJ, Dean DE (2002) Using pre- and post-surgical foot and ankle radiographs for identification. J Forensic Sci 47:1319–1322

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo De Angelis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Angelis, D., Messina, C., Sconfienza, L., Sardanelli, F., Cattaneo, C., Gibelli, D. (2020). Forensic Radiology and Identification. In: Lo Re, G., Argo, A., Midiri, M., Cattaneo, C. (eds) Radiology in Forensic Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-96737-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96737-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96736-3

  • Online ISBN: 978-3-319-96737-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics