Skip to main content

Thyroid and Parathyroid Tumors

  • Chapter
  • First Online:
Book cover Oncological Surgical Pathology

Abstract

The pathology of thyroid and parathyroid nodules represents a spectrum of disorders from reactive hyperplasias and benign neoplasms to carcinomas with metastatic potential. Thyroid nodules are common in adults and will be frequently encountered for pathologic evaluation by fine needle aspiration (FNA). Surgical resection allows for a definitive diagnosis for the 20–30% of indeterminate thyroid nodules by FNA and for tumor staging in the 10% that will be malignant. Conversely, parathyroid disease is relatively rare with biochemical and imaging allowing for a preoperative diagnosis in the majority of cases. Localized parathyroid surgery for primary hyperparathyroidism then allows for both definitive treatment and diagnostic tissue to confirm parathyroid adenoma. On a cellular level, recognizing the relationship of tumors to the cells of origin including “follicular-derived” in thyroid versus from C-cells also creates a framework to diagnose thyroid cancers and utilize correlative biochemical markers for both diagnosis and clinical follow-up. The following chapter outlines the fundamentals for pathologic evaluation and associated molecular alterations for these endocrine organs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DeLellis R, Lloyd R, Heitz P, et al. Pathology and genetics of tumors of endocrine origin. Lyon: IARC Press; 2004.

    Google Scholar 

  2. Giuffrida D, Gharib H. Anaplastic thyroid carcinoma: current diagnosis and treatment. Ann Oncol. 2000;11:1083–9.

    PubMed  CAS  Google Scholar 

  3. Pulcrano M, Boukheris H, Talbot M, et al. Poorly differentiated follicular thyroid carcinoma: prognostic factors and relevance of histological classification. Thyroid. 2007;17:639–46.

    PubMed  Google Scholar 

  4. Kebebew E, Ituarte PH, Siperstein AE, et al. Medullary thyroid carcinoma: clinical characteristics, treatment, prognostic factors, and a comparison of staging systems. Cancer. 2000;88:1139–48.

    PubMed  CAS  Google Scholar 

  5. Kondo T, Ezzat S, Asa SL. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer. 2006;6:292–306.

    PubMed  CAS  Google Scholar 

  6. LiVolsi VA, Baloch ZW. Follicular neoplasms of the thyroid: view, biases, and experiences. Adv Anat Pathol. 2004;11:279–87.

    PubMed  Google Scholar 

  7. Lloyd RV, Erickson LA, Casey MB, et al. Observer variation in the diagnosis of follicular variant of papillary thyroid carcinoma. Am J Surg Pathol. 2004;28:1336–40.

    PubMed  Google Scholar 

  8. Cibas ES, Ali SZ. The 2017 Bethesda System for Reporting Thyroid Cytopathology. Thyroid. 2017;27(11):1341–6.

    PubMed  Google Scholar 

  9. Baloch ZW, LiVolsi VA. Our approach to follicular-patterned lesions of the thyroid. J Clin Pathol. 2007;60:244–50.

    PubMed  Google Scholar 

  10. Bartolazzi A, Gasbarri A, Papotti M, et al. Application of an immunodiagnostic method for improving preoperative diagnosis of nodular thyroid lesions. Lancet. 2001;357:1644–50.

    PubMed  CAS  Google Scholar 

  11. Vasko VV, Gaudart J, Allasia C, et al. Thyroid follicular adenomas may display features of follicular carcinoma and follicular variant of papillary carcinoma. Eur J Endocrinol. 2004;151:779–86.

    PubMed  CAS  Google Scholar 

  12. Rosai J, Kuhn E, Carcangiu ML. Pitfalls in thyroid tumour pathology. Histopathology. 2006;49:107–20.

    PubMed  CAS  Google Scholar 

  13. Sobrinho-Simoes M, Magalhaes J, Fonseca E, et al. Diagnostic pitfalls of thyroid pathology. Curr Diag Pathol. 2005;11:52–9.

    Google Scholar 

  14. Suster S. Thyroid tumours with a follicular growth pattern: problems in differential diagnosis. Arch Pathol Lab Med. 2006;130:984–8.

