Skip to main content

Synthesis of Metal Nanomaterials with Chemical and Physical Effects of Ultrasound and Acoustic Cavitation

  • Chapter
  • First Online:
Sonochemical Production of Nanomaterials

Part of the book series: SpringerBriefs in Molecular Science ((ULSONO))

Abstract

Six synthesis techniques using ultrasound and acoustic bubbles are introduced. As a technique using chemical effects of acoustic bubbles which comprise high-temperature and high-pressure conditions, (1) a pyrolysis technique (pyrolysis of a volatile metal precursor in organic solvent) and (2) a reduction technique (reduction of metal precursor in water) are described for the synthesis of metal nanoparticles. Furthermore, as a technique using or relating physical effects of ultrasound and acoustic bubbles, (3) ultrasound-assisted, (4) sonomechanical-assisted metal displacement reduction, (5) sonoelectrochemical, and (6) ultrasound spray pyrolysis techniques are introduced. These synthetic techniques will affect the characteristics of the metal nanoparticles and nanomaterials synthesized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.S. Suslick, S.-B. Choe, A.A. Cichowlas, M.W. Grinstaff, Sonochemical synthesis of amorphous iron. Nature 353, 414–416 (1991)

    Article  CAS  Google Scholar 

  2. K.S. Suslick, M. Fang, T. Hyeon, Sonochemical synthesis of iron colloids. J. Am. Chem. Soc. 118, 11960–11961 (1996)

    Article  CAS  Google Scholar 

  3. K.S. Suslick, T. Hyeon, M. Fang, Nanostructured materials generated by high-intensity ultrasound: sonochemical synthesis and catalytic studies. Chem. Mater. 8, 2172–2179 (1996)

    Article  CAS  Google Scholar 

  4. A. Comazzi, C. Pirola, M. Longhi, C.L.M. Bianchi, K.S. Suslick, Fe-based heterogeneous catalysts for the Fischer-Tropsch reaction: sonochemical synthesis and bench-scale experimental tests. Ultrason. Sonochem. 34, 774–780 (2017)

    Article  CAS  PubMed  Google Scholar 

  5. X. Cao, Y. Koltypin, R. Prozorov, G. Kataby, A. Gedanken, Preparation of amorphous Fe2O3 powder with different particle sizes. J. Mater. Chem. 7, 2447–2451 (1997)

    Article  CAS  Google Scholar 

  6. N. Enomoto, S. Hirata, M. Inada, K. Hayashi, Crystallization behavior of iron-based amorphous nanoparticles prepared sonochemically. Ultrason. Sonochem. 35, 563–568 (2017)

    Article  CAS  PubMed  Google Scholar 

  7. S.A. Yeung, R. Hobson, S. Biggs, F. Grieser, Formation of gold sols using ultrasound. J. Chem. Soc. Chem. Commun. 1993, 378–379 (1993)

    Article  Google Scholar 

  8. Y. Nagata, Y. Mizukoshi, K. Okitsu, Y. Maeda, Sonochemical formation of gold particles in aqueous solution. Radat. Res. 146, 333 (1996)

    Article  CAS  Google Scholar 

  9. R.A. Caruso, M. Ashokkumar, F. Grieser, Sonochemical formation of gold sols. Langmuir 18, 7831 (2002)

    Article  CAS  Google Scholar 

  10. K. Okitsu, A. Yue, S. Tanabe, H. Matsumoto, Y. Yobiko, Y. Yoo, Sonolytic Control of rate of Gold(III) reduction and size of formed gold nanoparticles in an aqueous solution: relation between reduction rates and sizes of formed nanoparticles. Bull. Chem. Soc. Jpn. 75, 2289 (2002)

    Article  CAS  Google Scholar 

  11. K. Okitsu, I. Kurisaka, B. Nanzai, N. Takenaka, H. Bandow, Sonochemistry of NaAuCl4 aqueous alcohol solutions with C3–C6 alcohols under a noble gas atmosphere. Ultrason. Sonochem. 41, 397–403 (2018)

    Article  CAS  PubMed  Google Scholar 

  12. K. Okitsu, H. Bandow, Y. Maeda, Y. Nagata, Sonochemical preparation of ultrafine palladium particles. Chem. Mater. 8, 315 (1996)

    Article  CAS  Google Scholar 

  13. K. Okitsu, Y. Mizukoshi, H. Bandow, Y. Maeda, T. Yamamoto, Y. Nagata, Formation of noble metal particles by ultrasonic irradiation. Ultrason. Sonochem. 3, S249 (1996)

    Article  CAS  Google Scholar 

  14. K. Okitsu, M. Ashokkumar, F. Grieser, Sonochemical synthesis of gold nanoparticles in water: effects of ultrasound frequency. J. Phys. Chem. B 109, 20673 (2005)

    Article  CAS  PubMed  Google Scholar 

  15. Y. Mizukoshi, T. Fujimoto, Y. Nagata, R. Oshima, Y. Maeda, Characterization and catalytic activity of core-shell structured gold/palladium bimetallic nanoparticles synthesized by the sonochemical method. J. Phys. Chem. B 104, 6028–6032 (2000)

    Article  CAS  Google Scholar 

  16. Y. Nagata, Y. Watanabe, S. Fujita, T. Dohmaru, S. Taniguchi, Formation of colloidal silver in water by ultrasonic irradiation. J. Chem. Soc. Chem. Commun. 1992, 1620–1622 (1992)

    Article  Google Scholar 

  17. K. Okitsu, Y. Mizukoshi, H. Bandow, T.A. Yamamoto, Y. Nagata, Y. Maeda, Synthesis of palladium nano-particles with interstitial carbon by sonochemical reduction of tetrachloropalladate(II) in aqueous solution. J. Phys. Chem. B 101, 5470–5472 (1997)

    Article  CAS  Google Scholar 

  18. K. Okitsu, M. Murakami, S. Tanabe, H. Matsumoto, Catalytic behavior of Au Core/Pd shell nanoparticles on silica prepared by sonochemical and sol-gel processes. Chem. Lett. 29, 1336–1337 (2000)

    Article  Google Scholar 

  19. Y. Mizukoshi, E. Takagi, H. Okuno, R. Oshima, Y. Maeda, Y. Nagata, Preparation of platinum nanoparticles by sonochemical reduction of the Pt(IV) ions: role of surfactants. Ultrason. Sonochem. 8, 1–6 (2001)

    Article  CAS  PubMed  Google Scholar 

  20. K. Okitsu, A. Yue, S. Tanabe, H. Matsumoto, Sonochemical preparation and catalytic behavior of highly dispersed palladium nanoparticles on alumina. Chem. Mater. 12, 3006–3011 (2000)

    Article  CAS  Google Scholar 

  21. Y. Mizukoshi, K. Okitsu, T. Yamamoto, R. Oshima, Y. Nagata, Y. Maeda, Sonochemical preparation of bimetallic nanoparticles of gold/palladium in aqueous solution. J. Phys. Chem. B 101(36), 7033–7037 (1997)

    Article  CAS  Google Scholar 

  22. A. Abulizi, G.H. Yang, K. Okitsu, J.-J. Zhu, Synthesis of MnO2 nanoparticles from sonochemical reduction of MnO -4 in water under different pH conditions. Ultrason. Sonochem. 21, 1629–1634 (2014)

    Article  CAS  PubMed  Google Scholar 

  23. K. Okitsu, M. Iwatani, K. Okano, M.H. Uddin, R. Nishimura, Mechanism of sonochemical reduction of permanganate to manganese dioxide in aqueous alcohol solutions: reactivities of reducing species formed by alcohol sonolysis. Ultrason. Sonochem. 31, 456–462 (2016)