    PubMed  Google Scholar 

  15. Evans HL. Follicular neoplasms of the thyroid. A study of 44 cases followed for a minimum of 10 years, with emphasis on differential diagnosis. Cancer. 1984;54:535–40.

    PubMed  CAS  Google Scholar 

  16. Hirokawa M, Carney JA, Goellner JR, et al. Observer variation of encapsulated follicular lesions of the thyroid gland. Am J Surg Pathol. 2002;26:1508–14.

    PubMed  Google Scholar 

  17. Bongarzone I, Vigneri P, Mariani L, et al. RET/NTRK1 rearrangements in thyroid gland tumors of the papillary carcinoma family: correlation with clinicopathological features. Clin Cancer Res. 1998;4:223–8.

    PubMed  CAS  Google Scholar 

  18. Castellone MD, Santoro M. Dysregulated RET signaling in thyroid cancer. Endocrinol Metab Clin N Am. 2008;37:363–74, viii.

    CAS  Google Scholar 

  19. Fonseca E, Soares P, Cardoso-Oliveira M, et al. Diagnostic criteria in well-differentiated thyroid carcinomas. Endocr Pathol. 2006;17:109–17.

    PubMed  CAS  Google Scholar 

  20. Fagin JA, Matsuo K, Karmakar A, et al. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Invest. 1993;91:179–84.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Wang HM, Huang YW, Huang JS, et al. Anaplastic carcinoma of the thyroid arising more often from follicular carcinoma than papillary carcinoma. Ann Surg Oncol. 2007;14:3011–8.

    PubMed  Google Scholar 

  22. Wiseman SM, Loree TR, Hicks WL Jr, et al. Anaplastic thyroid cancer evolved from papillary carcinoma: demonstration of anaplastic transformation by means of the inter-simple sequence repeat polymerase chain reaction. Arch Otolaryngol Head Neck Surg. 2003;129:96–100.

    PubMed  Google Scholar 

  23. Collini P, Sampietro G, Pilotti S. Extensive vascular invasion is a marker of risk of relapse in encapsulated non-Hurthle cell follicular carcinoma of the thyroid gland: a clinicopathological study of 18 consecutive cases from a single institution with a 11-year median follow-up. Histopathology. 2004;44:35–9.

    PubMed  CAS  Google Scholar 

  24. Cornett WR, Sharma AK, Day TA, et al. Anaplastic thyroid carcinoma: an overview. Curr Oncol Rep. 2007;9:152–8.

    PubMed  Google Scholar 

  25. Hunt J. Understanding the genotype of follicular thyroid tumors. Endocr Pathol. 2005;16:311–21.

    PubMed  CAS  Google Scholar 

  26. DeLellis RA. Pathology and genetics of thyroid carcinoma. J Surg Oncol. 2006;94:662–9.

    PubMed  CAS  Google Scholar 

  27. Dvorakova S, Vaclavikova E, Sykorova V, et al. Somatic mutations in the RET proto-oncogene in sporadic medullary thyroid carcinomas. Mol Cell Endocrinol. 2008;284:21–7.

    PubMed  CAS  Google Scholar 

  28. Namba H, Rubin SA, Fagin JA. Point mutations of ras oncogenes are an early event in thyroid tumorigenesis. Mol Endocrinol. 1990;4:1474–9.

    PubMed  CAS  Google Scholar 

  29. Cheung L, Messina M, Gill A, et al. Detection of the PAX8-PPAR gamma fusion oncogene in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab. 2003;88:354–7.

    PubMed  CAS  Google Scholar 

  30. Di Cristofaro J, Marcy M, Vasko V, et al. Molecular genetic study comparing follicular variant versus classic papillary thyroid carcinomas: association of N-ras mutation in codon 61 with follicular variant. Hum Pathol. 2006;37:824–30.

    PubMed  Google Scholar 

  31. Garcia-Rostan G, Zhao H, Camp RL, et al. ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol. 2003;21:3226–35.

    PubMed  CAS  Google Scholar 

  32. Nakamura N, Erickson LA, Jin L, et al. Immunohistochemical separation of follicular variant of papillary thyroid carcinoma from follicular adenoma. Endocr Pathol. 2006;17:213–23.

    PubMed  CAS  Google Scholar 

  33. Castro P, Rebocho AP, Soares RJ, et al. PAX8-PPARgamma rearrangement is frequently detected in the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab. 2006;91:213–20.

    PubMed  CAS  Google Scholar 

  34. Kroll TG, Sarraf P, Pecciarini L, et al. PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science. 2000;289:1357–60.

    PubMed  CAS  Google Scholar 

  35. Lui WO, Foukakis T, Liden J, et al. Expression profiling reveals a distinct transcription signature in follicular thyroid carcinomas with a PAX8-PPAR(gamma) fusion oncogene. Oncogene. 2005;24:1467–76.

    PubMed  CAS  Google Scholar 

  36. Nakabashi CC, Guimaraes GS, Michaluart P Jr, et al. The expression of PAX8-PPARgamma rearrangements is not specific to follicular thyroid carcinoma. Clin Endocrinol. 2004;61:280–2.

    CAS  Google Scholar 

  37. Nikiforova MN, Biddinger PW, Caudill CM, et al. PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol. 2002;26:1016–23.

    PubMed  Google Scholar 

  38. Kebebew E, Weng J, Bauer J, et al. The prevalence and prognostic value of BRAF mutation in thyroid cancer. Ann Surg. 2007;246:466–70; discussion 470–461.

    PubMed  PubMed Central  Google Scholar 

  39. Lee JH, Lee ES, Kim YS. Clinicopathologic significance of BRAF V600E mutation in papillary carcinomas of the thyroid: a meta-analysis. Cancer. 2007;110:38–46.

    PubMed  Google Scholar 

  40. Lima J, Trovisco V, Soares P, et al. BRAF mutations are not a major event in post-Chernobyl childhood thyroid carcinomas. J Clin Endocrinol Metab. 2004;89:4267–71.

    PubMed  CAS  Google Scholar 

  41. Mitsiades CS, Negri J, McMullan C, et al. Targeting BRAFV600E in thyroid carcinoma: therapeutic implications. Mol Cancer Ther. 2007;6:1070–8.

    PubMed  CAS  Google Scholar 

  42. Trovisco V, Vieira de Castro I, Soares P, et al. BRAF mutations are associated with some histological types of papillary thyroid carcinoma. J Pathol. 2004;202:247–51.

    PubMed  CAS  Google Scholar 

  43. Elisei R, Romei C, Cosci B, et al. RET genetic screening in patients with medullary thyroid cancer and their relatives: experience with 807 individuals at one center. J Clin Endocrinol Metab. 2007;92:4725–9.

    PubMed  CAS  Google Scholar 

  44. Fenton CL, Lukes Y, Nicholson D, et al. The ret/PTC mutations are common in sporadic papillary thyroid carcinoma of children and young adults. J Clin Endocrinol Metab. 2000;85:1170–5.

    PubMed  CAS  Google Scholar 

  45. Fusco A, Chiappetta G, Hui P, et al. Assessment of RET/PTC oncogene activation and clonality in thyroid nodules with incomplete morphological evidence of papillary carcinoma: a search for the early precursors of papillary cancer. Am J Pathol. 2002;160:2157–67.

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Grieco M, Santoro M, Berlingieri MT, et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell. 1990;60:557–63.

    PubMed  CAS  Google Scholar 

  47. Jhiang SM, Caruso DR, Gilmore E, et al. Detection of the PTC/retTPC oncogene in human thyroid cancers. Oncogene. 1992;7:1331–7.

    PubMed  CAS  Google Scholar 

  48. Elisei R, Cosci B, Romei C, et al. Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow-up study. J Clin Endocrinol Metab. 2008;93:682–7.

    PubMed  CAS  Google Scholar 

  49. Gujral TS, van Veelen W, Richardson DS, et al. A novel RET kinase-beta-catenin signaling pathway contributes to tumorigenesis in thyroid carcinoma. Cancer Res. 2008;68:1338–46.

    PubMed  CAS  Google Scholar 

  50. Soares P, Fonseca E, Wynford-Thomas D, et al. Sporadic ret-rearranged papillary carcinoma of the thyroid: a subset of slow growing, less aggressive thyroid neoplasms? J Pathol. 1998;185:71–8.