    Article  CAS  PubMed  Google Scholar 

  24. K. Okitsu, K. Sharyo, R. Nishimura, One-pot synthesis of gold nanorods by ultrasonic irradiation: the effect of pH on the shape of the gold nanorods and nanoparticles. Langmuir 25, 7786–7790 (2009)

    Article  CAS  PubMed  Google Scholar 

  25. K. Okitsu, Y. Nunota, One-pot synthesis of gold nanorods via autocatalytic growth of sonochemically formed gold seeds: the effect of irradiation time on the formation of seeds and nanorods. Ultrason. Sonochem. 21, 1928–1932 (2014)

    Article  CAS  PubMed  Google Scholar 

  26. E.C. Dreaden, A.M. Alkilany, X. Huang, C.J. Murphy, M.A. El-Sayed, The golden age: gold nanoparticles for biomedicine. Chem. Soc. Rev. 41, 2740–2779 (2012)

    Article  CAS  PubMed  Google Scholar 

  27. H. Chen, L. Shao, Q. Li, J. Wang, Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 42, 2679–2724 (2013)

    Article  CAS  PubMed  Google Scholar 

  28. H.S. Nam, J.K. Yoon, J.M. Ko, J.D. Kim, Electrochemical capacitors of flower-like and nanowire structured MnO2 by a sonochemical method. Mater. Chem. Phys. 123, 331–336 (2010)

    Article  CAS  Google Scholar 

  29. S. Guo, S. Dong, Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev. 40, 2644–2672 (2011)

    Article  CAS  Google Scholar 

  30. A. Abulizi, K. Okitsu, J.-J. Zhu, Ultrasound assisted reduction of graphene oxide to graphene in L-ascorbic acid aqueous solutions: kinetics and effects of various factors on the rate of graphene formation. Ultrason. Sonochem. 21, 1174–1181 (2014)

    Article  CAS  PubMed  Google Scholar 

  31. D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008)

    Article  CAS  PubMed  Google Scholar 

  32. C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4, 2429–2437 (2010)

    Article  CAS  PubMed  Google Scholar 

  33. L.M. Viculis, J.J. Mack, R.B. Kaner, A chemical route to carbon nanoscrolls. Science 299, 1361 (2003)

    Article  CAS  PubMed  Google Scholar 

  34. U. Khan, A. O’Neill, M. Lotya, S. De, J.N. Coleman, High-concentration solvent exfoliation of graphene. Small 6, 864–871 (2010)

    Article  CAS  PubMed  Google Scholar 

  35. M. Lotya, P.J. King, U. Khan, S. De, J.N. Coleman, High-concentration surfactant-stabilized graphene dispersions. ACS Nano 4, 3155–3162 (2010)

    Article  CAS  PubMed  Google Scholar 

  36. L.-P. Jiang, S. Xu, J.-M. Zhu, J.-R. Zhang, J.-J. Zhu, H.-Y. Chen, Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings. Inorg. Chem 43, 5877–5883 (2004)

    Article  CAS  PubMed  Google Scholar 

  37. Xu Hangxun, Kenneth S. Suslick, Sonochemical preparation of functionalized graphenes. J. Am. Chem. Soc. 133, 9148–9151 (2011)

    Article  CAS  Google Scholar 

  38. C. Wu, B.P. Mosher, T. Zeng, Rapid synthesis of gold and platinum nanoparticles using metal displacement reduction with sonomechanical assistance. Chem. Mater. 18, 2925–2928 (2006)

    Article  CAS  Google Scholar 

  39. C. Wu, B.P. Mosher, T. Zeng, Chemically-mechanically assisted synthesis of metallic and oxide nanoparticles in ambient conditions. J Nanoscience Nanotechnology 8, 386–389 (2008)

    CAS  Google Scholar 

  40. J.-J. Zhu, S.T. Aruna, Y. Koltypin, A. Gedanken, A novel method for the preparation of lead selenide: pulse sonoelectrochemical synthesis of lead selenide nanoparticles. Chem. Mater. 12, 143–147 (2000)