    PubMed  CAS  Google Scholar 

  51. Hunt JL, Tometsko M, LiVolsi VA, et al. Molecular evidence of anaplastic transformation in coexisting well-differentiated and anaplastic carcinomas of the thyroid. Am J Surg Pathol. 2003;27:1559–64.

    PubMed  Google Scholar 

  52. Nikiforov YE. Genetic alterations involved in the transition from well-differentiated to poorly differentiated and anaplastic thyroid carcinomas. Endocr Pathol. 2004;15:319–27.

    PubMed  CAS  Google Scholar 

  53. Wiseman SM, Griffith OL, Deen S, et al. Identification of molecular markers altered during transformation of differentiated into anaplastic thyroid carcinoma. Arch Surg. 2007;142:717–27; discussion 727–719.

    PubMed  CAS  Google Scholar 

  54. Barden CB, Shister KW, Zhu B, et al. Classification of follicular thyroid tumors by molecular signature: results of gene profiling. Clin Cancer Res. 2003;9:1792–800.

    PubMed  CAS  Google Scholar 

  55. Bartolazzi A, D'Alessandria C, Parisella MG, et al. Thyroid cancer imaging in vivo by targeting the anti-apoptotic molecule galectin-3. PLoS One. 2008;3:e3768.

    PubMed  PubMed Central  Google Scholar 

  56. Bartolazzi A, Orlandi F, Saggiorato E, et al. Galectin-3-expression analysis in the surgical selection of follicular thyroid nodules with indeterminate fine-needle aspiration cytology: a prospective multicentre study. Lancet Oncol. 2008;9:543–9.

    PubMed  CAS  Google Scholar 

  57. Mehrotra P, Okpokam A, Bouhaidar R, et al. Galectin-3 does not reliably distinguish benign from malignant thyroid neoplasms. Histopathology. 2004;45:493–500.

    PubMed  CAS  Google Scholar 

  58. Chevillard S, Ugolin N, Vielh P, et al. Gene expression profiling of differentiated thyroid neoplasms: diagnostic and clinical implications. Clin Cancer Res. 2004;10:6586–97.

    PubMed  CAS  Google Scholar 

  59. Rodrigues RF, Roque L, Krug T, et al. Poorly differentiated and anaplastic thyroid carcinomas: chromosomal and oligo-array profile of five new cell lines. Br J Cancer. 2007;96:1237–45.

    PubMed  PubMed Central  CAS  Google Scholar 

  60. Vasko V, Espinosa AV, Scouten W, et al. Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. Proc Natl Acad Sci U S A. 2007;104:2803–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Zhu Z, Gandhi M, Nikiforova MN, et al. Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am J Clin Pathol. 2003;120:71–7.

    PubMed  CAS  Google Scholar 

  62. DeLellis RA, Mazzaglia P, Mangray S. Primary hyperparathyroidism: a current perspective. Arch Pathol Lab Med. 2008;132:1251–62.

    PubMed  Google Scholar 

  63. Lumachi F, Basso SM, Basso U. Parathyroid cancer: etiology, clinical presentation and treatment. Anticancer Res. 2006;26:4803–7.

    PubMed  CAS  Google Scholar 

  64. Dwight T, Nelson AE, Theodosopoulos G, et al. Independent genetic events associated with the development of multiple parathyroid tumors in patients with primary hyperparathyroidism. Am J Pathol. 2002;161:1299–306.

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Miedlich S, Krohn K, Lamesch P, et al. Frequency of somatic MEN1 gene mutations in monoclonal parathyroid tumours of patients with primary hyperparathyroidism. Eur J Endocrinol. 2000;143:47–54.

    PubMed  CAS  Google Scholar 

  66. Morrison C, Farrar W, Kneile J, et al. Molecular classification of parathyroid neoplasia by gene expression profiling. Am J Pathol. 2004;165:565–76.

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Cetani F, Ambrogini E, Viacava P, et al. Should parafibromin staining replace HRTP2 gene analysis as an additional tool for histologic diagnosis of parathyroid carcinoma? Eur J Endocrinol. 2007;156:547–54.

    PubMed  CAS  Google Scholar 

  68. Gill AJ, Clarkson A, Gimm O, et al. Loss of nuclear expression of parafibromin distinguishes parathyroid carcinomas and hyperparathyroidism-jaw tumor (HPT-JT) syndrome-related adenomas from sporadic parathyroid adenomas and hyperplasias. Am J Surg Pathol. 2006;30:1140–9.