    Article  CAS  Google Scholar 

  41. Q. Shen, Q. Min, J. Shi, L. Jiang, J.-R. Zhang, W. Hou, J.-J. Zhu, Morphology-controlled synthesis of palladium nanostructures by sonoelectrochemical method and their application in direct alcohol oxidation. J. Phys. Chem. C 113, 1267–1273 (2009)

    Article  CAS  Google Scholar 

  42. Y.-C. Liu, H.-T. Lee, H.-H. Peng, New pathway for sonoelectrochemical synthesis of gold–silver alloy nanoparticles from their bulk substrates. Chem. Phys. Lett. 400, 436–440 (2004)

    Article  CAS  Google Scholar 

  43. J.-J. Shi, S. Wang, T.-T. He, E.S. Abdel-Halim, J.-J. Zhu, Sonoelectrochemical synthesis of water-soluble CdTe quantum dots. Ultrason. Sonochem. 21, 493–498 (2014)

    Article  CAS  PubMed  Google Scholar 

  44. K. Zhang, S. Yao, G. Li, Y. Hu, One-step sonoelectrochemical fabrication of gold nanoparticle/carbon nanosheet hybrids for efficient surface-enhanced Raman scattering. Nanoscale 7, 2659–2666 (2015)

    Article  CAS  PubMed  Google Scholar 

  45. S.K. Mohapatra, M. Misra, V.K. Mahajan, K.S. Raja, A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water. J. Catal. 246, 362–369 (2007)

    Article  CAS  Google Scholar 

  46. R.J. Lang, Ultrasonic atomization of liquids. J. Acoust. Soc. Am. 34, 6–9 (1962)

    Article  Google Scholar 

  47. B. Xia, I.W. Lenggoro, K. Okuyama, Novel route to nanoparticle synthesis by salt-assisted aerosol decomposition. Adv. Mater. 13, 1579–1582 (2001)

    Article  CAS  Google Scholar 

  48. B. Xia, I.W. Lenggoro, K. Okuyama, Nanoparticle separation in salted droplet microreactors. Chem. Mater. 14, 2623–2627 (2002)

    Article  CAS  Google Scholar 

  49. Y.T. Didenko, K.S. Suslick, Chemical aerosol flow synthesis of semiconductor nanoparticles. J. Am. Chem. Soc. 127, 12196–12197 (2005)

    Article  CAS  PubMed  Google Scholar 

  50. S.E. Skrabalak, K.S. Suslick, Porous MoS2 synthesized by ultrasonic spray pyrolysis. J. Am. Chem. Soc. 127, 9990–9991 (2005)

    Article  CAS  PubMed  Google Scholar 

  51. Sara E. Skrabalak, Kenneth S. Suslick, Porous carbon powders prepared by ultrasonic spray pyrolysis. J. Am. Chem. Soc. 128, 12642–12643 (2006)

    Article  CAS  PubMed  Google Scholar 

  52. W.H. Suh, J.K. Kang, Y.-H. Suh, M. Tirrell, K.S. Suslick, G.D. Stucky, Porous Carbon produced in air: physicochemical properties and stem cell engineering. Adv. Mater. 23, 2332–2338 (2011)

    Article  CAS  PubMed  Google Scholar 

  53. Y. Liang, H. Hou, Y. Yang, H. Glicksman, S. Ehrman, Conductive one- and two-dimensional structures fabricated using oxidation-resistant Cu–Sn particles. ACS Appl. Mater. Interfaces. 9, 34587–34591 (2017)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Okitsu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okitsu, K., Cavalieri, F. (2018). Synthesis of Metal Nanomaterials with Chemical and Physical Effects of Ultrasound and Acoustic Cavitation. In: Sonochemical Production of Nanomaterials. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-96734-9_2

Download citation

Publish with us

Policies and ethics