    PubMed  Google Scholar 

  69. Juhlin CC, Villablanca A, Sandelin K, et al. Parafibromin immunoreactivity: its use as an additional diagnostic marker for parathyroid tumor classification. Endocr Relat Cancer. 2007;14:501–12.

    PubMed  CAS  Google Scholar 

  70. Cetani F, Pardi E, Viacava P, et al. A reappraisal of the Rb1 gene abnormalities in the diagnosis of parathyroid cancer. Clin Endocrinol. 2004;60:99–106.

    CAS  Google Scholar 

  71. Cryns VL, Thor A, Xu HJ, et al. Loss of the retinoblastoma tumor-suppressor gene in parathyroid carcinoma. N Engl J Med. 1994;330:757–61.

    PubMed  CAS  Google Scholar 

  72. Dotzenrath C, Teh BT, Farnebo F, et al. Allelic loss of the retinoblastoma tumor suppressor gene: a marker for aggressive parathyroid tumors? J Clin Endocrinol Metab. 1996;81:3194–6.

    PubMed  CAS  Google Scholar 

  73. Abboud B, Sleilaty G, Helou E, et al. Existence and anatomic distribution of double parathyroid adenoma. Laryngoscope. 2005;115:1128–31.

    PubMed  Google Scholar 

  74. Assaad A, Voeghtly L, Hunt JL. Thyroidectomies from patients with history of therapeutic radiation during childhood and adolescence have a unique mutational profile. Mod Pathol. 2008;21:1176–82.

    PubMed  CAS  Google Scholar 

  75. Carneiro-Pla DM, Romaguera R, Nadji M, et al. Does histopathology predict parathyroid hypersecretion and influence correctly the extent of parathyroidectomy in patients with sporadic primary hyperparathyroidism? Surgery. 2007;142:930–5; discussion 930–935.

    PubMed  Google Scholar 

  76. Castro P, Roque L, Magalhaes J, et al. A subset of the follicular variant of papillary thyroid carcinoma harbors the PAX8-PPARgamma translocation. Int J Surg Pathol. 2005;13:235–8.

    PubMed  Google Scholar 

  77. Cetani F, Pardi E, Ambrogini E, et al. Different somatic alterations of the HRPT2 gene in a patient with recurrent sporadic primary hyperparathyroidism carrying an HRPT2 germline mutation. Endocr Relat Cancer. 2007;14:493–9.

    PubMed  CAS  Google Scholar 

  78. Costa AM, Herrero A, Fresno MF, et al. BRAF mutation associated with other genetic events identifies a subset of aggressive papillary thyroid carcinoma. Clin Endocrinol (Oxf). 2008;68:618–34.

    CAS  Google Scholar 

  79. Derwahl M. Molecular aspects of the pathogenesis of nodular goiters, thyroid nodules and adenomas. Exp Clin Endocrinol Diabetes. 1996;104(Suppl 4):32–5.

    PubMed  CAS  Google Scholar 

  80. Feldman PL, Lambert MH, Henke BR. PPAR modulators and PPAR pan agonists for metabolic diseases: the next generation of drugs targeting peroxisome proliferator-activated receptors? Curr Top Med Chem. 2008;8:728–49.

    PubMed  CAS  Google Scholar 

  81. Frasca F, Nucera C, Pellegriti G, et al. BRAF(V600E) mutation and the biology of papillary thyroid cancer. Endocr Relat Cancer. 2008;15:191–205.

    PubMed  CAS  Google Scholar 

  82. Hofman V, Lassalle S, Bonnetaud C, et al. Thyroid tumours of uncertain malignant potential: frequency and diagnostic reproducibility. Virchows Arch. 2009;455:21–33.

    PubMed  CAS  Google Scholar 

  83. Iliszko M, Kuzniacka A, Lachinski A, et al. Karyotypic characterization of 64 nonmalignant thyroid goiters. Cancer Genet Cytogenet. 2005;161:178–80.

    PubMed  CAS  Google Scholar 

  84. Karga H, Lee JK, Vickery AL Jr, et al. Ras oncogene mutations in benign and malignant thyroid neoplasms. J Clin Endocrinol Metab. 1991;73:832–6.

    PubMed  CAS  Google Scholar 

  85. Krohn K, Paschke R. Somatic mutations in thyroid nodular disease. Mol Genet Metab. 2002;75:202–8.

    PubMed  CAS  Google Scholar 

  86. Lemoine NR, Mayall ES, Wyllie FS, et al. High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene. 1989;4:159–64.

    PubMed  CAS  Google Scholar 

  87. Lupi C, Giannini R, Ugolini C, et al. Association of BRAF V600E mutation with poor clinicopathological outcomes in 500 consecutive cases of papillary thyroid carcinoma. J Clin Endocrinol Metab. 2007;92:4085–90.

    PubMed  CAS  Google Scholar 

  88. Maximo V, Soares P, Lima J, et al. Mitochondrial DNA somatic mutations (point mutations and large deletions) and mitochondrial DNA variants in human thyroid pathology: a study with emphasis on Hurthle cell tumors. Am J Pathol. 2002;160:1857–65.

    PubMed  PubMed Central  CAS  Google Scholar 

  89. Nikiforov YE. Radiation-induced thyroid cancer: what we have learned from chernobyl. Endocr Pathol. 2006;17:307–17.

    PubMed  CAS  Google Scholar 

  90. Nikiforova MN, Lynch RA, Biddinger PW, et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab. 2003;88:2318–26.

    PubMed  CAS  Google Scholar 

  91. Nikiforova MN, Nikiforov YE. Molecular genetics of thyroid cancer: implications for diagnosis, treatment and prognosis. Expert Rev Mol Diagn. 2008;8:83–95.

    PubMed  CAS  Google Scholar 

  92. Sadetzki S, Calderon-Margalit R, Modan B, et al. Ret/PTC activation in benign and malignant thyroid tumors arising in a population exposed to low-dose external-beam irradiation in childhood. J Clin Endocrinol Metab. 2004;89:2281–9.

    PubMed  CAS  Google Scholar 

  93. Sanjuan X, Bryant BR, Sobel ME, et al. Clonality analysis of benign parathyroid lesions by human androgen receptor (HUMARA) gene assay. Endocr Pathol. 1998;9:293–300.

    PubMed  Google Scholar 

  94. Scarpelli D, D’Aloiso L, Arturi F, et al. Novel somatic MEN1 gene alterations in sporadic primary hyperparathyroidism and correlation with clinical characteristics. J Endocrinol Investig. 2004;27:1015–21.

    CAS  Google Scholar 

  95. Shan L, Nakamura M, Nakamura Y, et al. Comparative analysis of clonality and pathology in primary and secondary hyperparathyroidism. Virchows Arch. 1997;430:247–51.

    PubMed  CAS  Google Scholar 

  96. Sinha S, Sinha A, McPherson GA. Synchronous sporadic carcinoma and primary hyperplasia of the parathyroid glands: a case report and review of the literature. Int J Surg Pathol. 2006;14:336–9.

    PubMed  CAS  Google Scholar 

  97. Smanik PA, Furminger TL, Mazzaferri EL, et al. Breakpoint characterization of the ret/PTC oncogene in human papillary thyroid carcinoma. Hum Mol Genet. 1995;4:2313–8.

    PubMed  CAS  Google Scholar 

  98. Takahashi K, Eguchi H, Arihiro K, et al. The presence of BRAF point mutation in adult papillary thyroid carcinomas from atomic bomb survivors correlates with radiation dose. Mol Carcinog. 2007;46:242–8.

    PubMed  CAS  Google Scholar 

  99. Trovisco V, Soares P, Preto A, et al. Type and prevalence of BRAF mutations are closely associated with papillary thyroid carcinoma histotype and patients' age but not with tumour aggressiveness. Virchows Arch. 2005;446:589–95.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel K. El-Naggar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bell, D., Williams, M.D., El-Naggar, A.K. (2020). Thyroid and Parathyroid Tumors. In: Moran, C.A., Kalhor, N., Weissferdt, A. (eds) Oncological Surgical Pathology . Springer, Cham. https://doi.org/10.1007/978-3-319-96681-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96681-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96680-9

  • Online ISBN: 978-3-319-96681-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics