Skip to main content

Soft Tissue

  • Chapter
  • First Online:
  • 4700 Accesses

Abstract

The diagnosis of soft tissue mesenchymal tumors can be challenging. These tumors are diverse with a wide range of clinical presentations as well as histological spectrums. Features of benign and malignant mesenchymal tumors can sometimes overlap with each other and even with non-mesenchymal tumors. They are also relatively rare and sometimes are not classifiable. All of these factors contribute to uncertainty when diagnosing these tumors in practice, especially in the era of increasingly smaller biopsies. Fortunately, there are tools that can assist pathologists. We present a practical approach to soft mesenchymal tumors and emphasize the most common pitfalls we have encountered at our practice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fletcher CDM, World Health Organization, International Agency for Research on Cancer. WHO classification of tumours of soft tissue and bone. 4th ed. Lyon: IARC Press; 2013.

    Google Scholar 

  2. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.

    Article  PubMed  Google Scholar 

  3. Coindre JM. Grading of soft tissue sarcomas: review and update. Arch Pathol Lab Med. 2006;130:1448–53.

    Article  PubMed  Google Scholar 

  4. Amin MB, Edge SB, Greene FL et al, eds. AJCC Cancer Staging Manual. 8th ed. New York: Springer Science+Business Media; 2017.

    Google Scholar 

  5. Rubin BP, Cooper K, Fletcher CD, Folpe AL, Gannon FH, Hunt JL, Lazar AJ, Montag AG, Peabody TD, Pollock RE, Reith JD, Qualman SJ, Rosenberg AE, Weiss SW, Krausz T, Members of the Cancer Committee CoAP. Protocol for the examination of specimens from patients with tumors of soft tissue. Arch Pathol Lab Med. 2010;134:e31–9.

    Article  PubMed  Google Scholar 

  6. Amin MB, Edge S, Greene F, Byrd DR, Brookland RK, Washington MK, Gershenwald JE, Compton CC, Hess KR, Sullivan DC, Jessup JM, Brierley JD, Gaspar LE, Schilsky RL, Balch CM, Winchester DP, Asare EA, Madera M, Gress DM, Meyer LR. AJCC cancer staging manual. 8th ed. Chicago: American Joint Committee on Cancer; 2017.

    Book  Google Scholar 

  7. Demicco EG, Lazar AJ. Clinicopathologic considerations: how can we fine tune our approach to sarcoma? Semin Oncol. 2011;38(Suppl 3):S3–18.

    Article  PubMed  Google Scholar 

  8. Al-Zaid T, Wang WL, Somaiah N, Lazar AJ. Molecular profiling of sarcomas: new vistas for precision medicine. Virchows Arch. 2017;471(2):243–55.

    Article  PubMed  CAS  Google Scholar 

  9. Fernandez AP, Sun Y, Tubbs RR, Goldblum JR, Billings SD. FISH for MYC amplification and anti-MYC immunohistochemistry: useful diagnostic tools in the assessment of secondary angiosarcoma and atypical vascular proliferations. J Cutan Pathol. 2012;39:234–42.

    Article  PubMed  Google Scholar 

  10. Manner J, Radlwimmer B, Hohenberger P, Mossinger K, Kuffer S, Sauer C, Belharazem D, Zettl A, Coindre JM, Hallermann C, Hartmann JT, Katenkamp D, Katenkamp K, Schoffski P, Sciot R, Wozniak A, Lichter P, Marx A, Strobel P. MYC high level gene amplification is a distinctive feature of angiosarcomas after irradiation or chronic lymphedema. Am J Pathol. 2010;176:34–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Antonescu CR, Katabi N, Zhang L, Sung YS, Seethala RR, Jordan RC, Perez-Ordonez B, Have C, Asa SL, Leong IT, Bradley G, Klieb H, Weinreb I. EWSR1-ATF1 fusion is a novel and consistent finding in hyalinizing clear-cell carcinoma of salivary gland. Genes Chromosomes Cancer. 2011;50:559–70.

    Article  PubMed  CAS  Google Scholar 

  12. Bilodeau EA, Weinreb I, Antonescu CR, Zhang L, Dacic S, Muller S, Barker B, Seethala RR. Clear cell odontogenic carcinomas show EWSR1 rearrangements: a novel finding and a biological link to salivary clear cell carcinomas. Am J Surg Pathol. 2013;37:1001–5.

    Article  PubMed  Google Scholar 

  13. Thway K, Fisher C. Tumors with EWSR1-CREB1 and EWSR1-ATF1 fusions: the current status. Am J Surg Pathol. 2012;36:e1–e11.

    Article  PubMed  Google Scholar 

  14. Thway K, Nicholson AG, Lawson K, Gonzalez D, Rice A, Balzer B, Swansbury J, Min T, Thompson L, Adu-Poku K, Campbell A, Fisher C. Primary pulmonary myxoid sarcoma with EWSR1-CREB1 fusion: a new tumor entity. Am J Surg Pathol. 2011;35:1722–32.

    Article  PubMed  Google Scholar 

  15. Deyrup AT, Weiss SW. Grading of soft tissue sarcomas: the challenge of providing precise information in an imprecise world. Histopathology. 2006;48:42–50.

    Article  PubMed  CAS  Google Scholar 

  16. Costa J, Wesley RA, Glatstein E, Rosenberg SA. The grading of soft tissue sarcomas. Results of a clinicohistopathologic correlation in a series of 163 cases. Cancer. 1984;53:530–41.

    Article  PubMed  CAS  Google Scholar 

  17. Guillou L, Coindre JM, Bonichon F, Nguyen BB, Terrier P, Collin F, Vilain MO, Mandard AM, Le Doussal V, Leroux A, Jacquemier J, Duplay H, Sastre-Garau X, Costa J. Comparative study of the National Cancer Institute and French Federation of Cancer Centers Sarcoma Group grading systems in a population of 410 adult patients with soft tissue sarcoma. J Clin Oncol. 1997;15:350–62.

    Article  PubMed  CAS  Google Scholar 

  18. Chibon F, Lagarde P, Salas S, Perot G, Brouste V, Tirode F, Lucchesi C, de Reynies A, Kauffmann A, Bui B, Terrier P, Bonvalot S, Le Cesne A, Vince-Ranchere D, Blay JY, Collin F, Guillou L, Leroux A, Coindre JM, Aurias A. Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity. Nat Med. 2010;16:781–7.

    Article  PubMed  CAS  Google Scholar 

  19. Lesluyes T, Perot G, Largeau MR, Brulard C, Lagarde P, Dapremont V, Lucchesi C, Neuville A, Terrier P, Vince-Ranchere D, Mendez-Lago M, Gut M, Gut I, Coindre JM, Chibon F. RNA sequencing validation of the Complexity INdex in SARComas prognostic signature. Eur J Cancer. 2016;57:104–11.

    Article  PubMed  CAS  Google Scholar 

  20. Guillou L, Benhattar J, Bonichon F, Gallagher G, Terrier P, Stauffer E, Somerhausen Nde S, Michels JJ, Jundt G, Vince DR, Taylor S, Genevay M, Collin F, Trassard M, Coindre JM. Histologic grade, but not SYT-SSX fusion type, is an important prognostic factor in patients with synovial sarcoma: a multicenter, retrospective analysis. J Clin Oncol. 2004;22:4040–50.

    Article  PubMed  Google Scholar 

  21. Ladanyi M, Antonescu CR, Leung DH, Woodruff JM, Kawai A, Healey JH, Brennan MF, Bridge JA, Neff JR, Barr FG, Goldsmith JD, Brooks JS, Goldblum JR, Ali SZ, Shipley J, Cooper CS, Fisher C, Skytting B, Larsson O. Impact of SYT-SSX fusion type on the clinical behavior of synovial sarcoma: a multi-institutional retrospective study of 243 patients. Cancer Res. 2002;62:135–40.

    PubMed  CAS  Google Scholar 

  22. Tai HC, Chuang IC, Chen TC, Li CF, Huang SC, Kao YC, Lin PC, Tsai JW, Lan J, Yu SC, Yen SL, Jung SM, Liao KC, Fang FM, Huang HY. NAB2-STAT6 fusion types account for clinicopathological variations in solitary fibrous tumors. Mod Pathol. 2015;28:1324–35.

    Article  PubMed  CAS  Google Scholar 

  23. Lazar AJ, Tuvin D, Hajibashi S, Habeeb S, Bolshakov S, Mayordomo-Aranda E, Warneke CL, Lopez-Terrada D, Pollock RE, Lev D. Specific mutations in the beta-catenin gene (CTNNB1) correlate with local recurrence in sporadic desmoid tumors. Am J Pathol. 2008;173:1518–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Colombo C, Miceli R, Lazar AJ, Perrone F, Pollock RE, Le Cesne A, Hartgrink HH, Cleton-Jansen AM, Domont J, Bovee JV, Bonvalot S, Lev D, Gronchi A. CTNNB1 45F mutation is a molecular prognosticator of increased postoperative primary desmoid tumor recurrence: an independent, multicenter validation study. Cancer. 2013;119:3696–702.

    Article  PubMed  CAS  Google Scholar 

  25. Edge SB, American Joint Committee on Cancer. AJCC cancer staging manual. 7th ed. New York: Springer; 2010.

    Google Scholar 

  26. Callegaro D, Miceli R, Gronchi A. Sarcoma nomograms: a light over the darkness. Oncoscience. 2017;4:15–6.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Callegaro D, Miceli R, Mariani L, Raut CP, Gronchi A. Soft tissue sarcoma nomograms and their incorporation into practice. Cancer. 2017;123:2802–20.

    Article  PubMed  Google Scholar 

  28. Bird JE, Morse LJ, Feng L, Wang WL, Lin PP, Moon BS, Lazar AJ, Satcher RL, Madewell JE, Lewis VO. Non-radiographic risk factors differentiating atypical lipomatous tumors from lipomas. Front Oncol. 2016;6:197.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Macarenco RS, Erickson-Johnson M, Wang X, Folpe AA, Rubin BP, Nascimento AG, Oliveira AM. Retroperitoneal lipomatous tumors without cytologic atypia: are they lipomas? A clinicopathologic and molecular study of 19 cases. Am J Surg Pathol. 2009;33:1470–6.

    Article  PubMed  Google Scholar 

  30. Kubo T, Matsui Y, Naka N, Araki N, Myoui A, Endo K, Yasui N, Ohtani O, Suzuki K, Kimura T, Yoshikawa H, Ueda T. Specificity of fusion genes in adipocytic tumors. Anticancer Res. 2010;30:661–4.

    PubMed  CAS  Google Scholar 

  31. Clay MR, Martinez AP, Weiss SW, Edgar MA. MDM2 amplification in problematic lipomatous tumors: analysis of FISH testing criteria. Am J Surg Pathol. 2015;39:1433–9.

    Article  PubMed  Google Scholar 

  32. Clay MR, Martinez AP, Weiss SW, Edgar MA. MDM2 and CDK4 Immunohistochemistry: should it be used in problematic differentiated lipomatous tumors?: A new perspective. Am J Surg Pathol. 2016;40:1647–52.

    Article  PubMed  Google Scholar 

  33. Weaver J, Downs-Kelly E, Goldblum JR, Turner S, Kulkarni S, Tubbs RR, Rubin BP, Skacel M. Fluorescence in situ hybridization for MDM2 gene amplification as a diagnostic tool in lipomatous neoplasms. Mod Pathol. 2008;21:943–9.

    Article  PubMed  CAS  Google Scholar 

  34. Zhang H, Erickson-Johnson M, Wang X, Oliveira JL, Nascimento AG, Sim FH, Wenger DE, Zamolyi RQ, Pannain VL, Oliveira AM. Molecular testing for lipomatous tumors: critical analysis and test recommendations based on the analysis of 405 extremity-based tumors. Am J Surg Pathol. 2010;34:1304–11.

    Article  PubMed  Google Scholar 

  35. Cheah A, Billings S, Goldblum J, Hornick J, Uddin N, Rubin B. Spindle cell/pleomorphic lipomas of the face: an under-recognized diagnosis. Histopathology. 2015;66:430–7.

    Article  PubMed  Google Scholar 

  36. Ud Din N, Zhang P, Sukov WR, Sattler CA, Jenkins SM, Doyle LA, Folpe AL, Fritchie KJ. Spindle cell lipomas arising at atypical locations. Am J Clin Pathol. 2016;146:487–95.

    Article  PubMed  Google Scholar 

  37. Angervall L, Dahl I, Kindblom LG, Save S. Spindle cell lipoma. Acta Pathol Microbiol Scand A. 1976;84:477–87.

    PubMed  CAS  Google Scholar 

  38. Billings SD, Folpe AL. Diagnostically challenging spindle cell lipomas: a report of 34 “low-fat” and “fat-free” variants. Am J Dermatopathol. 2007;29:437–42.

    Article  PubMed  Google Scholar 

  39. Sachdeva MP, Goldblum JR, Rubin BP, Billings SD. Low-fat and fat-free pleomorphic lipomas: a diagnostic challenge. Am J Dermatopathol. 2009;31:423–6.

    Article  PubMed  Google Scholar 

  40. Chen BJ, Marino-Enriquez A, Fletcher CD, Hornick JL. Loss of retinoblastoma protein expression in spindle cell/pleomorphic lipomas and cytogenetically related tumors: an immunohistochemical study with diagnostic implications. Am J Surg Pathol. 2012;36:1119–28.

    Article  PubMed  Google Scholar 

  41. Uehara K, Ikehara F, Shibuya R, Nakazato I, Oshiro M, Kiyuna M, Tanabe Y, Toyoda Z, Kurima K, Kina S, Hisaoka M, Kinjo T. Molecular signature of tumors with monoallelic 13q14 deletion: a case series of spindle cell lipoma and genetically-related tumors demonstrating a link between FOXO1 status and p38 MAPK pathway. Pathol Oncol Res. 2018;24(4):861–9.

    Article  PubMed  CAS  Google Scholar 

  42. Cheah AL, Billings SD, Goldblum JR, Carver P, Tanas MZ, Rubin BP. STAT6 rabbit monoclonal antibody is a robust diagnostic tool for the distinction of solitary fibrous tumour from its mimics. Pathology. 2014;46:389–95.

    Article  PubMed  CAS  Google Scholar 

  43. Demicco EG, Harms PW, Patel RM, Smith SC, Ingram D, Torres K, Carskadon SL, Camelo-Piragua S, McHugh JB, Siddiqui J, Palanisamy N, Lucas DR, Lazar AJ, Wang WL. Extensive survey of STAT6 expression in a large series of mesenchymal tumors. Am J Clin Pathol. 2015;143:672–82.

    Article  PubMed  CAS  Google Scholar 

  44. Thway K, Flora RS, Fisher C. Chondroid lipoma: an update and review. Ann Diagn Pathol. 2012;16:230–4.

    Article  PubMed  Google Scholar 

  45. Meis JM, Enzinger FM. Chondroid lipoma. A unique tumor simulating liposarcoma and myxoid chondrosarcoma. Am J Surg Pathol. 1993;17:1103–12.

    Article  PubMed  CAS  Google Scholar 

  46. Kindblom LG, Meis-Kindblom JM. Chondroid lipoma: an ultrastructural and immunohistochemical analysis with further observations regarding its differentiation. Hum Pathol. 1995;26:706–15.

    Article  PubMed  CAS  Google Scholar 

  47. Ballaux F, Debiec-Rychter M, De Wever I, Sciot R. Chondroid lipoma is characterized by t(11;16)(q13;p12-13). Virchows Arch. 2004;444:208–10.

    Article  PubMed  Google Scholar 

  48. Flucke U, Tops BB, de Saint Aubain Somerhausen N, Bras J, Creytens DH, Kusters B, Groenen PJ, Verdijk MA, Suurmeijer AJ, Mentzel T. Presence of C11orf95-MKL2 fusion is a consistent finding in chondroid lipomas: a study of eight cases. Histopathology. 2013;62:925–30.

    Article  PubMed  Google Scholar 

  49. Huang D, Sumegi J, Dal Cin P, Reith JD, Yasuda T, Nelson M, Muirhead D, Bridge JA. C11orf95-MKL2 is the resulting fusion oncogene of t(11;16)(q13;p13) in chondroid lipoma. Genes Chromosomes Cancer. 2010;49:810–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Dixon AY, McGregor DH, Lee SH. Angiolipomas: an ultrastructural and clinicopathological study. Hum Pathol. 1981;12:739–47.

    Article  PubMed  CAS  Google Scholar 

  51. Hunt SJ, Santa Cruz DJ, Barr RJ. Cellular angiolipoma. Am J Surg Pathol. 1990;14:75–81.

    Article  PubMed  CAS  Google Scholar 

  52. Hofvander J, Arbajian E, Stenkula KG, Lindkvist-Petersson K, Larsson M, Nilsson J, Magnusson L, von Steyern FV, Rissler P, Hornick JL. Mertens F: Frequent low-level mutations of protein kinase D2 in angiolipoma. J Pathol. 2017;241:578–82.

    Article  PubMed  CAS  Google Scholar 

  53. Sciot R, Akerman M, Dal Cin P, De Wever I, Fletcher CD, Mandahl N, Mertens F, Mitelman F, Rosai J, Rydholm A, Tallini G, Van den Berghe H, Vanni R, Willen H. Cytogenetic analysis of subcutaneous angiolipoma: further evidence supporting its difference from ordinary pure lipomas: a report of the CHAMP Study Group. Am J Surg Pathol. 1997;21:441–4.

    Article  PubMed  CAS  Google Scholar 

  54. Garib G, Siegal GP, Andea AA. Autosomal-dominant familial angiolipomatosis. Cutis. 2015;95:E26–9.

    PubMed  Google Scholar 

  55. Furlong MA, Fanburg-Smith JC, Miettinen M. The morphologic spectrum of hibernoma: a clinicopathologic study of 170 cases. Am J Surg Pathol. 2001;25:809–14.

    Article  PubMed  CAS  Google Scholar 

  56. Kumar R, Deaver MT, Czerniak BA, Madewell JE. Intraosseous hibernoma. Skelet Radiol. 2011;40:641–5.

    Article  Google Scholar 

  57. Yahia M, Laabidi B, M’Sakni I, Bougrine F, Bouziani A. Intraosseous hibernoma: a case report and review of the literature. Tunis Med. 2016;94:622–5.

    PubMed  Google Scholar 

  58. Maire G, Forus A, Foa C, Bjerkehagen B, Mainguene C, Kresse SH, Myklebost O, Pedeutour F. 11q13 alterations in two cases of hibernoma: large heterozygous deletions and rearrangement breakpoints near GARP in 11q13.5. Genes Chromosomes Cancer. 2003;37:389–95.

    Article  PubMed  CAS  Google Scholar 

  59. Meloni AM, Spanier SS, Bush CH, Stone JF, Sandberg AA. Involvement of 10q22 and 11q13 in hibernoma. Cancer Genet Cytogenet. 1994;72:59–64.

    Article  PubMed  CAS  Google Scholar 

  60. Mertens F, Rydholm A, Brosjo O, Willen H, Mitelman F, Mandahl N. Hibernomas are characterized by rearrangements of chromosome bands 11q13-21. Int J Cancer. 1994;58:503–5.

    Article  PubMed  CAS  Google Scholar 

  61. Mrozek K, Karakousis CP, Bloomfield CD. Band 11q13 is nonrandomly rearranged in hibernomas. Genes Chromosomes Cancer. 1994;9:145–7.

    Article  PubMed  CAS  Google Scholar 

  62. Turaga KK, Silva-Lopez E, Sanger WG, Nelson M, Hunter WJ, Miettinen M, Gatalica Z. A (9;11)(q34;q13) translocation in a hibernoma. Cancer Genet Cytogenet. 2006;170:163–6.

    Article  PubMed  CAS  Google Scholar 

  63. Nord KH, Magnusson L, Isaksson M, Nilsson J, Lilljebjorn H, Domanski HA, Kindblom LG, Mandahl N, Mertens F. Concomitant deletions of tumor suppressor genes MEN1 and AIP are essential for the pathogenesis of the brown fat tumor hibernoma. Proc Natl Acad Sci U S A. 2010;107:21122–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Evans HL. Liposarcoma: a study of 55 cases with a reassessment of its classification. Am J Surg Pathol. 1979;3:507–23.

    Article  PubMed  CAS  Google Scholar 

  65. Evans HL. Atypical lipomatous tumor, its variants, and its combined forms: a study of 61 cases, with a minimum follow-up of 10 years. Am J Surg Pathol. 2007;31:1–14.

    Article  PubMed  Google Scholar 

  66. Wenig BM, Weiss SW, Gnepp DR. Laryngeal and hypopharyngeal liposarcoma. A clinicopathologic study of 10 cases with a comparison to soft-tissue counterparts. Am J Surg Pathol. 1990;14:134–41.

    Article  PubMed  CAS  Google Scholar 

  67. Dei Tos AP, Mentzel T, Fletcher CD. Primary liposarcoma of the skin: a rare neoplasm with unusual high grade features. Am J Dermatopathol. 1998;20:332–8.

    Article  PubMed  CAS  Google Scholar 

  68. Evans HL. Smooth muscle in atypical lipomatous tumors. A report of three cases. Am J Surg Pathol. 1990;14:714–8.

    Article  PubMed  CAS  Google Scholar 

  69. Folpe AL, Weiss SW. Lipoleiomyosarcoma (well-differentiated liposarcoma with leiomyosarcomatous differentiation): a clinicopathologic study of nine cases including one with dedifferentiation. Am J Surg Pathol. 2002;26:742–9.

    Article  PubMed  Google Scholar 

  70. Sioletic S, Dal Cin P, Fletcher CD, Hornick JL. Well-differentiated and dedifferentiated liposarcomas with prominent myxoid stroma: analysis of 56 cases. Histopathology. 2013;62:287–93.

    Article  PubMed  Google Scholar 

  71. Weiss SW, Rao VK. Well-differentiated liposarcoma (atypical lipoma) of deep soft tissue of the extremities, retroperitoneum, and miscellaneous sites. A follow-up study of 92 cases with analysis of the incidence of “dedifferentiation”. Am J Surg Pathol. 1992;16:1051–8.

    Article  PubMed  CAS  Google Scholar 

  72. Henricks WH, Chu YC, Goldblum JR, Weiss SW. Dedifferentiated liposarcoma: a clinicopathological analysis of 155 cases with a proposal for an expanded definition of dedifferentiation. Am J Surg Pathol. 1997;21:271–81.

    Article  PubMed  CAS  Google Scholar 

  73. Bode-Lesniewska B, Zhao J, Speel EJ, Biraima AM, Turina M, Komminoth P, Heitz PU. Gains of 12q13-14 and overexpression of mdm2 are frequent findings in intimal sarcomas of the pulmonary artery. Virchows Arch. 2001;438:57–65.

    Article  PubMed  CAS  Google Scholar 

  74. Gisselsson D, Palsson E, Hoglund M, Domanski H, Mertens F, Pandis N, Sciot R, Dal Cin P, Bridge JA, Mandahl N. Differentially amplified chromosome 12 sequences in low- and high-grade osteosarcoma. Genes Chromosomes Cancer. 2002;33:133–40.

    Article  PubMed  CAS  Google Scholar 

  75. Neuville A, Collin F, Bruneval P, Parrens M, Thivolet F, Gomez-Brouchet A, Terrier P, de Montpreville VT, Le Gall F, Hostein I, Lagarde P, Chibon F, Coindre JM. Intimal sarcoma is the most frequent primary cardiac sarcoma: clinicopathologic and molecular retrospective analysis of 100 primary cardiac sarcomas. Am J Surg Pathol. 2014;38:461–9.

    Article  PubMed  Google Scholar 

  76. Righi A, Gambarotti M, Benini S, Gamberi G, Cocchi S, Picci P, Bertoni F. MDM2 and CDK4 expression in periosteal osteosarcoma. Hum Pathol. 2015;46:549–53.

    Article  PubMed  CAS  Google Scholar 

  77. Kuhnen C, Mentzel T, Sciot R, Lehnhardt M, Homann HH, Debiec-Rychter M. Dedifferentiated liposarcoma with extensive lymphoid component. Pathol Res Pract. 2005;201:347–53.

    Article  PubMed  Google Scholar 

  78. Elgar F, Goldblum JR. Well-differentiated liposarcoma of the retroperitoneum: a clinicopathologic analysis of 20 cases, with particular attention to the extent of low-grade dedifferentiation. Mod Pathol. 1997;10:113–20.

    PubMed  CAS  Google Scholar 

  79. Binh MB, Guillou L, Hostein I, Chateau MC, Collin F, Aurias A, Binh BN, Stoeckle E, Coindre JM. Dedifferentiated liposarcomas with divergent myosarcomatous differentiation developed in the internal trunk: a study of 27 cases and comparison to conventional dedifferentiated liposarcomas and leiomyosarcomas. Am J Surg Pathol. 2007;31:1557–66.

    Article  PubMed  Google Scholar 

  80. McCormick D, Mentzel T, Beham A, Fletcher CD. Dedifferentiated liposarcoma. Clinicopathologic analysis of 32 cases suggesting a better prognostic subgroup among pleomorphic sarcomas. Am J Surg Pathol. 1994;18:1213–23.

    Article  PubMed  CAS  Google Scholar 

  81. Marino-Enriquez A, Fletcher CD, Dal Cin P, Hornick JL. Dedifferentiated liposarcoma with “homologous” lipoblastic (pleomorphic liposarcoma-like) differentiation: clinicopathologic and molecular analysis of a series suggesting revised diagnostic criteria. Am J Surg Pathol. 2010;34:1122–31.

    Article  PubMed  Google Scholar 

  82. Gronchi A, Collini P, Miceli R, Valeri B, Renne SL, Dagrada G, Fiore M, Sanfilippo R, Barisella M, Colombo C, Morosi C, Stacchiotti S, Casali PG, Dei Tos AP, Pilotti S. Myogenic differentiation and histologic grading are major prognostic determinants in retroperitoneal liposarcoma. Am J Surg Pathol. 2015;39:383–93.

    Article  PubMed  Google Scholar 

  83. Evans HL, Khurana KK, Kemp BL, Ayala AG. Heterologous elements in the dedifferentiated component of dedifferentiated liposarcoma. Am J Surg Pathol. 1994;18:1150–7.

    Article  PubMed  CAS  Google Scholar 

  84. Alaggio R, Coffin CM, Weiss SW, Bridge JA, Issakov J, Oliveira AM, Folpe AL. Liposarcomas in young patients: a study of 82 cases occurring in patients younger than 22 years of age. Am J Surg Pathol. 2009;33:645–58.

    Article  PubMed  Google Scholar 

  85. Fritchie KJ, Goldblum JR, Tubbs RR, Sun Y, Carver P, Billings SD, Rubin BP. The expanded histologic spectrum of myxoid liposarcoma with an emphasis on newly described patterns: implications for diagnosis on small biopsy specimens. Am J Clin Pathol. 2012;137:229–39.

    Article  PubMed  Google Scholar 

  86. Antonescu CR, Tschernyavsky SJ, Decuseara R, Leung DH, Woodruff JM, Brennan MF, Bridge JA, Neff JR, Goldblum JR, Ladanyi M. Prognostic impact of P53 status, TLS-CHOP fusion transcript structure, and histological grade in myxoid liposarcoma: a molecular and clinicopathologic study of 82 cases. Clin Cancer Res. 2001;7:3977–87.

    PubMed  CAS  Google Scholar 

  87. Smith TA, Easley KA, Goldblum JR. Myxoid/round cell liposarcoma of the extremities. A clinicopathologic study of 29 cases with particular attention to extent of round cell liposarcoma. Am J Surg Pathol. 1996;20:171–80.

    Article  PubMed  CAS  Google Scholar 

  88. Huh WW, Yuen C, Munsell M, Hayes-Jordan A, Lazar AJ, Patel S, Wang WL, Barahmani N, Okcu MF, Hicks J, Debelenko L, Spunt SL. Liposarcoma in children and young adults: a multi-institutional experience. Pediatr Blood Cancer. 2011;57:1142–6.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Wang WL, Katz D, Araujo DM, Ravi V, Ludwig JA, Trent JC, Patel SR, Lin PP, Guadagnolo A, Lopez-Terrada D, Dei Tos AP, Lewis VO, Lev D, Pollock RE, Zagars GK, Benjamin RS, Madewell JE, Lazar AJ. Extensive adipocytic maturation can be seen in myxoid liposarcomas treated with neoadjuvant doxorubicin and ifosfamide and pre-operative radiation therapy. Clin Sarcoma Res. 2012;2:25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Suzuki K, Matsui Y, Higashimoto M, Kawaguchi Y, Seki S, Motomura H, Hori T, Yahara Y, Kanamori M, Kimura T. Myxoid liposarcoma-associated EWSR1-DDIT3 selectively represses osteoblastic and chondrocytic transcription in multipotent mesenchymal cells. PLoS One. 2012;7:e36682.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Powers MP, Wang WL, Hernandez VS, Patel KS, Lev DC, Lazar AJ, Lopez-Terrada DH. Detection of myxoid liposarcoma-associated FUS-DDIT3 rearrangement variants including a newly identified breakpoint using an optimized RT-PCR assay. Mod Pathol. 2010;23:1307–15.

    Article  PubMed  CAS  Google Scholar 

  92. Estourgie SH, Nielsen GP, Ott MJ. Metastatic patterns of extremity myxoid liposarcoma and their outcome. J Surg Oncol. 2002;80:89–93.

    Article  PubMed  Google Scholar 

  93. Setsu N, Miyake M, Wakai S, Nakatani F, Kobayashi E, Chuman H, Hiraoka N, Kawai A, Yoshida A. Primary retroperitoneal myxoid liposarcomas. Am J Surg Pathol. 2016;40:1286–90.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Downes KA, Goldblum JR, Montgomery EA, Fisher C. Pleomorphic liposarcoma: a clinicopathologic analysis of 19 cases. Mod Pathol. 2001;14:179–84.

    Article  PubMed  CAS  Google Scholar 

  95. Gebhard S, Coindre JM, Michels JJ, Terrier P, Bertrand G, Trassard M, Taylor S, Chateau MC, Marques B, Picot V, Guillou L. Pleomorphic liposarcoma: clinicopathologic, immunohistochemical, and follow-up analysis of 63 cases: a study from the French Federation of Cancer Centers Sarcoma Group. Am J Surg Pathol. 2002;26:601–16.

    Article  PubMed  Google Scholar 

  96. Hornick JL, Bosenberg MW, Mentzel T, McMenamin ME, Oliveira AM, Fletcher CD. Pleomorphic liposarcoma: clinicopathologic analysis of 57 cases. Am J Surg Pathol. 2004;28:1257–67.

    Article  PubMed  Google Scholar 

  97. Oliveira AM, Nascimento AG. Pleomorphic liposarcoma. Semin Diagn Pathol. 2001;18:274–85.

    PubMed  CAS  Google Scholar 

  98. Huang HY, Antonescu CR. Epithelioid variant of pleomorphic liposarcoma: a comparative immunohistochemical and ultrastructural analysis of six cases with emphasis on overlapping features with epithelial malignancies. Ultrastruct Pathol. 2002;26:299–308.

    Article  PubMed  Google Scholar 

  99. Price EB Jr, Silliphant WM, Shuman R. Nodular fasciitis: a clinicopathologic analysis of 65 cases. Am J Clin Pathol. 1961;35:122–36.

    Article  PubMed  Google Scholar 

  100. Kumar E, Patel NR, Demicco EG, Bovee JV, Olivera AM, Lopez-Terrada DH, Billings SD, Lazar AJ, Wang WL. Cutaneous nodular fasciitis with genetic analysis: a case series. J Cutan Pathol. 2016;43:1143–9.

    Article  PubMed  Google Scholar 

  101. Bemrich-Stolz CJ, Kelly DR, Muensterer OJ, Pressey JG. Single institution series of nodular fasciitis in children. J Pediatr Hematol Oncol. 2010;32:354–7.

    Article  PubMed  Google Scholar 

  102. Weinreb I, Shaw AJ, Perez-Ordonez B, Goldblum JR, Rubin BP. Nodular fasciitis of the head and neck region: a clinicopathologic description in a series of 30 cases. J Cutan Pathol. 2009;36:1168–73.

    Article  PubMed  Google Scholar 

  103. Erickson-Johnson MR, Chou MM, Evers BR, Roth CW, Seys AR, Jin L, Ye Y, Lau AW, Wang X, Oliveira AM. Nodular fasciitis: a novel model of transient neoplasia induced by MYH9-USP6 gene fusion. Lab Investig. 2011;91:1427–33.

    Article  PubMed  CAS  Google Scholar 

  104. Patel NR, Chrisinger JSA, Demicco EG, Sarabia SF, Reuther J, Kumar E, Oliveira AM, Billings SD, Bovee J, Roy A, Lazar AJ, Lopez-Terrada DH, Wang WL. USP6 activation in nodular fasciitis by promoter-swapping gene fusions. Mod Pathol. 2017;30:1577–88.

    Article  PubMed  CAS  Google Scholar 

  105. Guo R, Wang X, Chou MM, Asmann Y, Wenger DE, Al-Ibraheemi A, Molavi DW, Aboulafia A, Jin L, Fritchie K, Oliveira JL, Jenkins RB, Westendorf JJ, Dong J, Oliveira AM. PPP6R3-USP6 amplification: novel oncogenic mechanism in malignant nodular fasciitis. Genes Chromosomes Cancer. 2016;55:640–9.

    Article  PubMed  CAS  Google Scholar 

  106. Ackerman LV. Extra-osseous localized non-neoplastic bone and cartilage formation (so-called myositis ossificans): clinical and pathological confusion with malignant neoplasms. J Bone Joint Surg Am. 1958;40-A:279–98.

    Article  PubMed  CAS  Google Scholar 

  107. de Silva MV, Reid R. Myositis ossificans and fibroosseous pseudotumor of digits: a clinicopathological review of 64 cases with emphasis on diagnostic pitfalls. Int J Surg Pathol. 2003;11:187–95.

    Article  PubMed  Google Scholar 

  108. Nuovo MA, Norman A, Chumas J, Ackerman LV. Myositis ossificans with atypical clinical, radiographic, or pathologic findings: a review of 23 cases. Skelet Radiol. 1992;21:87–101.

    Article  CAS  Google Scholar 

  109. Konishi E, Kusuzaki K, Murata H, Tsuchihashi Y, Beabout JW, Unni KK. Extraskeletal osteosarcoma arising in myositis ossificans. Skelet Radiol. 2001;30:39–43.

    Article  CAS  Google Scholar 

  110. Brandser EA, Goree JC, El-Khoury GY. Elastofibroma dorsi: prevalence in an elderly patient population as revealed by CT. AJR Am J Roentgenol. 1998;171:977–80.

    Article  PubMed  CAS  Google Scholar 

  111. Jarvi OH, Lansimies PH. Subclinical elastofibromas in the scapular region in an autopsy series. Acta Pathol Microbiol Scand A. 1975;83:87–108.

    PubMed  CAS  Google Scholar 

  112. Parratt MT, Donaldson JR, Flanagan AM, Saifuddin A, Pollock RC, Skinner JA, Cannon SR, Briggs TW. Elastofibroma dorsi: management, outcome and review of the literature. J Bone Joint Surg Br. 2010;92:262–6.

    Article  PubMed  CAS  Google Scholar 

  113. Laskin WB, Miettinen M, Fetsch JF. Infantile digital fibroma/fibromatosis: a clinicopathologic and immunohistochemical study of 69 tumors from 57 patients with long-term follow-up. Am J Surg Pathol. 2009;33:1–13.

    Article  PubMed  Google Scholar 

  114. Viale G, Doglioni C, Iuzzolino P, Bontempini L, Colombi R, Coggi G, Dell’Orto P. Infantile digital fibromatosis-like tumour (inclusion body fibromatosis) of adulthood: report of two cases with ultrastructural and immunocytochemical findings. Histopathology. 1988;12:415–24.

    Article  PubMed  CAS  Google Scholar 

  115. Zardawi IM, Earley MJ. Inclusion body fibromatosis. J Pathol. 1982;137:99–107.

    Article  PubMed  CAS  Google Scholar 

  116. Kawaguchi M, Mitsuhashi Y, Hozumi Y, Kondo S. A case of infantile digital fibromatosis with spontaneous regression. J Dermatol. 1998;25:523–6.

    Article  PubMed  CAS  Google Scholar 

  117. Evans HL. Desmoplastic fibroblastoma. A report of seven cases. Am J Surg Pathol. 1995;19:1077–81.

    Article  PubMed  CAS  Google Scholar 

  118. Nielsen GP, O’Connell JX, Dickersin GR, Rosenberg AE. Collagenous fibroma (desmoplastic fibroblastoma): a report of seven cases. Mod Pathol. 1996;9:781–5.

    PubMed  CAS  Google Scholar 

  119. Bernal K, Nelson M, Neff JR, Nielsen SM, Bridge JA. Translocation (2;11)(q31;q12) is recurrent in collagenous fibroma (desmoplastic fibroblastoma). Cancer Genet Cytogenet. 2004;149:161–3.

    Article  PubMed  CAS  Google Scholar 

  120. Colombo C, Foo WC, Whiting D, Young ED, Lusby K, Pollock RE, Lazar AJ, Lev D. FAP-related desmoid tumors: a series of 44 patients evaluated in a cancer referral center. Histol Histopathol. 2012;27:641–9.

    PubMed  Google Scholar 

  121. Wang WL, Nero C, Pappo A, Lev D, Lazar AJ. Lopez-Terrada D: CTNNB1 genotyping and APC screening in pediatric desmoid tumors: a proposed algorithm. Pediatr Dev Pathol. 2012;15:361–7.

    Article  PubMed  CAS  Google Scholar 

  122. Colombo C, Bolshakov S, Hajibashi S, Lopez-Terrada L, Wang WL, Rao P, Benjamin RS, Lazar AJ, Lev D. ‘Difficult to diagnose’ desmoid tumours: a potential role for CTNNB1 mutational analysis. Histopathology. 2011;59:336–40.

    Article  PubMed  Google Scholar 

  123. Berri RN, Baumann DP, Madewell JE, Lazar A, Pollock RE. Desmoid tumor: current multidisciplinary approaches. Ann Plast Surg. 2011;67:551–64.

    Article  PubMed  CAS  Google Scholar 

  124. Lazar AJ, Hajibashi S, Lev D. Desmoid tumor: from surgical extirpation to molecular dissection. Curr Opin Oncol. 2009;21:352–9.

    Article  PubMed  CAS  Google Scholar 

  125. Verschoor AJ, Cleton-Jansen AM, Wijers-Koster P, Coffin CM, Lazar AJ, Nout RA, Rubin BP, Gelderblom H, Bovee JV. Radiation-induced sarcomas occurring in desmoid-type fibromatosis are not always derived from the primary tumor. Am J Surg Pathol. 2015;39:1701–7.

    Article  PubMed  Google Scholar 

  126. Evans HL. Low-grade fibromyxoid sarcoma. A report of two metastasizing neoplasms having a deceptively benign appearance. Am J Clin Pathol. 1987;88:615–9.

    Article  PubMed  CAS  Google Scholar 

  127. Evans HL. Low-grade fibromyxoid sarcoma. A report of 12 cases. Am J Surg Pathol. 1993;17:595–600.

    Article  PubMed  CAS  Google Scholar 

  128. Evans HL. Low-grade fibromyxoid sarcoma: a clinicopathologic study of 33 cases with long-term follow-up. Am J Surg Pathol. 2011;35:1450–62.

    Article  PubMed  Google Scholar 

  129. Folpe AL, Lane KL, Paull G, Weiss SW. Low-grade fibromyxoid sarcoma and hyalinizing spindle cell tumor with giant rosettes: a clinicopathologic study of 73 cases supporting their identity and assessing the impact of high-grade areas. Am J Surg Pathol. 2000;24:1353–60.

    Article  PubMed  CAS  Google Scholar 

  130. Lane KL, Shannon RJ, Weiss SW. Hyalinizing spindle cell tumor with giant rosettes: a distinctive tumor closely resembling low-grade fibromyxoid sarcoma. Am J Surg Pathol. 1997;21:1481–8.

    Article  PubMed  CAS  Google Scholar 

  131. Mohamed M, Fisher C, Thway K. Low-grade fibromyxoid sarcoma: clinical, morphologic and genetic features. Ann Diagn Pathol. 2017;28:60–7.

    Article  PubMed  Google Scholar 

  132. Billings SD, Giblen G, Fanburg-Smith JC. Superficial low-grade fibromyxoid sarcoma (Evans tumor): a clinicopathologic analysis of 19 cases with a unique observation in the pediatric population. Am J Surg Pathol. 2005;29:204–10.

    Article  PubMed  Google Scholar 

  133. Doyle LA, Wang WL, Dal Cin P, Lopez-Terrada D, Mertens F, Lazar AJ, Fletcher CD, Hornick JL. MUC4 is a sensitive and extremely useful marker for sclerosing epithelioid fibrosarcoma: association with FUS gene rearrangement. Am J Surg Pathol. 2012;36:1444–51.

    Article  PubMed  Google Scholar 

  134. Wang WL, Evans HL, Meis JM, Liegl-Atzwanger B, Bovee JV, Goldblum JR, Billings SD, Rubin BP, Lopez-Terrada D, Lazar AJ. FUS rearrangements are rare in ‘pure’ sclerosing epithelioid fibrosarcoma. Mod Pathol. 2012;25:846–53.

    Article  PubMed  Google Scholar 

  135. Doyle LA, Moller E, Dal Cin P, Fletcher CD, Mertens F, Hornick JL. MUC4 is a highly sensitive and specific marker for low-grade fibromyxoid sarcoma. Am J Surg Pathol. 2011;35:733–41.

    Article  PubMed  Google Scholar 

  136. Thway K, Ng W, Benson C, Chapman J, Fisher C. DOG1 expression in low-grade fibromyxoid sarcoma: a study of 11 cases, with molecular characterization. Int J Surg Pathol. 2015;23:454–60.

    Article  PubMed  CAS  Google Scholar 

  137. Panagopoulos I, Storlazzi CT, Fletcher CD, Fletcher JA, Nascimento A, Domanski HA, Wejde J, Brosjo O, Rydholm A, Isaksson M, Mandahl N, Mertens F. The chimeric FUS/CREB3l2 gene is specific for low-grade fibromyxoid sarcoma. Genes Chromosomes Cancer. 2004;40:218–28.

    Article  PubMed  CAS  Google Scholar 

  138. Matsuyama A, Hisaoka M, Shimajiri S, Hayashi T, Imamura T, Ishida T, Fukunaga M, Fukuhara T, Minato H, Nakajima T, Yonezawa S, Kuroda M, Yamasaki F, Toyoshima S, Hashimoto H. Molecular detection of FUS-CREB3L2 fusion transcripts in low-grade fibromyxoid sarcoma using formalin-fixed, paraffin-embedded tissue specimens. Am J Surg Pathol. 2006;30:1077–84.

    Article  PubMed  Google Scholar 

  139. Downs-Kelly E, Goldblum JR, Patel RM, Weiss SW, Folpe AL, Mertens F, Hartke M, Tubbs RR, Skacel M. The utility of fluorescence in situ hybridization (FISH) in the diagnosis of myxoid soft tissue neoplasms. Am J Surg Pathol. 2008;32:8–13.

    Article  PubMed  Google Scholar 

  140. Moller E, Hornick JL, Magnusson L, Veerla S, Domanski HA, Mertens F. FUS-CREB3L2/L1-positive sarcomas show a specific gene expression profile with upregulation of CD24 and FOXL1. Clin Cancer Res. 2011;17:2646–56.

    Article  PubMed  CAS  Google Scholar 

  141. Lau PP, Lui PC, Lau GT, Yau DT, Cheung ET, Chan JK. EWSR1-CREB3L1 gene fusion: a novel alternative molecular aberration of low-grade fibromyxoid sarcoma. Am J Surg Pathol. 2013;37:734–8.

    Article  PubMed  Google Scholar 

  142. Nascimento AF, Bertoni F, Fletcher CD. Epithelioid variant of myxofibrosarcoma: expanding the clinicomorphologic spectrum of myxofibrosarcoma in a series of 17 cases. Am J Surg Pathol. 2007;31:99–105.

    Article  PubMed  Google Scholar 

  143. Mentzel T, Calonje E, Wadden C, Camplejohn RS, Beham A, Smith MA, Fletcher CD. Myxofibrosarcoma. Clinicopathologic analysis of 75 cases with emphasis on the low-grade variant. Am J Surg Pathol. 1996;20:391–405.

    Article  PubMed  CAS  Google Scholar 

  144. Hollowood K, Fletcher CD. Malignant fibrous histiocytoma: morphologic pattern or pathologic entity? Semin Diagn Pathol. 1995;12:210–20.

    PubMed  CAS  Google Scholar 

  145. Mutter RW, Singer S, Zhang Z, Brennan MF, Alektiar KM. The enigma of myxofibrosarcoma of the extremity. Cancer. 2012;118:518–27.

    Article  PubMed  Google Scholar 

  146. Lee AY, Agaram NP, Qin LX, Kuk D, Curtin C, Brennan MF, Singer S. Optimal percent myxoid component to predict outcome in high-grade myxofibrosarcoma and undifferentiated pleomorphic sarcoma. Ann Surg Oncol. 2016;23:818–25.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Coffin CM, Dehner LP, Meis-Kindblom JM. Inflammatory myofibroblastic tumor, inflammatory fibrosarcoma, and related lesions: an historical review with differential diagnostic considerations. Semin Diagn Pathol. 1998;15:102–10.

    PubMed  CAS  Google Scholar 

  148. Coffin CM, Hornick JL, Fletcher CD. Inflammatory myofibroblastic tumor: comparison of clinicopathologic, histologic, and immunohistochemical features including ALK expression in atypical and aggressive cases. Am J Surg Pathol. 2007;31:509–20.

    Article  PubMed  Google Scholar 

  149. Coffin CM, Humphrey PA, Dehner LP. Extrapulmonary inflammatory myofibroblastic tumor: a clinical and pathological survey. Semin Diagn Pathol. 1998;15:85–101.

    CAS  PubMed  Google Scholar 

  150. Coffin CM, Watterson J, Priest JR, Dehner LP. Extrapulmonary inflammatory myofibroblastic tumor (inflammatory pseudotumor). A clinicopathologic and immunohistochemical study of 84 cases. Am J Surg Pathol. 1995;19:859–72.

    Article  PubMed  CAS  Google Scholar 

  151. Laskin WB, Fetsch JF, Miettinen M. Myxoinflammatory fibroblastic sarcoma: a clinicopathologic analysis of 104 cases, with emphasis on predictors of outcome. Am J Surg Pathol. 2014;38:1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Marino-Enriquez A, Wang WL, Roy A, Lopez-Terrada D, Lazar AJ, Fletcher CD, Coffin CM, Hornick JL. Epithelioid inflammatory myofibroblastic sarcoma: an aggressive intra-abdominal variant of inflammatory myofibroblastic tumor with nuclear membrane or perinuclear ALK. Am J Surg Pathol. 2011;35:135–44.

    Article  PubMed  Google Scholar 

  153. Meis JM, Enzinger FM. Inflammatory fibrosarcoma of the mesentery and retroperitoneum. A tumor closely simulating inflammatory pseudotumor. Am J Surg Pathol. 1991;15:1146–56.

    Article  PubMed  CAS  Google Scholar 

  154. Sciot R, Dal Cin P, Fletcher CD, Hernandez JM, Garcia JL, Samson I, Ramos L, Brys P, Van Damme B, Van den Berghe H. Inflammatory myofibroblastic tumor of bone: report of two cases with evidence of clonal chromosomal changes. Am J Surg Pathol. 1997;21:1166–72.

    Article  PubMed  CAS  Google Scholar 

  155. Lovly CM, Gupta A, Lipson D, Otto G, Brennan T, Chung CT, Borinstein SC, Ross JS, Stephens PJ, Miller VA, Coffin CM. Inflammatory myofibroblastic tumors harbor multiple potentially actionable kinase fusions. Cancer Discov. 2014;4:889–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Lee JC, Li CF, Huang HY, Zhu MJ, Marino-Enriquez A, Lee CT, Ou WB, Hornick JL, Fletcher JA. ALK oncoproteins in atypical inflammatory myofibroblastic tumours: novel RRBP1-ALK fusions in epithelioid inflammatory myofibroblastic sarcoma. J Pathol. 2017;241:316–23.

    Article  PubMed  CAS  Google Scholar 

  157. Meis-Kindblom JM, Kindblom LG. Acral myxoinflammatory fibroblastic sarcoma: a low-grade tumor of the hands and feet. Am J Surg Pathol. 1998;22:911–24.

    Article  PubMed  CAS  Google Scholar 

  158. Sakaki M, Hirokawa M, Wakatsuki S, Sano T, Endo K, Fujii Y, Ikeda T, Kawaguchi S, Hirose T, Hasegawa T. Acral myxoinflammatory fibroblastic sarcoma: a report of five cases and review of the literature. Virchows Arch. 2003;442:25–30.

    Article  PubMed  Google Scholar 

  159. Jurcic V, Zidar A, Montiel MD, Frkovic-Grazio S, Nayler SJ, Cooper K, Suster S, Lamovec J. Myxoinflammatory fibroblastic sarcoma: a tumor not restricted to acral sites. Ann Diagn Pathol. 2002;6:272–80.

    Article  PubMed  Google Scholar 

  160. Weiss VL, Antonescu CR, Alaggio R, Cates JM, Gaskin D, Stefanovici C, Coffin CM. Myxoinflammatory fibroblastic sarcoma in children and adolescents: clinicopathologic aspects of a rare neoplasm. Pediatr Dev Pathol. 2013;16:425–31.

    Article  PubMed  Google Scholar 

  161. Kovarik CL, Barrett T, Auerbach A, Cassarino DS. Acral myxoinflammatory fibroblastic sarcoma: case series and immunohistochemical analysis. J Cutan Pathol. 2008;35:192–6.

    PubMed  Google Scholar 

  162. Hallor KH, Sciot R, Staaf J, Heidenblad M, Rydholm A, Bauer HC, Astrom K, Domanski HA, Meis JM, Kindblom LG, Panagopoulos I, Mandahl N, Mertens F. Two genetic pathways, t(1;10) and amplification of 3p11-12, in myxoinflammatory fibroblastic sarcoma, haemosiderotic fibrolipomatous tumour, and morphologically similar lesions. J Pathol. 2009;217:716–27.

    Article  PubMed  CAS  Google Scholar 

  163. Elco CP, Marino-Enriquez A, Abraham JA, Dal Cin P, Hornick JL. Hybrid myxoinflammatory fibroblastic sarcoma/hemosiderotic fibrolipomatous tumor: report of a case providing further evidence for a pathogenetic link. Am J Surg Pathol. 2010;34:1723–7.

    Article  PubMed  Google Scholar 

  164. Antonescu CR, Zhang L, Nielsen GP, Rosenberg AE, Dal Cin P, Fletcher CD. Consistent t(1;10) with rearrangements of TGFBR3 and MGEA5 in both myxoinflammatory fibroblastic sarcoma and hemosiderotic fibrolipomatous tumor. Genes Chromosomes Cancer. 2011;50:757–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Michal M, Kazakov DV, Hadravsky L, Agaimy A, Svajdler M, Kuroda N, Michal M. Pleomorphic hyalinizing angiectatic tumor revisited: all tumors manifest typical morphologic features of myxoinflammatory fibroblastic sarcoma, further suggesting 2 morphologic variants of a single entity. Ann Diagn Pathol. 2016;20:40–3.

    Article  PubMed  Google Scholar 

  166. Zreik RT, Carter JM, Sukov WR, Ahrens WA, Fritchie KJ, Montgomery EA, Weiss SW, Folpe AL. TGFBR3 and MGEA5 rearrangements are much more common in “hybrid” hemosiderotic fibrolipomatous tumor-myxoinflammatory fibroblastic sarcomas than in classical myxoinflammatory fibroblastic sarcomas: a morphological and fluorescence in situ hybridization study. Hum Pathol. 2016;53:14–24.

    Article  PubMed  CAS  Google Scholar 

  167. Boland JM, Folpe AL. Hemosiderotic fibrolipomatous tumor, pleomorphic hyalinizing angiectatic tumor, and myxoinflammatory fibroblastic sarcoma: related or not? Adv Anat Pathol. 2017;24:268–77.

    Article  PubMed  CAS  Google Scholar 

  168. Kao YC, Ranucci V, Zhang L, Sung YS, Athanasian EA, Swanson D, Dickson BC, Antonescu CR. Recurrent BRAF gene rearrangements in myxoinflammatory fibroblastic sarcomas, but not hemosiderotic fibrolipomatous tumors. Am J Surg Pathol. 2017;41:1456–65.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Hassanein AM, Atkinson SP, Al-Quran SZ, Jain SM, Reith JD. Acral myxoinflammatory fibroblastic sarcomas: are they all low-grade neoplasms? J Cutan Pathol. 2008;35:186–91.

    PubMed  Google Scholar 

  170. Michal M, Kazakov DV, Hadravsky L, Kinkor Z, Kuroda N, Michal M. High-grade myxoinflammatory fibroblastic sarcoma: a report of 23 cases. Ann Diagn Pathol. 2015;19:157–63.

    Article  PubMed  Google Scholar 

  171. Meis-Kindblom JM, Kindblom LG, Enzinger FM. Sclerosing epithelioid fibrosarcoma. A variant of fibrosarcoma simulating carcinoma. Am J Surg Pathol. 1995;19:979–93.

    Article  PubMed  CAS  Google Scholar 

  172. Reid R, Barrett A, Hamblen DL. Sclerosing epithelioid fibrosarcoma. Histopathology. 1996;28:451–5.

    Article  PubMed  CAS  Google Scholar 

  173. Eyden BP, Manson C, Banerjee SS, Roberts IS, Harris M. Sclerosing epithelioid fibrosarcoma: a study of five cases emphasizing diagnostic criteria. Histopathology. 1998;33:354–60.

    Article  PubMed  CAS  Google Scholar 

  174. Antonescu CR, Rosenblum MK, Pereira P, Nascimento AG, Woodruff JM. Sclerosing epithelioid fibrosarcoma: a study of 16 cases and confirmation of a clinicopathologically distinct tumor. Am J Surg Pathol. 2001;25:699–709.

    Article  PubMed  CAS  Google Scholar 

  175. Stockman DL, Ali SM, He J, Ross JS, Meis JM. Sclerosing epithelioid fibrosarcoma presenting as intraabdominal sarcomatosis with a novel EWSR1-CREB3L1 gene fusion. Hum Pathol. 2014;45:2173–8.

    Article  PubMed  CAS  Google Scholar 

  176. Wojcik JB, Bellizzi AM, Dal Cin P, Bredella MA, Fletcher CD, Hornicek FJ, Deshpande V, Hornick JL, Nielsen GP. Primary sclerosing epithelioid fibrosarcoma of bone: analysis of a series. Am J Surg Pathol. 2014;38:1538–44.

    Article  PubMed  Google Scholar 

  177. Donner LR, Clawson K, Dobin SM. Sclerosing epithelioid fibrosarcoma: a cytogenetic, immunohistochemical, and ultrastructural study of an unusual histological variant. Cancer Genet Cytogenet. 2000;119:127–31.

    Article  PubMed  CAS  Google Scholar 

  178. Guillou L, Benhattar J, Gengler C, Gallagher G, Ranchere-Vince D, Collin F, Terrier P, Terrier-Lacombe MJ, Leroux A, Marques B, Aubain Somerhausen Nde S, Keslair F, Pedeutour F, Coindre JM. Translocation-positive low-grade fibromyxoid sarcoma: clinicopathologic and molecular analysis of a series expanding the morphologic spectrum and suggesting potential relationship to sclerosing epithelioid fibrosarcoma: a study from the French Sarcoma Group. Am J Surg Pathol. 2007;31:1387–402.

    Article  PubMed  Google Scholar 

  179. Rekhi B, Folpe AL, Deshmukh M, Jambhekar NA. Sclerosing epithelioid fibrosarcoma – a report of two cases with cytogenetic analysis of FUS gene rearrangement by FISH technique. Pathol Oncol Res. 2011;17:145–8.

    Article  PubMed  Google Scholar 

  180. Yoon N, Kwon JW, Seo SW, Ahn G, Choi YL. Sclerosing epithelioid fibrosarcoma: cytogenetic analysis of FUS rearrangement. Pathol Int. 2012;62:65–8.

    Article  PubMed  Google Scholar 

  181. Doyle LA, Hornick JL. EWSR1 rearrangements in sclerosing epithelioid fibrosarcoma. Am J Surg Pathol. 2013;37:1630–1.

    Article  PubMed  Google Scholar 

  182. Argani P, Lewin JR, Edmonds P, Netto GJ, Prieto-Granada C, Zhang L, Jungbluth AA, Antonescu CR. Primary renal sclerosing epithelioid fibrosarcoma: report of 2 cases with EWSR1-CREB3L1 gene fusion. Am J Surg Pathol. 2015;39:365–73.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Dewaele B, Libbrecht L, Levy G, Brichard B, Vanspauwen V, Sciot R, Debiec-Rychter M. A novel EWS-CREB3L3 gene fusion in a mesenteric sclerosing epithelioid fibrosarcoma. Genes Chromosomes Cancer. 2017;56:695–9.

    Article  PubMed  CAS  Google Scholar 

  184. Gisselsson D, Andreasson P, Meis-Kindblom JM, Kindblom LG, Mertens F, Mandahl N. Amplification of 12q13 and 12q15 sequences in a sclerosing epithelioid fibrosarcoma. Cancer Genet Cytogenet. 1998;107:102–6.

    Article  PubMed  CAS  Google Scholar 

  185. Jiao YF, Nakamura S, Sugai T, Uesugi N, Habano W, Ogata M, Fujioka T. Overexpression of MDM2 in a sclerosing epithelioid fibrosarcoma: genetic, immunohistochemical and ultrastructural study of a case. Pathol Int. 2002;52:135–40.

    Article  PubMed  Google Scholar 

  186. England DM, Hochholzer L, McCarthy MJ. Localized benign and malignant fibrous tumors of the pleura. A clinicopathologic review of 223 cases. Am J Surg Pathol. 1989;13:640–58.

    Article  PubMed  CAS  Google Scholar 

  187. Fletcher CDM, Bridge JA, Lee J-C. Extrapleural solitary fibrous tumor. In: Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F, editors. World Health Organization of tumors of soft tissue and bone. Lyon: IARC Press; 2013. p. 80–2.

    Google Scholar 

  188. Gold JS, Antonescu CR, Hajdu C, Ferrone CR, Hussain M, Lewis JJ, Brennan MF, Coit DG. Clinicopathologic correlates of solitary fibrous tumors. Cancer. 2002;94:1057–68.

    Article  PubMed  Google Scholar 

  189. Mosquera JM, Fletcher CD. Expanding the spectrum of malignant progression in solitary fibrous tumors: a study of 8 cases with a discrete anaplastic component – is this dedifferentiated SFT? Am J Surg Pathol. 2009;33:1314–21.

    Article  PubMed  Google Scholar 

  190. Pasquali S, Gronchi A, Strauss D, Bonvalot S, Jeys L, Stacchiotti S, Hayes A, Honore C, Collini P, Renne SL, Alexander N, Grimer RJ, Callegaro D, Sumathi VP, Gourevitch D, Desai A. Resectable extra-pleural and extra-meningeal solitary fibrous tumours: a multi-centre prognostic study. Eur J Surg Oncol. 2016;42:1064–70.

    Article  PubMed  CAS  Google Scholar 

  191. Vallat-Decouvelaere AV, Dry SM, Fletcher CD. Atypical and malignant solitary fibrous tumors in extrathoracic locations: evidence of their comparability to intra-thoracic tumors. Am J Surg Pathol. 1998;22:1501–11.

    Article  PubMed  CAS  Google Scholar 

  192. van Houdt WJ, Westerveld CM, Vrijenhoek JE, van Gorp J, van Coevorden F, Verhoef C, van Dalen T. Prognosis of solitary fibrous tumors: a multicenter study. Ann Surg Oncol. 2013;20:4090–5.

    Article  PubMed  Google Scholar 

  193. Wilky BA, Montgomery EA, Guzzetta AA, Ahuja N, Meyer CF. Extrathoracic location and “borderline” histology are associated with recurrence of solitary fibrous tumors after surgical resection. Ann Surg Oncol. 2013;20:4080–9.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Chmielecki J, Crago AM, Rosenberg M, O’Connor R, Walker SR, Ambrogio L, Auclair D, McKenna A, Heinrich MC, Frank DA, Meyerson M. Whole-exome sequencing identifies a recurrent NAB2-STAT6 fusion in solitary fibrous tumors. Nat Genet. 2013;45:131–2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Robinson DR, Wu YM, Kalyana-Sundaram S, Cao X, Lonigro RJ, Sung YS, Chen CL, Zhang L, Wang R, Su F, Iyer MK, Roychowdhury S, Siddiqui J, Pienta KJ, Kunju LP, Talpaz M, Mosquera JM, Singer S, Schuetze SM, Antonescu CR, Chinnaiyan AM. Identification of recurrent NAB2-STAT6 gene fusions in solitary fibrous tumor by integrative sequencing. Nat Genet. 2013;45:180–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Akaike K, Kurisaki-Arakawa A, Hara K, Suehara Y, Takagi T, Mitani K, Kaneko K, Yao T, Saito T. Distinct clinicopathological features of NAB2-STAT6 fusion gene variants in solitary fibrous tumor with emphasis on the acquisition of highly malignant potential. Hum Pathol. 2015;46:347–56.

    Article  PubMed  CAS  Google Scholar 

  197. Huang SC, Li CF, Kao YC, Chuang IC, Tai HC, Tsai JW, Yu SC, Huang HY, Lan J, Yen SL, Lin PC, Chen TC. The clinicopathological significance of NAB2-STAT6 gene fusions in 52 cases of intrathoracic solitary fibrous tumors. Cancer Med. 2016;5:159–68.

    Article  PubMed  CAS  Google Scholar 

  198. Doyle LA, Fletcher CD. Predicting behavior of solitary fibrous tumor: are we getting closer to more accurate risk assessment? Ann Surg Oncol. 2013;20:4055–6.

    Article  PubMed  Google Scholar 

  199. Demicco EG, Wagner MJ, Maki RG, Gupta V, Iofin I, Lazar AJ, Wang WL. Risk assessment in solitary fibrous tumors: validation and refinement of a risk stratification model. Mod Pathol. 2017;30:1433–42.

    Article  PubMed  Google Scholar 

  200. Demicco EG, Park MS, Araujo DM, Fox PS, Bassett RL, Pollock RE, Lazar AJ, Wang WL. Solitary fibrous tumor: a clinicopathological study of 110 cases and proposed risk assessment model. Mod Pathol. 2012;25:1298–306.

    Article  PubMed  Google Scholar 

  201. Berlin O, Stener B, Kindblom LG, Angervall L. Leiomyosarcomas of venous origin in the extremities. A correlated clinical, roentgenologic, and morphologic study with diagnostic and surgical implications. Cancer. 1984;54:2147–59.

    Article  PubMed  CAS  Google Scholar 

  202. Harati K, Daigeler A, Lange K, Niggemann H, Stricker I, Steinau HU, Lehnhardt M, Goertz O. Somatic leiomyosarcoma of the soft tissues: a single-institutional analysis of factors predictive of survival in 164 patients. World J Surg. 2017;41:1534–41.

    Article  PubMed  Google Scholar 

  203. Hashimoto H, Daimaru Y, Tsuneyoshi M, Enjoji M. Leiomyosarcoma of the external soft tissues. A clinicopathologic, immunohistochemical, and electron microscopic study. Cancer. 1986;57:2077–88.

    Article  PubMed  CAS  Google Scholar 

  204. Hashimoto H, Tsuneyoshi M, Enjoji M. Malignant smooth muscle tumors of the retroperitoneum and mesentery: a clinicopathologic analysis of 44 cases. J Surg Oncol. 1985;28:177–86.

    Article  PubMed  CAS  Google Scholar 

  205. Laskin WB, Fanburg-Smith JC, Burke AP, Kraszewska E, Fetsch JF, Miettinen M. Leiomyosarcoma of the inferior vena cava: clinicopathologic study of 40 cases. Am J Surg Pathol. 2010;34:873–81.

    Article  PubMed  Google Scholar 

  206. Matsuyama A, Hisaoka M, Hashimoto H. Vascular leiomyosarcoma: clinicopathology and immunohistochemistry with special reference to a unique smooth muscle phenotype. Pathol Int. 2010;60:212–6.

    Article  PubMed  Google Scholar 

  207. Schmitt PG, Davenport H, Stout AP. Leiomyosarcoma of retroperitoneal tissues. Tex State J Med. 1946;41:583.

    PubMed  CAS  Google Scholar 

  208. Varela-Duran J, Oliva H, Rosai J. Vascular leiomyosarcoma: the malignant counterpart of vascular leiomyoma. Cancer. 1979;44:1684–91.

    Article  PubMed  CAS  Google Scholar 

  209. Wile AG, Evans HL, Romsdahl MM. Leiomyosarcoma of soft tissue: a clinicopathologic study. Cancer. 1981;48:1022–32.

    Article  PubMed  CAS  Google Scholar 

  210. Shmookler BM, Lauer DH. Retroperitoneal leiomyosarcoma. A clinicopathologic analysis of 36 cases. Am J Surg Pathol. 1983;7:269–80.

    PubMed  CAS  Google Scholar 

  211. Toledo G, Oliva E. Smooth muscle tumors of the uterus: a practical approach. Arch Pathol Lab Med. 2008;132:595–605.

    Article  PubMed  Google Scholar 

  212. Wang WL, Soslow R, Hensley M, Asad H, Zannoni GF, de Nictolis M, Branton P, Muzikansky A, Oliva E. Histopathologic prognostic factors in stage I leiomyosarcoma of the uterus: a detailed analysis of 27 cases. Am J Surg Pathol. 2011;35:522–9.

    Article  PubMed  Google Scholar 

  213. Iwata J, Fletcher CD. Immunohistochemical detection of cytokeratin and epithelial membrane antigen in leiomyosarcoma: a systematic study of 100 cases. Pathol Int. 2000;50:7–14.

    Article  PubMed  CAS  Google Scholar 

  214. Leitao MM Jr, Hensley ML, Barakat RR, Aghajanian C, Gardner GJ, Jewell EL, O’Cearbhaill R, Soslow RA. Immunohistochemical expression of estrogen and progesterone receptors and outcomes in patients with newly diagnosed uterine leiomyosarcoma. Gynecol Oncol. 2012;124:558–62.

    Article  PubMed  CAS  Google Scholar 

  215. Demicco EG, Boland GM, Brewer Savannah KJ, Lusby K, Young ED, Ingram D, Watson KL, Bailey M, Guo X, Hornick JL, van de Rijn M, Wang WL, Torres KE, Lev D, Lazar AJ. Progressive loss of myogenic differentiation in leiomyosarcoma has prognostic value. Histopathology. 2015;66:627–38.

    Article  PubMed  PubMed Central  Google Scholar 

  216. Yamamoto I, Oshiro Y, Fukuda T, Tsuneyoshi M. Pleomorphic leiomyosarcoma of the soft parts: a reassessment by histology and immunohistochemistry of pleomorphic soft tissue sarcomas. Oncol Rep. 1999;6:533–7.

    PubMed  CAS  Google Scholar 

  217. Oda Y, Miyajima K, Kawaguchi K, Tamiya S, Oshiro Y, Hachitanda Y, Oya M, Iwamoto Y, Tsuneyoshi M. Pleomorphic leiomyosarcoma: clinicopathologic and immunohistochemical study with special emphasis on its distinction from ordinary leiomyosarcoma and malignant fibrous histiocytoma. Am J Surg Pathol. 2001;25:1030–8.

    Article  PubMed  CAS  Google Scholar 

  218. Nicolas MM, Tamboli P, Gomez JA, Czerniak BA. Pleomorphic and dedifferentiated leiomyosarcoma: clinicopathologic and immunohistochemical study of 41 cases. Hum Pathol. 2010;41:663–71.

    Article  PubMed  CAS  Google Scholar 

  219. Kraft S, Fletcher CD. Atypical intradermal smooth muscle neoplasms: clinicopathologic analysis of 84 cases and a reappraisal of cutaneous “leiomyosarcoma”. Am J Surg Pathol. 2011;35:599–607.

    Article  PubMed  Google Scholar 

  220. Ferrari A, Sultan I, Huang TT, Rodriguez-Galindo C, Shehadeh A, Meazza C, Ness KK, Casanova M, Spunt SL. Soft tissue sarcoma across the age spectrum: a population-based study from the Surveillance Epidemiology and End Results database. Pediatr Blood Cancer. 2011;57:943–9.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Raney RB, Walterhouse DO, Meza JL, Andrassy RJ, Breneman JC, Crist WM, Maurer HM, Meyer WH, Parham DM, Anderson JR. Results of the Intergroup Rhabdomyosarcoma Study Group D9602 protocol, using vincristine and dactinomycin with or without cyclophosphamide and radiation therapy, for newly diagnosed patients with low-risk embryonal rhabdomyosarcoma: a report from the Soft Tissue Sarcoma Committee of the Children’s Oncology Group. J Clin Oncol. 2011;29:1312–8.

    Article  PubMed  CAS  Google Scholar 

  222. Stock N, Chibon F, Binh MB, Terrier P, Michels JJ, Valo I, Robin YM, Guillou L, Ranchere-Vince D, Decouvelaere AV, Collin F, Birtwisle-Peyrottes I, Gregoire F, Aurias A, Coindre JM. Adult-type rhabdomyosarcoma: analysis of 57 cases with clinicopathologic description, identification of 3 morphologic patterns and prognosis. Am J Surg Pathol. 2009;33:1850–9.

    Article  PubMed  Google Scholar 

  223. Qualman S, Lynch J, Bridge J, Parham D, Teot L, Meyer W, Pappo A. Prevalence and clinical impact of anaplasia in childhood rhabdomyosarcoma: a report from the Soft Tissue Sarcoma Committee of the Children’s Oncology Group. Cancer. 2008;113:3242–7.

    Article  PubMed  Google Scholar 

  224. Coindre JM, de Mascarel A, Trojani M, de Mascarel I, Pages A. Immunohistochemical study of rhabdomyosarcoma. Unexpected staining with S100 protein and cytokeratin. J Pathol. 1988;155:127–32.

    Article  PubMed  CAS  Google Scholar 

  225. Coffin CM, Rulon J, Smith L, Bruggers C, White FV. Pathologic features of rhabdomyosarcoma before and after treatment: a clinicopathologic and immunohistochemical analysis. Mod Pathol. 1997;10:1175–87.

    PubMed  CAS  Google Scholar 

  226. Smith LM, Anderson JR, Coffin CM. Cytodifferentiation and clinical outcome after chemotherapy and radiation therapy for rhabdomyosarcoma (RMS). Med Pediatr Oncol. 2002;38:398–404.

    Article  PubMed  Google Scholar 

  227. Malempati S, Hawkins DS. Rhabdomyosarcoma: review of the Children’s Oncology Group (COG) Soft-Tissue Sarcoma Committee experience and rationale for current COG studies. Pediatr Blood Cancer. 2012;59:5–10.

    Article  PubMed  PubMed Central  Google Scholar 

  228. Kohsaka S, Shukla N, Ameur N, Ito T, Ng CK, Wang L, Lim D, Marchetti A, Viale A, Pirun M, Socci ND, Qin LX, Sciot R, Bridge J, Singer S, Meyers P, Wexler LH, Barr FG, Dogan S, Fletcher JA, Reis-Filho JS, Ladanyi M. A recurrent neomorphic mutation in MYOD1 defines a clinically aggressive subset of embryonal rhabdomyosarcoma associated with PI3K-AKT pathway mutations. Nat Genet. 2014;46:595–600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Newton WA Jr, Gehan EA, Webber BL, Marsden HB, van Unnik AJ, Hamoudi AB, Tsokos MG, Shimada H, Harms D, Schmidt D, et al. Classification of rhabdomyosarcomas and related sarcomas. Pathologic aspects and proposal for a new classification – an Intergroup Rhabdomyosarcoma Study. Cancer. 1995;76:1073–85.

    Article  PubMed  Google Scholar 

  230. Barr FG. Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene. 2001;20:5736–46.

    Article  PubMed  CAS  Google Scholar 

  231. Harms D. Alveolar rhabdomyosarcoma: a prognostically unfavorable rhabdomyosarcoma type and its necessary distinction from embryonal rhabdomyosarcoma. Curr Top Pathol. 1995;89:273–96.

    PubMed  CAS  Google Scholar 

  232. Raney RB, Anderson JR, Barr FG, Donaldson SS, Pappo AS, Qualman SJ, Wiener ES, Maurer HM, Crist WM. Rhabdomyosarcoma and undifferentiated sarcoma in the first two decades of life: a selective review of intergroup rhabdomyosarcoma study group experience and rationale for Intergroup Rhabdomyosarcoma Study V. J Pediatr Hematol Oncol. 2001;23:215–20.

    Article  PubMed  CAS  Google Scholar 

  233. Missiaglia E, Williamson D, Chisholm J, Wirapati P, Pierron G, Petel F, Concordet JP, Thway K, Oberlin O, Pritchard-Jones K, Delattre O, Delorenzi M, Shipley J. PAX3/FOXO1 fusion gene status is the key prognostic molecular marker in rhabdomyosarcoma and significantly improves current risk stratification. J Clin Oncol. 2012;30:1670–7.

    Article  PubMed  Google Scholar 

  234. Williamson D, Missiaglia E, de Reynies A, Pierron G, Thuille B, Palenzuela G, Thway K, Orbach D, Lae M, Freneaux P, Pritchard-Jones K, Oberlin O, Shipley J, Delattre O. Fusion gene-negative alveolar rhabdomyosarcoma is clinically and molecularly indistinguishable from embryonal rhabdomyosarcoma. J Clin Oncol. 2010;28:2151–8.

    Article  PubMed  Google Scholar 

  235. Furlong MA, Mentzel T, Fanburg-Smith JC. Pleomorphic rhabdomyosarcoma in adults: a clinicopathologic study of 38 cases with emphasis on morphologic variants and recent skeletal muscle-specific markers. Mod Pathol. 2001;14:595–603.

    Article  PubMed  CAS  Google Scholar 

  236. Folpe AL, McKenney JK, Bridge JA, Weiss SW. Sclerosing rhabdomyosarcoma in adults: report of four cases of a hyalinizing, matrix-rich variant of rhabdomyosarcoma that may be confused with osteosarcoma, chondrosarcoma, or angiosarcoma. Am J Surg Pathol. 2002;26:1175–83.

    Article  PubMed  Google Scholar 

  237. Mentzel T. Spindle cell rhabdomyosarcoma in adults: a new entity in the spectrum of malignant mesenchymal tumors of soft tissues. Pathologe. 2010;31:91–6.

    Article  PubMed  CAS  Google Scholar 

  238. Mentzel T, Katenkamp D. Sclerosing, pseudovascular rhabdomyosarcoma in adults. Clinicopathological and immunohistochemical analysis of three cases. Virchows Arch. 2000;436:305–11.

    Article  PubMed  CAS  Google Scholar 

  239. Mentzel T, Kuhnen C. Spindle cell rhabdomyosarcoma in adults: clinicopathological and immunohistochemical analysis of seven new cases. Virchows Arch. 2006;449:554–60.

    Article  PubMed  Google Scholar 

  240. Yasui N, Yoshida A, Kawamoto H, Yonemori K, Hosono A, Kawai A. Clinicopathologic analysis of spindle cell/sclerosing rhabdomyosarcoma. Pediatr Blood Cancer. 2015;62:1011–6.

    Article  PubMed  CAS  Google Scholar 

  241. Rekhi B, Upadhyay P, Ramteke MP, Dutt A. MYOD1 (L122R) mutations are associated with spindle cell and sclerosing rhabdomyosarcomas with aggressive clinical outcomes. Mod Pathol. 2016;29:1532–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Szuhai K, de Jong D, Leung WY, Fletcher CD, Hogendoorn PC. Transactivating mutation of the MYOD1 gene is a frequent event in adult spindle cell rhabdomyosarcoma. J Pathol. 2014;232:300–7.

    Article  PubMed  CAS  Google Scholar 

  243. Rubin BP, Hasserjian RP, Singer S, Janecka I, Fletcher JA, Fletcher CD. Spindle cell rhabdomyosarcoma (so-called) in adults: report of two cases with emphasis on differential diagnosis. Am J Surg Pathol. 1998;22:459–64.

    Article  PubMed  CAS  Google Scholar 

  244. Skuse GR, Kosciolek BA, Rowley PT. The neurofibroma in von Recklinghausen neurofibromatosis has a unicellular origin. Am J Hum Genet. 1991;49:600–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  245. Fletcher CD. Peripheral nerve sheath tumors. A clinicopathologic update. Pathol Annu. 1990;25 Pt 1:53–74.

    PubMed  CAS  Google Scholar 

  246. McCarron KF, Goldblum JR. Plexiform neurofibroma with and without associated malignant peripheral nerve sheath tumor: a clinicopathologic and immunohistochemical analysis of 54 cases. Mod Pathol. 1998;11:612–7.

    PubMed  CAS  Google Scholar 

  247. Miettinen MM, Antonescu CR, Fletcher CDM, Kim A, Lazar AJ, Quezado MM, Reilly KM, Stemmer-Rachamimov A, Stewart DR, Viskochil D, Widemann B, Perry A. Histopathologic evaluation of atypical neurofibromatous tumors and their transformation into malignant peripheral nerve sheath tumor in patients with neurofibromatosis 1-a consensus overview. Hum Pathol. 2017;67:1–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Schaefer IM, Fletcher CD, Hornick JL. Loss of H3K27 trimethylation distinguishes malignant peripheral nerve sheath tumors from histologic mimics. Mod Pathol. 2016;29:4–13.

    Article  PubMed  CAS  Google Scholar 

  249. Cleven AH, Sannaa GA, Briaire-de Bruijn I, Ingram DR, van de Rijn M, Rubin BP, de Vries MW, Watson KL, Torres KE, Wang WL, van Duinen SG, Hogendoorn PC, Lazar AJ, Bovee JV. Loss of H3K27 tri-methylation is a diagnostic marker for malignant peripheral nerve sheath tumors and an indicator for an inferior survival. Mod Pathol. 2016;29:582–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. Karamchandani JR, Nielsen TO, van de Rijn M, West RB. Sox10 and S100 in the diagnosis of soft-tissue neoplasms. Appl Immunohistochem Mol Morphol. 2012;20:445–50.

    Article  PubMed  CAS  Google Scholar 

  251. Nonaka D, Chiriboga L, Rubin BP. Sox10: a pan-schwannian and melanocytic marker. Am J Surg Pathol. 2008;32:1291–8.

    Article  PubMed  Google Scholar 

  252. Evans HL. Sporadic superficial diffuse neurofibromas with repeated local recurrence over many years and a tendency toward malignant change: a report of 3 cases. Am J Surg Pathol. 2013;37:987–94.

    Article  PubMed  Google Scholar 

  253. Skuse GR, Kosciolek BA, Rowley PT. Molecular genetic analysis of tumors in von Recklinghausen neurofibromatosis: loss of heterozygosity for chromosome 17. Genes Chromosomes Cancer. 1989;1:36–41.

    Article  PubMed  CAS  Google Scholar 

  254. Metheny LJ, Cappione AJ, Skuse GR. Genetic and epigenetic mechanisms in the pathogenesis of neurofibromatosis type I. J Neuropathol Exp Neurol. 1995;54:753–60.

    Article  PubMed  CAS  Google Scholar 

  255. Eldridge R. Central neurofibromatosis with bilateral acoustic neuroma. Adv Neurol. 1981;29:57–65.

    PubMed  CAS  Google Scholar 

  256. Kanter WR, Eldridge R, Fabricant R, Allen JC, Koerber T. Central neurofibromatosis with bilateral acoustic neuroma: genetic, clinical and biochemical distinctions from peripheral neurofibromatosis. Neurology. 1980;30:851–9.

    Article  PubMed  CAS  Google Scholar 

  257. Parry DM, Eldridge R, Kaiser-Kupfer MI, Bouzas EA, Pikus A, Patronas N. Neurofibromatosis 2 (NF2): clinical characteristics of 63 affected individuals and clinical evidence for heterogeneity. Am J Med Genet. 1994;52:450–61.

    Article  PubMed  CAS  Google Scholar 

  258. Parry DM, Kaiser-Kupfer MI, Sherman JL, Pikus A, Eldridge R. Neurofibromatosis 2 (bilateral acoustic or central neurofibromatosis), a treatable cause of deafness. Recommendations for screening and follow-up based on study of one large kindred. Ann N Y Acad Sci. 1991;630:305–7.

    Article  PubMed  CAS  Google Scholar 

  259. Young DF, McNew J, Eldridge R. Hereditary acoustic neuroma – clinical and genetic aspects in a large kindred. Trans Am Neurol Assoc. 1969;94:353–4.

    PubMed  CAS  Google Scholar 

  260. Caltabiano R, Magro G, Polizzi A, Pratico AD, Ortensi A, D’Orazi V, Panunzi A, Milone P, Maiolino L, Nicita F, Capone GL, Sestini R, Paganini I, Muglia M, Cavallaro S, Lanzafame S, Papi L, Ruggieri M. A mosaic pattern of INI1/SMARCB1 protein expression distinguishes Schwannomatosis and NF2-associated peripheral schwannomas from solitary peripheral schwannomas and NF2-associated vestibular schwannomas. Childs Nerv Syst. 2017;33:933–40.

    Article  PubMed  Google Scholar 

  261. Patil S, Perry A, Maccollin M, Dong S, Betensky RA, Yeh TH, Gutmann DH, Stemmer-Rachamimov AO. Immunohistochemical analysis supports a role for INI1/SMARCB1 in hereditary forms of schwannomas, but not in solitary, sporadic schwannomas. Brain Pathol. 2008;18:517–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  262. Jo VY, Fletcher CDM. SMARCB1/INI1 Loss in Epithelioid Schwannoma: A Clinicopathologic and Immunohistochemical Study of 65 Cases. Am J Surg Pathol. 2017;41:1013–22.

    Article  PubMed  Google Scholar 

  263. Hart J, Gardner JM, Edgar M, Weiss SW. Epithelioid schwannomas: an analysis of 58 cases including atypical variants. Am J Surg Pathol. 2016;40:704–13.

    Article  PubMed  Google Scholar 

  264. Liegl B, Bennett MW, Fletcher CD. Microcystic/reticular schwannoma: a distinct variant with predilection for visceral locations. Am J Surg Pathol. 2008;32:1080–7.

    Article  PubMed  Google Scholar 

  265. Hornick JL, Fletcher CD. Soft tissue perineurioma: clinicopathologic analysis of 81 cases including those with atypical histologic features. Am J Surg Pathol. 2005;29:845–58.

    Article  PubMed  Google Scholar 

  266. Fetsch JF, Miettinen M. Sclerosing perineurioma: a clinicopathologic study of 19 cases of a distinctive soft tissue lesion with a predilection for the fingers and palms of young adults. Am J Surg Pathol. 1997;21:1433–42.

    Article  PubMed  CAS  Google Scholar 

  267. Yamaguchi U, Hasegawa T, Hirose T, Fugo K, Mitsuhashi T, Shimizu M, Kawai A, Ito Y, Chuman H, Beppu Y. Sclerosing perineurioma: a clinicopathological study of five cases and diagnostic utility of immunohistochemical staining for GLUT1. Virchows Arch. 2003;443:159–63.

    Article  PubMed  Google Scholar 

  268. Michal M, Kazakov DV, Agaimy A, Hosova M, Michalova K, Grossmann P, Steiner P, Skenderi F, Vranic S, Michal M. Whorling cellular perineurioma: a previously undescribed variant closely mimicking monophasic fibrous synovial sarcoma. Ann Diagn Pathol. 2017;27:74–8.

    Article  PubMed  Google Scholar 

  269. Folpe AL, Billings SD, McKenney JK, Walsh SV, Nusrat A, Weiss SW. Expression of claudin-1, a recently described tight junction-associated protein, distinguishes soft tissue perineurioma from potential mimics. Am J Surg Pathol. 2002;26:1620–6.

    Article  PubMed  Google Scholar 

  270. Michal M, Kazakov DV, Michal M. Hybrid peripheral nerve sheath tumors: a review. Cesk Patol. 2017;53:81–8.

    PubMed  Google Scholar 

  271. Hornick JL, Bundock EA, Fletcher CD. Hybrid schwannoma/perineurioma: clinicopathologic analysis of 42 distinctive benign nerve sheath tumors. Am J Surg Pathol. 2009;33:1554–61.

    Article  PubMed  Google Scholar 

  272. Feany MB, Anthony DC, Fletcher CD. Nerve sheath tumours with hybrid features of neurofibroma and schwannoma: a conceptual challenge. Histopathology. 1998;32:405–10.

    Article  PubMed  CAS  Google Scholar 

  273. Kazakov DV, Pitha J, Sima R, Vanecek T, Shelekhova K, Mukensnabl P, Michal M. Hybrid peripheral nerve sheath tumors: schwannoma-perineurioma and neurofibroma-perineurioma. A report of three cases in extradigital locations. Ann Diagn Pathol. 2005;9:16–23.

    Article  PubMed  Google Scholar 

  274. Inatomi Y, Ito T, Nagae K, Yamada Y, Kiyomatsu M, Nakano-Nakamura M, Uchi H, Oda Y, Furue M. Hybrid perineurioma-neurofibroma in a patient with neurofibromatosis type 1, clinically mimicking malignant peripheral nerve sheath tumor. Eur J Dermatol. 2014;24:412–3.

    Article  PubMed  Google Scholar 

  275. Adeniran A, Al-Ahmadie H, Mahoney MC, TM R-S. Granular cell tumor of the breast: a series of 17 cases and review of the literature. Breast J. 2004;10:528–31.

    Article  PubMed  Google Scholar 

  276. Lack EE, Worsham GF, Callihan MD, Crawford BE, Klappenbach S, Rowden G, Chun B. Granular cell tumor: a clinicopathologic study of 110 patients. J Surg Oncol. 1980;13:301–16.

    Article  PubMed  CAS  Google Scholar 

  277. Lack EE, Worsham GF, Callihan MD, Crawford BE, Vawter GF. Gingival granula cell tumors of the newborn (congenital “epulis”): a clinical and pathologic study of 21 patients. Am J Surg Pathol. 1981;5:37–46.

    Article  PubMed  CAS  Google Scholar 

  278. Singhi AD, Montgomery EA. Colorectal granular cell tumor: a clinicopathologic study of 26 cases. Am J Surg Pathol. 2010;34:1186–92.

    Article  PubMed  Google Scholar 

  279. Filie AC, Lage JM, Azumi N. Immunoreactivity of S100 protein, alpha-1-antitrypsin, and CD68 in adult and congenital granular cell tumors. Mod Pathol. 1996;9:888–92.

    PubMed  CAS  Google Scholar 

  280. Mazur MT, Shultz JJ, Myers JL. Granular cell tumor. Immunohistochemical analysis of 21 benign tumors and one malignant tumor. Arch Pathol Lab Med. 1990;114:692–6.

    PubMed  CAS  Google Scholar 

  281. Fanburg-Smith JC, Meis-Kindblom JM, Fante R, Kindblom LG. Malignant granular cell tumor of soft tissue: diagnostic criteria and clinicopathologic correlation. Am J Surg Pathol. 1998;22:779–94.

    Article  PubMed  CAS  Google Scholar 

  282. Gleason BC, Nascimento AF. HMB-45 and Melan-A are useful in the differential diagnosis between granular cell tumor and malignant melanoma. Am J Dermatopathol. 2007;29:22–7.

    Article  PubMed  Google Scholar 

  283. Schoolmeester JK, Lastra RR. Granular cell tumors overexpress TFE3 without corollary gene rearrangement. Hum Pathol. 2015;46:1242–3.

    Article  PubMed  CAS  Google Scholar 

  284. Ducatman BS, Scheithauer BW, Piepgras DG, Reiman HM, Ilstrup DM. Malignant peripheral nerve sheath tumors. A clinicopathologic study of 120 cases. Cancer. 1986;57:2006–21.

    Article  PubMed  CAS  Google Scholar 

  285. Fletcher CD. Malignant peripheral nerve sheath tumours. Curr Top Pathol. 1995;89:333–54.

    PubMed  CAS  Google Scholar 

  286. Schaefer IM, Fletcher CD. Malignant peripheral nerve sheath tumor (MPNST) arising in diffuse-type neurofibroma: clinicopathologic characterization in a series of 9 cases. Am J Surg Pathol. 2015;39:1234–41.

    Article  PubMed  Google Scholar 

  287. Stucky CC, Johnson KN, Gray RJ, Pockaj BA, Ocal IT, Rose PS, Wasif N. Malignant peripheral nerve sheath tumors (MPNST): the Mayo Clinic experience. Ann Surg Oncol. 2012;19:878–85.

    Article  PubMed  Google Scholar 

  288. Tucker T, Wolkenstein P, Revuz J, Zeller J, Friedman JM. Association between benign and malignant peripheral nerve sheath tumors in NF1. Neurology. 2005;65:205–11.

    Article  PubMed  CAS  Google Scholar 

  289. Vauthey JN, Woodruff JM, Brennan MF. Extremity malignant peripheral nerve sheath tumors (neurogenic sarcomas): a 10-year experience. Ann Surg Oncol. 1995;2:126–31.

    Article  PubMed  CAS  Google Scholar 

  290. Carter JM, O’Hara C, Dundas G, Gilchrist D, Collins MS, Eaton K, Judkins AR, Biegel JA, Folpe AL. Epithelioid malignant peripheral nerve sheath tumor arising in a schwannoma, in a patient with “neuroblastoma-like” schwannomatosis and a novel germline SMARCB1 mutation. Am J Surg Pathol. 2012;36:154–60.

    Article  PubMed  PubMed Central  Google Scholar 

  291. Ducatman BS, Scheithauer BW. Malignant peripheral nerve sheath tumors with divergent differentiation. Cancer. 1984;54:1049–57.

    Article  PubMed  CAS  Google Scholar 

  292. Kamran SC, Howard SA, Shinagare AB, Krajewski KM, Jagannathan JP, Hornick JL, Ramaiya NH. Malignant peripheral nerve sheath tumors: prognostic impact of rhabdomyoblastic differentiation (malignant triton tumors), neurofibromatosis 1 status and location. Eur J Surg Oncol. 2013;39:46–52.

    Article  PubMed  CAS  Google Scholar 

  293. Lee W, Teckie S, Wiesner T, Ran L, Prieto Granada CN, Lin M, Zhu S, Cao Z, Liang Y, Sboner A, Tap WD, Fletcher JA, Huberman KH, Qin LX, Viale A, Singer S, Zheng D, Berger MF, Chen Y, Antonescu CR, Chi P. PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat Genet. 2014;46:1227–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  294. Rohrich M, Koelsche C, Schrimpf D, Capper D, Sahm F, Kratz A, Reuss J, Hovestadt V, Jones DT, Bewerunge-Hudler M, Becker A, Weis J, Mawrin C, Mittelbronn M, Perry A, Mautner VF, Mechtersheimer G, Hartmann C, Okuducu AF, Arp M, Seiz-Rosenhagen M, Hanggi D, Heim S, Paulus W, Schittenhelm J, Ahmadi R, Herold-Mende C, Unterberg A, Pfister SM, von Deimling A, Reuss DE. Methylation-based classification of benign and malignant peripheral nerve sheath tumors. Acta Neuropathol. 2016;131:877–87.

    Article  PubMed  CAS  Google Scholar 

  295. Asano N, Yoshida A, Ichikawa H, Mori T, Nakamura M, Kawai A, Hiraoka N. Immunohistochemistry for trimethylated H3K27 in the diagnosis of malignant peripheral nerve sheath tumours. Histopathology. 2017;70:385–93.

    Article  PubMed  Google Scholar 

  296. Le Guellec S, Macagno N, Velasco V, Lamant L, Lae M, Filleron T, Malissen N, Cassagnau E, Terrier P, Chevreau C, Ranchere-Vince D, Coindre JM. Loss of H3K27 trimethylation is not suitable for distinguishing malignant peripheral nerve sheath tumor from melanoma: a study of 387 cases including mimicking lesions. Mod Pathol. 2017;30:1677–87.

    Article  PubMed  CAS  Google Scholar 

  297. Agaimy A, Ben-Izhak O, Lorey T, Scharpf M, Rubin BP. Angiosarcoma arising in association with vascular Dacron grafts and orthopedic joint prostheses: clinicopathologic, immunohistochemical, and molecular study. Ann Diagn Pathol. 2016;21:21–8.

    Article  PubMed  Google Scholar 

  298. Brenn T, Fletcher CD. Radiation-associated cutaneous atypical vascular lesions and angiosarcoma: clinicopathologic analysis of 42 cases. Am J Surg Pathol. 2005;29:983–96.

    Article  PubMed  Google Scholar 

  299. Deyrup AT, Miettinen M, North PE, Khoury JD, Tighiouart M, Spunt SL, Parham D, Weiss SW, Shehata BM. Angiosarcomas arising in the viscera and soft tissue of children and young adults: a clinicopathologic study of 15 cases. Am J Surg Pathol. 2009;33:264–9.

    Article  PubMed  Google Scholar 

  300. Deyrup AT, Miettinen M, North PE, Khoury JD, Tighiouart M, Spunt SL, Parham DM, Shehata BM, Weiss SW. Pediatric cutaneous angiosarcomas: a clinicopathologic study of 10 cases. Am J Surg Pathol. 2011;35:70–5.

    Article  PubMed  Google Scholar 

  301. Falk S, Krishnan J, Meis JM. Primary angiosarcoma of the spleen. A clinicopathologic study of 40 cases. Am J Surg Pathol. 1993;17:959–70.

    Article  PubMed  CAS  Google Scholar 

  302. Fayette J, Martin E, Piperno-Neumann S, Le Cesne A, Robert C, Bonvalot S, Ranchere D, Pouillart P, Coindre JM, Blay JY. Angiosarcomas, a heterogeneous group of sarcomas with specific behavior depending on primary site: a retrospective study of 161 cases. Ann Oncol. 2007;18:2030–6.

    Article  PubMed  CAS  Google Scholar 

  303. Meis-Kindblom JM, Kindblom LG. Angiosarcoma of soft tissue: a study of 80 cases. Am J Surg Pathol. 1998;22:683–97.

    Article  PubMed  CAS  Google Scholar 

  304. Mentzel T, Schildhaus HU, Palmedo G, Buttner R, Kutzner H. Postradiation cutaneous angiosarcoma after treatment of breast carcinoma is characterized by MYC amplification in contrast to atypical vascular lesions after radiotherapy and control cases: clinicopathological, immunohistochemical and molecular analysis of 66 cases. Mod Pathol. 2012;25:75–85.

    Article  PubMed  CAS  Google Scholar 

  305. Miettinen M, Lehto VP, Virtanen I. Postmastectomy angiosarcoma (Stewart-Treves syndrome). Light-microscopic, immunohistological, and ultrastructural characteristics of two cases. Am J Surg Pathol. 1983;7:329–39.

    Article  PubMed  CAS  Google Scholar 

  306. Neuhauser TS, Derringer GA, Thompson LD, Fanburg-Smith JC, Miettinen M, Saaristo A, Abbondanzo SL. Splenic angiosarcoma: a clinicopathologic and immunophenotypic study of 28 cases. Mod Pathol. 2000;13:978–87.

    Article  PubMed  CAS  Google Scholar 

  307. Rossi S, Fletcher CD. Angiosarcoma arising in hemangioma/vascular malformation: report of four cases and review of the literature. Am J Surg Pathol. 2002;26:1319–29.

    Article  PubMed  Google Scholar 

  308. Wynn GR, Bentley PG, Liebmann R, Fletcher CD. Mammary parenchymal angiosarcoma after breast-conserving treatment for invasive high-grade ductal carcinoma. Breast J. 2004;10:558–9.

    Article  PubMed  Google Scholar 

  309. Wood A, Mentzel T, van Gorp J, Flucke U, Huschka U, Schneider J, Bacchi CE, Calonje E, Brenn T. The spectrum of rare morphological variants of cutaneous epithelioid angiosarcoma. Histopathology. 2015;66:856–63.

    Article  PubMed  Google Scholar 

  310. McKay KM, Doyle LA, Lazar AJ, Hornick JL. Expression of ERG, an Ets family transcription factor, distinguishes cutaneous angiosarcoma from histological mimics. Histopathology. 2012;61:989–91.

    Article  PubMed  Google Scholar 

  311. Sullivan HC, Edgar MA, Cohen C, Kovach CK, HooKim K, Reid MD. The utility of ERG, CD31 and CD34 in the cytological diagnosis of angiosarcoma: an analysis of 25 cases. J Clin Pathol. 2015;68:44–50.

    Article  PubMed  Google Scholar 

  312. Fletcher CD, Beham A, Bekir S, Clarke AM, Marley NJ. Epithelioid angiosarcoma of deep soft tissue: a distinctive tumor readily mistaken for an epithelial neoplasm. Am J Surg Pathol. 1991;15:915–24.

    Article  PubMed  CAS  Google Scholar 

  313. Tessier Cloutier B, Costa FD, Tazelaar HD, Folpe AL. Aberrant expression of neuroendocrine markers in angiosarcoma: a potential diagnostic pitfall. Hum Pathol. 2014;45:1618–24.

    Article  PubMed  CAS  Google Scholar 

  314. Behjati S, Tarpey PS, Sheldon H, Martincorena I, Van Loo P, Gundem G, Wedge DC, Ramakrishna M, Cooke SL, Pillay N, Vollan HKM, Papaemmanuil E, Koss H, Bunney TD, Hardy C, Joseph OR, Martin S, Mudie L, Butler A, Teague JW, Patil M, Steers G, Cao Y, Gumbs C, Ingram D, Lazar AJ, Little L, Mahadeshwar H, Protopopov A, Al Sannaa GA, Seth S, Song X, Tang J, Zhang J, Ravi V, Torres KE, Khatri B, Halai D, Roxanis I, Baumhoer D, Tirabosco R, Amary MF, Boshoff C, McDermott U, Katan M, Stratton MR, Futreal PA, Flanagan AM, Harris A, Campbell PJ. Recurrent PTPRB and PLCG1 mutations in angiosarcoma. Nat Genet. 2014;46:376–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  315. Huang SC, Zhang L, Sung YS, Chen CL, Kao YC, Agaram NP, Singer S, Tap WD, D’Angelo S, Antonescu CR. Recurrent CIC gene abnormalities in angiosarcomas: a molecular study of 120 cases with concurrent investigation of PLCG1, KDR, MYC, and FLT4 gene alterations. Am J Surg Pathol. 2016;40:645–55.

    Article  PubMed  PubMed Central  Google Scholar 

  316. Cornejo KM, Deng A, Wu H, Cosar EF, Khan A, St Cyr M, Tomaszewicz K, Dresser K, O’Donnell P, Hutchinson L. The utility of MYC and FLT4 in the diagnosis and treatment of postradiation atypical vascular lesion and angiosarcoma of the breast. Hum Pathol. 2015;46:868–75.

    Article  PubMed  CAS  Google Scholar 

  317. Guo T, Zhang L, Chang NE, Singer S, Maki RG, Antonescu CR. Consistent MYC and FLT4 gene amplification in radiation-induced angiosarcoma but not in other radiation-associated atypical vascular lesions. Genes Chromosomes Cancer. 2011;50:25–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  318. Deyrup AT, Tighiouart M, Montag AG, Weiss SW. Epithelioid hemangioendothelioma of soft tissue: a proposal for risk stratification based on 49 cases. Am J Surg Pathol. 2008;32:924–7.

    Article  PubMed  Google Scholar 

  319. Flucke U, Vogels RJ, de Saint Aubain Somerhausen N, Creytens DH, Riedl RG, van Gorp JM, Milne AN, Huysentruyt CJ, Verdijk MA, van Asseldonk MM, Suurmeijer AJ, Bras J, Palmedo G, Groenen PJ, Mentzel T. Epithelioid Hemangioendothelioma: clinicopathologic, immunhistochemical, and molecular genetic analysis of 39 cases. Diagn Pathol. 2014;9:131.

    Article  PubMed  PubMed Central  Google Scholar 

  320. Fukayama M, Nihei Z, Takizawa T, Kawaguchi K, Harada H, Koike M. Malignant epithelioid hemangioendothelioma of the liver, spreading through the hepatic veins. Virchows Arch A Pathol Anat Histopathol. 1984;404:275–87.

    Article  PubMed  CAS  Google Scholar 

  321. Hettmer S, Andrieux G, Hochrein J, Kurz P, Rossler J, Lassmann S, Werner M, von Bubnoff N, Peters C, Koscielniak E, Sparber-Sauer M, Niemeyer C, Mentzel T, Busch H, Boerries M. Epithelioid hemangioendotheliomas of the liver and lung in children and adolescents. Pediatr Blood Cancer. 2017;64:1–8.

    Google Scholar 

  322. Kutok JL, Fletcher CD. Splenic vascular tumors. Semin Diagn Pathol. 2003;20:128–39.

    Article  PubMed  Google Scholar 

  323. Mentzel T, Beham A, Calonje E, Katenkamp D, Fletcher CD. Epithelioid hemangioendothelioma of skin and soft tissues: clinicopathologic and immunohistochemical study of 30 cases. Am J Surg Pathol. 1997;21:363–74.

    Article  PubMed  CAS  Google Scholar 

  324. Weiss SW, Enzinger FM. Epithelioid hemangioendothelioma: a vascular tumor often mistaken for a carcinoma. Cancer. 1982;50:970–81.

    Article  PubMed  CAS  Google Scholar 

  325. Weiss SW, Ishak KG, Dail DH, Sweet DE, Enzinger FM. Epithelioid hemangioendothelioma and related lesions. Semin Diagn Pathol. 1986;3:259–87.

    PubMed  CAS  Google Scholar 

  326. Miettinen M, Fetsch JF. Distribution of keratins in normal endothelial cells and a spectrum of vascular tumors: implications in tumor diagnosis. Hum Pathol. 2000;31:1062–7.

    Article  PubMed  CAS  Google Scholar 

  327. Errani C, Zhang L, Sung YS, Hajdu M, Singer S, Maki RG, Healey JH, Antonescu CR. A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites. Genes Chromosomes Cancer. 2011;50:644–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  328. Tanas MR, Sboner A, Oliveira AM, Erickson-Johnson MR, Hespelt J, Hanwright PJ, Flanagan J, Luo Y, Fenwick K, Natrajan R, Mitsopoulos C, Zvelebil M, Hoch BL, Weiss SW, Debiec-Rychter M, Sciot R, West RB, Lazar AJ, Ashworth A, Reis-Filho JS, Lord CJ, Gerstein MB, Rubin MA, Rubin BP. Identification of a disease-defining gene fusion in epithelioid hemangioendothelioma. Sci Transl Med. 2011;3:98ra82.

    Article  PubMed  CAS  Google Scholar 

  329. Patel NR, Salim AA, Sayeed H, Sarabia SF, Hollingsworth F, Warren M, Jakacky J, Tanas M, Oliveira AM, Rubin BP, Lazar AJ, Lopez-Terrada D, Wang WL. Molecular characterization of epithelioid haemangioendotheliomas identifies novel WWTR1-CAMTA1 fusion variants. Histopathology. 2015;67:699–708.

    Article  PubMed  Google Scholar 

  330. Doyle LA, Fletcher CD, Hornick JL. Nuclear expression of CAMTA1 distinguishes epithelioid hemangioendothelioma from histologic mimics. Am J Surg Pathol. 2016;40:94–102.

    Article  PubMed  Google Scholar 

  331. Yusifli Z, Kosemehmetoglu K. CAMTA1 immunostaining is not useful in differentiating epithelioid hemangioendothelioma from its potential mimickers. Turk Patoloji Derg. 2014;30:159–65.

    PubMed  Google Scholar 

  332. Shibuya R, Matsuyama A, Shiba E, Harada H, Yabuki K, Hisaoka M. CAMTA1 is a useful immunohistochemical marker for diagnosing epithelioid haemangioendothelioma. Histopathology. 2015;67:827–35.

    Article  PubMed  Google Scholar 

  333. Wiwanitkit V. CAMTA1 immunostaining is not useful in differentiating epithelioid hemangioendothelioma from its potential mimickers. Turk Patoloji Derg. 2015;31:80.

    PubMed  Google Scholar 

  334. Antonescu CR, Le Loarer F, Mosquera JM, Sboner A, Zhang L, Chen CL, Chen HW, Pathan N, Krausz T, Dickson BC, Weinreb I, Rubin MA, Hameed M, Fletcher CD. Novel YAP1-TFE3 fusion defines a distinct subset of epithelioid hemangioendothelioma. Genes Chromosomes Cancer. 2013;52:775–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  335. Billings SD, Folpe AL, Weiss SW. Epithelioid Sarcoma-like hemangioendothelioma (pseudomyogenic hemangioendothelioma). Am J Surg Pathol. 2011;35:1088; author reply 1088–9.

    Article  PubMed  Google Scholar 

  336. Hornick JL, Fletcher CD. Pseudomyogenic hemangioendothelioma: a distinctive, often multicentric tumor with indolent behavior. Am J Surg Pathol. 2011;35:190–201.

    Article  PubMed  Google Scholar 

  337. Billings SD, Folpe AL, Weiss SW. Epithelioid sarcoma-like hemangioendothelioma. Am J Surg Pathol. 2003;27:48–57.

    Article  PubMed  Google Scholar 

  338. Pradhan D, Schoedel K, McGough RL, Ranganathan S, Rao UNM. Pseudomyogenic hemangioendothelioma of skin, bone and soft tissue – a clinicopathological, immunohistochemical and fluorescence in situ hybridization study. Hum Pathol. 2018;71:126–34.

    Article  PubMed  Google Scholar 

  339. Inyang A, Mertens F, Puls F, Sumathi V, Inwards C, Folpe A, Lee CH, Zhang Y, Symmans P, Rubin B, Nielsen GP, Nguyen VH, Rosenberg AE. Primary pseudomyogenic hemangioendothelioma of bone. Am J Surg Pathol. 2016;40:587–98.

    Article  PubMed  Google Scholar 

  340. Righi A, Gambarotti M, Picci P, Dei Tos AP, Vanel D. Primary pseudomyogenic haemangioendothelioma of bone: report of two cases. Skelet Radiol. 2015;44:727–31.

    Article  Google Scholar 

  341. Hung YP, Fletcher CD, Hornick JL. FOSB is a useful diagnostic marker for pseudomyogenic hemangioendothelioma. Am J Surg Pathol. 2017;41:596–606.

    Article  PubMed  Google Scholar 

  342. Sugita S, Hirano H, Kikuchi N, Kubo T, Asanuma H, Aoyama T, Emori M, Hasegawa T. Diagnostic utility of FOSB immunohistochemistry in pseudomyogenic hemangioendothelioma and its histological mimics. Diagn Pathol. 2016;11:75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  343. Walther C, Tayebwa J, Lilljebjorn H, Magnusson L, Nilsson J, von Steyern FV, Ora I, Domanski HA, Fioretos T, Nord KH, Fletcher CD, Mertens F. A novel SERPINE1-FOSB fusion gene results in transcriptional up-regulation of FOSB in pseudomyogenic haemangioendothelioma. J Pathol. 2014;232:534–40.

    Article  PubMed  CAS  Google Scholar 

  344. Enzinger FM. Intramuscular myxoma; a review and follow-up study of 34 cases. Am J Clin Pathol. 1965;43:104–13.

    Article  PubMed  CAS  Google Scholar 

  345. Hashimoto H, Tsuneyoshi M, Daimaru Y, Enjoji M, Shinohara N. Intramuscular myxoma. A clinicopathologic, immunohistochemical, and electron microscopic study. Cancer. 1986;58:740–7.

    Article  PubMed  CAS  Google Scholar 

  346. Kindblom LG, Stener B, Angervall L. Intramuscular myxoma. Cancer. 1974;34:1737–44.

    Article  PubMed  CAS  Google Scholar 

  347. Miettinen M, Hockerstedt K, Reitamo J, Totterman S. Intramuscular myxoma – a clinicopathological study of twenty-three cases. Am J Clin Pathol. 1985;84:265–72.

    Article  PubMed  CAS  Google Scholar 

  348. Nielsen GP, O’Connell JX, Rosenberg AE. Intramuscular myxoma: a clinicopathologic study of 51 cases with emphasis on hypercellular and hypervascular variants. Am J Surg Pathol. 1998;22:1222–7.

    Article  PubMed  CAS  Google Scholar 

  349. Okamoto S, Hisaoka M, Ushijima M, Nakahara S, Toyoshima S, Hashimoto H. Activating Gs(alpha) mutation in intramuscular myxomas with and without fibrous dysplasia of bone. Virchows Arch. 2000;437:133–7.

    Article  PubMed  CAS  Google Scholar 

  350. Walther I, Walther BM, Chen Y, Petersen I. Analysis of GNAS1 mutations in myxoid soft tissue and bone tumors. Pathol Res Pract. 2014;210:1–4.

    Article  PubMed  CAS  Google Scholar 

  351. Wirth WA, Leavitt D, Enzinger FM. Multiple intramuscular myxomas. Another extraskeletal manifestation of fibrous dysplasia. Cancer. 1971;27:1167–73.

    Article  PubMed  CAS  Google Scholar 

  352. Folpe AL, Weiss SW. Pleomorphic hyalinizing angiectatic tumor: analysis of 41 cases supporting evolution from a distinctive precursor lesion. Am J Surg Pathol. 2004;28:1417–25.

    Article  PubMed  Google Scholar 

  353. Kazakov DV, Pavlovsky M, Mukensnabl P, Michal M. Pleomorphic hyalinizing angiectatic tumor with a sarcomatous component recurring as high-grade myxofibrosarcoma. Pathol Int. 2007;57:281–4.

    Article  PubMed  Google Scholar 

  354. Etchebehere RM, Almeida ECS, Santos CDT, Micheletti AMR, Leitao AS. Sarcomatous transformation of a hemosiderotic fibrohistiocytic lipomatous tumor: a case report. Rev Bras Ortop. 2017;52:366–9.

    Article  PubMed  Google Scholar 

  355. D’Costa GF, Nagle SB, Wagholikar UL. Angiomatoid malignant fibrous histiocytoma. Indian J Pathol Microbiol. 1990;33:280–3.

    PubMed  Google Scholar 

  356. Enzinger FM. Angiomatoid malignant fibrous histiocytoma: a distinct fibrohistiocytic tumor of children and young adults simulating a vascular neoplasm. Cancer. 1979;44:2147–57.

    Article  PubMed  CAS  Google Scholar 

  357. Fanburg-Smith JC, Miettinen M. Angiomatoid “malignant” fibrous histiocytoma: a clinicopathologic study of 158 cases and further exploration of the myoid phenotype. Hum Pathol. 1999;30:1336–43.

    Article  PubMed  CAS  Google Scholar 

  358. Fletcher CD. Angiomatoid “malignant fibrous histiocytoma”: an immunohistochemical study indicative of myoid differentiation. Hum Pathol. 1991;22:563–8.

    Article  PubMed  CAS  Google Scholar 

  359. Thway K, Strauss DC, Wren D, Fisher C. ‘Pure’ spindle cell variant of angiomatoid fibrous histiocytoma, lacking classic histologic features. Pathol Res Pract. 2016;212:1081–4.

    Article  PubMed  CAS  Google Scholar 

  360. Antonescu CR, Dal Cin P, Nafa K, Teot LA, Surti U, Fletcher CD, Ladanyi M. EWSR1-CREB1 is the predominant gene fusion in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer. 2007;46:1051–60.

    Article  PubMed  CAS  Google Scholar 

  361. Saito K, Kobayashi E, Yoshida A, Araki Y, Kubota D, Tanzawa Y, Kawai A, Yanagawa T, Takagishi K, Chuman H. Angiomatoid fibrous histiocytoma: a series of seven cases including genetically confirmed aggressive cases and a literature review. BMC Musculoskelet Disord. 2017;18:31.

    Article  PubMed  PubMed Central  Google Scholar 

  362. Hallor KH, Mertens F, Jin Y, Meis-Kindblom JM, Kindblom LG, Behrendtz M, Kalen A, Mandahl N, Panagopoulos I. Fusion of the EWSR1 and ATF1 genes without expression of the MITF-M transcript in angiomatoid fibrous histiocytoma. Genes Chromosomes Cancer. 2005;44:97–102.

    Article  PubMed  CAS  Google Scholar 

  363. Enzinger FM, Weiss SW, Liang CY. Ossifying fibromyxoid tumor of soft parts. A clinicopathological analysis of 59 cases. Am J Surg Pathol. 1989;13:817–27.

    Article  PubMed  CAS  Google Scholar 

  364. Miettinen M. Ossifying fibromyxoid tumor of soft parts. Additional observations of a distinctive soft tissue tumor. Am J Clin Pathol. 1991;95:142–9.

    Article  PubMed  CAS  Google Scholar 

  365. Yoshida H, Minamizaki T, Yumoto T, Furuse K, Nakadera T. Ossifying fibromyxoid tumor of soft parts. Acta Pathol Jpn. 1991;41:480–6.

    PubMed  CAS  Google Scholar 

  366. Donner LR. Ossifying fibromyxoid tumor of soft parts: evidence supporting Schwann cell origin. Hum Pathol. 1992;23:200–2.

    Article  PubMed  CAS  Google Scholar 

  367. Schofield JB, Krausz T, Stamp GW, Fletcher CD, Fisher C, Azzopardi JG. Ossifying fibromyxoid tumour of soft parts: immunohistochemical and ultrastructural analysis. Histopathology. 1993;22:101–12.

    Article  PubMed  CAS  Google Scholar 

  368. Williams SB, Ellis GL, Meis JM, Heffner DK. Ossifying fibromyxoid tumour (of soft parts) of the head and neck: a clinicopathological and immunohistochemical study of nine cases. J Laryngol Otol. 1993;107:75–80.

    Article  PubMed  CAS  Google Scholar 

  369. Fukunaga M, Ushigome S, Ishikawa E. Ossifying subcutaneous tumor with myofibroblastic differentiation: a variant of ossifying fibromyxoid tumor of soft parts? Pathol Int. 1994;44:727–34.

    Article  PubMed  CAS  Google Scholar 

  370. Kilpatrick SE, Ward WG, Mozes M, Miettinen M, Fukunaga M, Fletcher CD. Atypical and malignant variants of ossifying fibromyxoid tumor. Clinicopathologic analysis of six cases. Am J Surg Pathol. 1995;19:1039–46.

    Article  PubMed  CAS  Google Scholar 

  371. Matsumoto K, Yamamoto T, Min W, Yamada N, Asano G, Moriyama M, Matsumoto T. Ossifying fibromyxoid tumor of soft parts: clinicopathologic, immunohistochemical and ultrastructural study of four cases. Pathol Int. 1999;49:742–6.

    Article  PubMed  CAS  Google Scholar 

  372. Folpe AL, Weiss SW. Ossifying fibromyxoid tumor of soft parts: a clinicopathologic study of 70 cases with emphasis on atypical and malignant variants. Am J Surg Pathol. 2003;27:421–31.

    Article  PubMed  Google Scholar 

  373. Miettinen M, Finnell V, Fetsch JF. Ossifying fibromyxoid tumor of soft parts – a clinicopathologic and immunohistochemical study of 104 cases with long-term follow-up and a critical review of the literature. Am J Surg Pathol. 2008;32:996–1005.

    Article  PubMed  Google Scholar 

  374. Graham RP, Dry S, Li X, Binder S, Bahrami A, Raimondi SC, Dogan A, Chakraborty S, Souchek JJ, Folpe AL. Ossifying fibromyxoid tumor of soft parts: a clinicopathologic, proteomic, and genomic study. Am J Surg Pathol. 2011;35:1615–25.

    Article  PubMed  PubMed Central  Google Scholar 

  375. Atanaskova Mesinkovska N, Buehler D, McClain CM, Rubin BP, Goldblum JR, Billings SD. Ossifying fibromyxoid tumor: a clinicopathologic analysis of 26 subcutaneous tumors with emphasis on differential diagnosis and prognostic factors. J Cutan Pathol. 2015;42:622–31.

    Article  PubMed  Google Scholar 

  376. Schneider N, Fisher C, Thway K. Ossifying fibromyxoid tumor: morphology, genetics, and differential diagnosis. Ann Diagn Pathol. 2016;20:52–8.

    Article  PubMed  Google Scholar 

  377. Gebre-Medhin S, Nord KH, Moller E, Mandahl N, Magnusson L, Nilsson J, Jo VY, Vult von Steyern F, Brosjo O, Larsson O, Domanski HA, Sciot R, Debiec-Rychter M, Fletcher CD, Mertens F. Recurrent rearrangement of the PHF1 gene in ossifying fibromyxoid tumors. Am J Pathol. 2012;181:1069–77.

    Article  PubMed  CAS  Google Scholar 

  378. Endo M, Kohashi K, Yamamoto H, Ishii T, Yoshida T, Matsunobu T, Iwamoto Y, Oda Y. Ossifying fibromyxoid tumor presenting EP400-PHF1 fusion gene. Hum Pathol. 2013;44:2603–8.

    Article  PubMed  CAS  Google Scholar 

  379. Graham RP, Weiss SW, Sukov WR, Goldblum JR, Billings SD, Dotlic S, Folpe AL. PHF1 rearrangements in ossifying fibromyxoid tumors of soft parts: a fluorescence in situ hybridization study of 41 cases with emphasis on the malignant variant. Am J Surg Pathol. 2013;37:1751–5.

    Article  PubMed  Google Scholar 

  380. Antonescu CR, Sung YS, Chen CL, Zhang L, Chen HW, Singer S, Agaram NP, Sboner A, Fletcher CD. Novel ZC3H7B-BCOR, MEAF6-PHF1, and EPC1-PHF1 fusions in ossifying fibromyxoid tumors – molecular characterization shows genetic overlap with endometrial stromal sarcoma. Genes Chromosomes Cancer. 2014;53:183–93.

    Article  PubMed  CAS  Google Scholar 

  381. Kao YC, Sung YS, Zhang L, Chen CL, Huang SC, Antonescu CR. Expanding the molecular signature of ossifying fibromyxoid tumors with two novel gene fusions: CREBBP-BCORL1 and KDM2A-WWTR1. Genes Chromosomes Cancer. 2017;56:42–50.

    Article  PubMed  CAS  Google Scholar 

  382. Fisher C, Miettinen M. Parachordoma: a clinicopathologic and immunohistochemical study of four cases of an unusual soft tissue neoplasm. Ann Diagn Pathol. 1997;1:3–10.

    Article  PubMed  CAS  Google Scholar 

  383. Kilpatrick SE, Hitchcock MG, Kraus MD, Calonje E, Fletcher CD. Mixed tumors and myoepitheliomas of soft tissue: a clinicopathologic study of 19 cases with a unifying concept. Am J Surg Pathol. 1997;21:13–22.

    Article  PubMed  CAS  Google Scholar 

  384. Folpe AL, Agoff SN, Willis J, Weiss SW. Parachordoma is immunohistochemically and cytogenetically distinct from axial chordoma and extraskeletal myxoid chondrosarcoma. Am J Surg Pathol. 1999;23:1059–67.

    Article  PubMed  CAS  Google Scholar 

  385. Michal M, Miettinen M. Myoepitheliomas of the skin and soft tissues. Report of 12 cases. Virchows Arch. 1999;434:393–400.

    Article  PubMed  CAS  Google Scholar 

  386. Sasaguri T, Tanimoto A, Arima N, Hamada T, Hashimoto H, Sasaguri Y. Myoepithelioma of soft tissue. Pathol Int. 1999;49:571–6.

    Article  PubMed  CAS  Google Scholar 

  387. Hornick JL, Fletcher CD. Cutaneous myoepithelioma: a clinicopathologic and immunohistochemical study of 14 cases. Hum Pathol. 2004;35:14–24.

    Article  PubMed  CAS  Google Scholar 

  388. Jo VY. Myoepithelial tumors: an update. Surg Pathol Clin. 2015;8:445–66.

    Article  PubMed  Google Scholar 

  389. Jo VY, Fletcher CD. Myoepithelial neoplasms of soft tissue: an updated review of the clinicopathologic, immunophenotypic, and genetic features. Head Neck Pathol. 2015;9:32–8.

    Article  PubMed  PubMed Central  Google Scholar 

  390. Verma A, Rekhi B. Myoepithelial tumor of soft tissue and bone: a current perspective. Histol Histopathol. 2017;32:861–77.

    PubMed  CAS  Google Scholar 

  391. Jo VY, Antonescu CR, Zhang L, Dal Cin P, Hornick JL, Fletcher CD. Cutaneous syncytial myoepithelioma: clinicopathologic characterization in a series of 38 cases. Am J Surg Pathol. 2013;37:710–8.

    Article  PubMed  PubMed Central  Google Scholar 

  392. Hornick JL, Dal Cin P, Fletcher CD. Loss of INI1 expression is characteristic of both conventional and proximal-type epithelioid sarcoma. Am J Surg Pathol. 2009;33:542–50.

    Article  PubMed  Google Scholar 

  393. Hollmann TJ, Hornick JL. INI1-deficient tumors: diagnostic features and molecular genetics. Am J Surg Pathol. 2011;35:e47–63.

    Article  PubMed  Google Scholar 

  394. Antonescu CR, Zhang L, Chang NE, Pawel BR, Travis W, Katabi N, Edelman M, Rosenberg AE, Nielsen GP, Dal Cin P, Fletcher CD. EWSR1-POU5F1 fusion in soft tissue myoepithelial tumors. A molecular analysis of sixty-six cases, including soft tissue, bone, and visceral lesions, showing common involvement of the EWSR1 gene. Genes Chromosomes Cancer. 2010;49:1114–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  395. Agaram NP, Chen HW, Zhang L, Sung YS, Panicek D, Healey JH, Nielsen GP, Fletcher CD, Antonescu CR. EWSR1-PBX3: a novel gene fusion in myoepithelial tumors. Genes Chromosomes Cancer. 2015;54:63–71.

    Article  PubMed  CAS  Google Scholar 

  396. Huang SC, Chen HW, Zhang L, Sung YS, Agaram NP, Davis M, Edelman M, Fletcher CD, Antonescu CR. Novel FUS-KLF17 and EWSR1-KLF17 fusions in myoepithelial tumors. Genes Chromosomes Cancer. 2015;54:267–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  397. Antonescu CR, Zhang L, Shao SY, Mosquera JM, Weinreb I, Katabi N, Fletcher CD. Frequent PLAG1 gene rearrangements in skin and soft tissue myoepithelioma with ductal differentiation. Genes Chromosomes Cancer. 2013;52:675–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  398. Brandal P, Panagopoulos I, Bjerkehagen B, Gorunova L, Skjeldal S, Micci F, Heim S. Detection of a t(1;22)(q23;q12) translocation leading to an EWSR1-PBX1 fusion gene in a myoepithelioma. Genes Chromosomes Cancer. 2008;47:558–64.

    Article  PubMed  CAS  Google Scholar 

  399. Brandal P, Panagopoulos I, Bjerkehagen B. Heim S: t(19;22)(q13;q12) Translocation leading to the novel fusion gene EWSR1-ZNF444 in soft tissue myoepithelial carcinoma. Genes Chromosomes Cancer. 2009;48:1051–6.

    Article  PubMed  CAS  Google Scholar 

  400. Flucke U, Palmedo G, Blankenhorn N, Slootweg PJ, Kutzner H, Mentzel T. EWSR1 gene rearrangement occurs in a subset of cutaneous myoepithelial tumors: a study of 18 cases. Mod Pathol. 2011;24:1444–50.

    Article  PubMed  CAS  Google Scholar 

  401. Matsuyama A, Hisaoka M, Hashimoto H. PLAG1 expression in mesenchymal tumors: an immunohistochemical study with special emphasis on the pathogenetical distinction between soft tissue myoepithelioma and pleomorphic adenoma of the salivary gland. Pathol Int. 2012;62:1–7.

    Article  PubMed  CAS  Google Scholar 

  402. Miettinen M, Lehto VP, Virtanen I. Keratin in the epithelial-like cells of classical biphasic synovial sarcoma. Virchows Arch B Cell Pathol Incl Mol Pathol. 1982;40:157–61.

    Article  PubMed  CAS  Google Scholar 

  403. Varela-Duran J, Enzinger FM. Calcifying synovial sarcoma. Cancer. 1982;50:345–52.

    Article  PubMed  CAS  Google Scholar 

  404. Miettinen M, Lehto VP, Virtanen I. Monophasic synovial sarcoma of spindle-cell type. Epithelial differentiation as revealed by ultrastructural features, content of prekeratin and binding of peanut agglutinin. Virchows Arch B Cell Pathol Incl Mol Pathol. 1983;44:187–99.

    Article  PubMed  CAS  Google Scholar 

  405. Miettinen M, Virtanen I. Synovial sarcoma – a misnomer. Am J Pathol. 1984;117:18–25.

    PubMed  PubMed Central  CAS  Google Scholar 

  406. Argani P, Zakowski MF, Klimstra DS, Rosai J, Ladanyi M. Detection of the SYT-SSX chimeric RNA of synovial sarcoma in paraffin-embedded tissue and its application in problematic cases. Mod Pathol. 1998;11:65–71.

    PubMed  CAS  Google Scholar 

  407. Kawai A, Woodruff J, Healey JH, Brennan MF, Antonescu CR, Ladanyi M. SYT-SSX gene fusion as a determinant of morphology and prognosis in synovial sarcoma. N Engl J Med. 1998;338:153–60.

    Article  PubMed  CAS  Google Scholar 

  408. Trassard M, Le Doussal V, Hacene K, Terrier P, Ranchere D, Guillou L, Fiche M, Collin F, Vilain MO, Bertrand G, Jacquemier J, Sastre-Garau X, Bui NB, Bonichon F, Coindre JM. Prognostic factors in localized primary synovial sarcoma: a multicenter study of 128 adult patients. J Clin Oncol. 2001;19:525–34.

    Article  PubMed  CAS  Google Scholar 

  409. Michal M, Fanburg-Smith JC, Lasota J, Fetsch JF, Lichy J, Miettinen M. Minute synovial sarcomas of the hands and feet: a clinicopathologic study of 21 tumors less than 1 cm. Am J Surg Pathol. 2006;30:721–6.

    Article  PubMed  Google Scholar 

  410. Chrisinger JSA, Salem UI, Kindblom LG, Amini B, Hansson M, Meis JM. Synovial Sarcoma of Peripheral Nerves: Analysis of 15 Cases. Am J Surg Pathol. 2017;41:1087–96.

    Article  PubMed  Google Scholar 

  411. van de Rijn M, Barr FG, Xiong QB, Hedges M, Shipley J, Fisher C. Poorly differentiated synovial sarcoma: an analysis of clinical, pathologic, and molecular genetic features. Am J Surg Pathol. 1999;23:106–12.

    Article  PubMed  Google Scholar 

  412. Terry J, Saito T, Subramanian S, Ruttan C, Antonescu CR, Goldblum JR, Downs-Kelly E, Corless CL, Rubin BP, van de Rijn M, Ladanyi M, Nielsen TO. TLE1 as a diagnostic immunohistochemical marker for synovial sarcoma emerging from gene expression profiling studies. Am J Surg Pathol. 2007;31:240–6.

    Article  PubMed  Google Scholar 

  413. Kosemehmetoglu K, Vrana JA, Folpe AL. TLE1 expression is not specific for synovial sarcoma: a whole section study of 163 soft tissue and bone neoplasms. Mod Pathol. 2009;22:872–8.

    Article  PubMed  CAS  Google Scholar 

  414. Knosel T, Heretsch S, Altendorf-Hofmann A, Richter P, Katenkamp K, Katenkamp D, Berndt A, Petersen I. TLE1 is a robust diagnostic biomarker for synovial sarcomas and correlates with t(X;18): analysis of 319 cases. Eur J Cancer. 2010;46:1170–6.

    Article  PubMed  CAS  Google Scholar 

  415. Matsuyama A, Hisaoka M, Iwasaki M, Iwashita M, Hisanaga S, Hashimoto H. TLE1 expression in malignant mesothelioma. Virchows Arch. 2010;457:577–83.

    Article  PubMed  CAS  Google Scholar 

  416. Valente AL, Tull J, Zhang S. Specificity of TLE1 expression in unclassified high-grade sarcomas for the diagnosis of synovial sarcoma. Appl Immunohistochem Mol Morphol. 2013;21:408–13.

    Article  PubMed  CAS  Google Scholar 

  417. Atef A, Alrashidy M. Transducer-like enhancer of split 1 as a novel immuno- histochemical marker for diagnosis of synovial sarcoma. Asian Pac J Cancer Prev. 2015;16:6545–8.

    Article  PubMed  Google Scholar 

  418. Rekhi B, Vogel U. Utility of characteristic ‘Weak to Absent’ INI1/SMARCB1/BAF47 expression in diagnosis of synovial sarcomas. APMIS. 2015;123:618–28.

    Article  PubMed  CAS  Google Scholar 

  419. Bakrin IH, Hussain FA, Tuan Sharif SE. Transducer-like enhancer of split 1 (TLE1) expression as a diagnostic immunohistochemical marker for synovial sarcoma and its association with morphological features. Malays J Pathol. 2016;38:117–22.

    PubMed  CAS  Google Scholar 

  420. Bozdogan N, Dilek GB, Benzer E, Karadeniz M, Bozdogan O. Transducing-like enhancer of split 1: a potential immunohistochemical marker for glomus tumor. Am J Dermatopathol. 2017;39:524–7.

    Article  PubMed  Google Scholar 

  421. Knight J, Reeves B, Smith S, Clark J, Fisher C, Fletcher C, Gusterson B, Cooper C. Cytogenetic and molecular analysis of synovial sarcoma. Int J Oncol. 1992;1:747–52.

    Article  PubMed  CAS  Google Scholar 

  422. Fligman I, Lonardo F, Jhanwar SC, Gerald WL, Woodruff J, Ladanyi M. Molecular diagnosis of synovial sarcoma and characterization of a variant SYT-SSX2 fusion transcript. Am J Pathol. 1995;147:1592–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  423. Antonescu CR, Kawai A, Leung DH, Lonardo F, Woodruff JM, Healey JH, Ladanyi M. Strong association of SYT-SSX fusion type and morphologic epithelial differentiation in synovial sarcoma. Diagn Mol Pathol. 2000;9:1–8.

    Article  PubMed  CAS  Google Scholar 

  424. Guillou L, Coindre J, Gallagher G, Terrier P, Gebhard S, de Saint Aubain Somerhausen N, Michels J, Jundt G, Vince DR, Collin F, Trassard M, Le Doussal V, Benhattar J. Detection of the synovial sarcoma translocation t(X;18) (SYT;SSX) in paraffin-embedded tissues using reverse transcriptase-polymerase chain reaction: a reliable and powerful diagnostic tool for pathologists. A molecular analysis of 221 mesenchymal tumors fixed in different fixatives. Hum Pathol. 2001;32:105–12.

    Article  PubMed  CAS  Google Scholar 

  425. Ladanyi M. Fusions of the SYT and SSX genes in synovial sarcoma. Oncogene. 2001;20:5755–62.

    Article  PubMed  CAS  Google Scholar 

  426. Chase DR, Enzinger FM. Epithelioid sarcoma. Diagnosis, prognostic indicators, and treatment. Am J Surg Pathol. 1985;9:241–63.

    Article  PubMed  CAS  Google Scholar 

  427. Gower RL, Pambakian H, Fletcher CD. Epithelioid sarcoma of the penis: a rare tumour to be distinguished from squamous carcinoma. Br J Urol. 1987;59:592–3.

    Article  PubMed  CAS  Google Scholar 

  428. Bos GD, Pritchard DJ, Reiman HM, Dobyns JH, Ilstrup DM, Landon GC. Epithelioid sarcoma. An analysis of fifty-one cases. J Bone Joint Surg Am. 1988;70:862–70.

    Article  PubMed  CAS  Google Scholar 

  429. Fisher C. Epithelioid sarcoma: the spectrum of ultrastructural differentiation in seven immunohistochemically defined cases. Hum Pathol. 1988;19:265–75.

    Article  PubMed  CAS  Google Scholar 

  430. Spillane AJ, Thomas JM, Fisher C. Epithelioid sarcoma: the clinicopathological complexities of this rare soft tissue sarcoma. Ann Surg Oncol. 2000;7:218–25.

    Article  PubMed  CAS  Google Scholar 

  431. Chbani L, Guillou L, Terrier P, Decouvelaere AV, Gregoire F, Terrier-Lacombe MJ, Ranchere D, Robin YM, Collin F, Freneaux P, Coindre JM. Epithelioid sarcoma: a clinicopathologic and immunohistochemical analysis of 106 cases from the French sarcoma group. Am J Clin Pathol. 2009;131:222–7.

    Article  PubMed  Google Scholar 

  432. Rekhi B, Singh N. Spectrum of cytopathologic features of epithelioid sarcoma in a series of 7 uncommon cases with immunohistochemical results, including loss of INI1/SMARCB1 in two test cases. Diagn Cytopathol. 2016;44:636–42.

    Article  PubMed  Google Scholar 

  433. Rekhi B, Gorad BD, Chinoy RF. Clinicopathological features with outcomes of a series of conventional and proximal-type epithelioid sarcomas, diagnosed over a period of 10 years at a tertiary cancer hospital in India. Virchows Arch. 2008;453:141–53.

    Article  PubMed  Google Scholar 

  434. Lin L, Skacel M, Sigel JE, Bergfeld WF, Montgomery E, Fisher C, Goldblum JR. Epithelioid sarcoma: an immunohistochemical analysis evaluating the utility of cytokeratin 5/6 in distinguishing superficial epithelioid sarcoma from spindled squamous cell carcinoma. J Cutan Pathol. 2003;30:114–7.

    Article  PubMed  Google Scholar 

  435. Stockman DL, Hornick JL, Deavers MT, Lev DC, Lazar AJ, Wang WL. ERG and FLI1 protein expression in epithelioid sarcoma. Mod Pathol. 2014;27:496–501.

    Article  PubMed  CAS  Google Scholar 

  436. Kohashi K, Izumi T, Oda Y, Yamamoto H, Tamiya S, Taguchi T, Iwamoto Y, Hasegawa T, Tsuneyoshi M. Infrequent SMARCB1/INI1 gene alteration in epithelioid sarcoma: a useful tool in distinguishing epithelioid sarcoma from malignant rhabdoid tumor. Hum Pathol. 2009;40:349–55.

    Article  PubMed  CAS  Google Scholar 

  437. Rekhi B, Jambhekar NA. Immunohistochemical validation of INI1/SMARCB1 in a spectrum of musculoskeletal tumors: an experience at a Tertiary Cancer Referral Centre. Pathol Res Pract. 2013;209:758–66.

    Article  PubMed  CAS  Google Scholar 

  438. Le Loarer F, Zhang L, Fletcher CD, Ribeiro A, Singer S, Italiano A, Neuville A, Houlier A, Chibon F, Coindre JM, Antonescu CR. Consistent SMARCB1 homozygous deletions in epithelioid sarcoma and in a subset of myoepithelial carcinomas can be reliably detected by FISH in archival material. Genes Chromosomes Cancer. 2014;53:475–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  439. Guillou L, Wadden C, Coindre JM, Krausz T, Fletcher CD. “Proximal-type” epithelioid sarcoma, a distinctive aggressive neoplasm showing rhabdoid features. Clinicopathologic, immunohistochemical, and ultrastructural study of a series. Am J Surg Pathol. 1997;21:130–46.

    Article  PubMed  CAS  Google Scholar 

  440. Rekhi B, Gorad BD, Chinoy RF. Proximal-type epithelioid sarcoma – a rare, aggressive subtype of epithelioid sarcoma presenting as a recurrent perineal mass in a middle-aged male. World J Surg Oncol. 2007;5:28.

    Article  PubMed  PubMed Central  Google Scholar 

  441. Hasegawa T, Matsuno Y, Shimoda T, Umeda T, Yokoyama R, Hirohashi S. Proximal-type epithelioid sarcoma: a clinicopathologic study of 20 cases. Mod Pathol. 2001;14:655–63.

    Article  PubMed  CAS  Google Scholar 

  442. Ordonez NG, Hickey RC, Brooks TE. Alveolar soft part sarcoma. A cytologic and immunohistochemical study. Cancer. 1988;61:525–31.

    Article  PubMed  CAS  Google Scholar 

  443. Ordonez NG, Ro JY, Mackay B. Alveolar soft part sarcoma. An ultrastructural and immunocytochemical investigation of its histogenesis. Cancer. 1989;63:1721–36.

    Article  PubMed  CAS  Google Scholar 

  444. Miettinen M, Ekfors T. Alveolar soft part sarcoma. Immunohistochemical evidence for muscle cell differentiation. Am J Clin Pathol. 1990;93:32–8.

    Article  PubMed  CAS  Google Scholar 

  445. Rosai J, Dias P, Parham DM, Shapiro DN, Houghton P. MyoD1 protein expression in alveolar soft part sarcoma as confirmatory evidence of its skeletal muscle nature. Am J Surg Pathol. 1991;15:974–81.

    Article  PubMed  CAS  Google Scholar 

  446. Ordonez NG. Alveolar soft part sarcoma: a review and update. Adv Anat Pathol. 1999;6:125–39.

    Article  PubMed  CAS  Google Scholar 

  447. Daigeler A, Kuhnen C, Hauser J, Goertz O, Tilkorn D, Steinstraesser L, Steinau HU, Lehnhardt M. Alveolar soft part sarcoma: clinicopathological findings in a series of 11 cases. World J Surg Oncol. 2008;6:71.

    Article  PubMed  PubMed Central  Google Scholar 

  448. Khanna P, Paidas CN, Gilbert-Barness E. Alveolar soft part sarcoma: clinical, histopathological, molecular, and ultrastructural aspects. Fetal Pediatr Pathol. 2008;27:31–40.

    Article  PubMed  CAS  Google Scholar 

  449. Ogura K, Beppu Y, Chuman H, Yoshida A, Yamamoto N, Sumi M, Kawano H, Kawai A. Alveolar soft part sarcoma: a single-center 26-patient case series and review of the literature. Sarcoma. 2012;2012:907179.

    Article  PubMed  PubMed Central  Google Scholar 

  450. van Ruth S, van Coevorden F, Peterse JL, Kroon BB. Alveolar soft part sarcoma. a report of 15 cases. Eur J Cancer. 2002;38:1324–8.

    Article  PubMed  Google Scholar 

  451. Portera CA Jr, Ho V, Patel SR, Hunt KK, Feig BW, Respondek PM, Yasko AW, Benjamin RS, Pollock RE, Pisters PW. Alveolar soft part sarcoma: clinical course and patterns of metastasis in 70 patients treated at a single institution. Cancer. 2001;91:585–91.

    Article  PubMed  Google Scholar 

  452. Unni KK, Soule ED. Alveolar soft part sarcoma. An electron microscopic study. Mayo Clin Proc. 1975;50:591–8.

    PubMed  CAS  Google Scholar 

  453. O’Toole RV, Tuttle SE, Lucas JG, Sharma HM. Alveolar soft part sarcoma of the vagina: an immunohistochemical and electron microscopic study. Int J Gynecol Pathol. 1985;4:258–65.

    Article  PubMed  Google Scholar 

  454. Roma AA, Yang B, Senior ME, Goldblum JR. TFE3 immunoreactivity in alveolar soft part sarcoma of the uterine cervix: case report. Int J Gynecol Pathol. 2005;24:131–5.

    Article  PubMed  Google Scholar 

  455. Ladanyi M, Lui MY, Antonescu CR, Krause-Boehm A, Meindl A, Argani P, Healey JH, Ueda T, Yoshikawa H, Meloni-Ehrig A, Sorensen PH, Mertens F, Mandahl N, van den Berghe H, Sciot R, Dal Cin P, Bridge J. The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene. 2001;20:48–57.

    Article  PubMed  CAS  Google Scholar 

  456. Williams A, Bartle G, Sumathi VP, Meis JM, Mangham DC, Grimer RJ, Kindblom LG. Detection of ASPL/TFE3 fusion transcripts and the TFE3 antigen in formalin-fixed, paraffin-embedded tissue in a series of 18 cases of alveolar soft part sarcoma: useful diagnostic tools in cases with unusual histological features. Virchows Arch. 2011;458:291–300.

    Article  PubMed  CAS  Google Scholar 

  457. Tsuji K, Ishikawa Y, Imamura T. Technique for differentiating alveolar soft part sarcoma from other tumors in paraffin-embedded tissue: comparison of immunohistochemistry for TFE3 and CD147 and of reverse transcription polymerase chain reaction for ASPSCR1-TFE3 fusion transcript. Hum Pathol. 2012;43:356–63.

    Article  PubMed  CAS  Google Scholar 

  458. Kuroda N, Mikami S, Pan CC, Cohen RJ, Hes O, Michal M, Nagashima Y, Tanaka Y, Inoue K, Shuin T, Lee GH. Review of renal carcinoma associated with Xp11.2 translocations/TFE3 gene fusions with focus on pathobiological aspect. Histol Histopathol. 2012;27:133–40.

    PubMed  Google Scholar 

  459. Weiss SW, Goldblum JR. Enzinger & Weiss’s soft tissue tumor. 5th ed. St. Louis: Mosby Elsevier; 2008.

    Google Scholar 

  460. Meis-Kindblom JM. Clear cell sarcoma of tendons and aponeuroses: a historical perspective and tribute to the man behind the entity. Adv Anat Pathol. 2006;13:286–92.

    Article  PubMed  Google Scholar 

  461. Taminelli L, Zaman K, Gengler C, Peloponissios N, Bouzourene H, Coindre JM, Hostein I, Guillou L. Primary clear cell sarcoma of the ileum: an uncommon and misleading site. Virchows Arch. 2005;447:772–7.

    Article  PubMed  Google Scholar 

  462. Segal NH, Pavlidis P, Antonescu CR, Maki RG, Noble WS, DeSantis D, Woodruff JM, Lewis JJ, Brennan MF, Houghton AN, Cordon-Cardo C. Classification and subtype prediction of adult soft tissue sarcoma by functional genomics. Am J Pathol. 2003;163:691–700.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  463. Hisaoka M, Ishida T, Kuo TT, Matsuyama A, Imamura T, Nishida K, Kuroda H, Inayama Y, Oshiro H, Kobayashi H, Nakajima T, Fukuda T, Ae K, Hashimoto H. Clear cell sarcoma of soft tissue: a clinicopathologic, immunohistochemical, and molecular analysis of 33 cases. Am J Surg Pathol. 2008;32:452–60.

    Article  PubMed  Google Scholar 

  464. Abdulkader I, Cameselle-Teijeiro J, de Alava E, Ruiz-Ponte C, Used-Aznar MM, Forteza J. Intestinal clear cell sarcoma with melanocytic differentiation and EWS [corrected] rearrangement: report of a case. Int J Surg Pathol. 2008;16:189–93.

    Article  PubMed  Google Scholar 

  465. Lyle PL, Amato CM, Fitzpatrick JE, Robinson WA. Gastrointestinal melanoma or clear cell sarcoma? Molecular evaluation of 7 cases previously diagnosed as malignant melanoma. Am J Surg Pathol. 2008;32:858–66.

    Article  PubMed  Google Scholar 

  466. Marcon N, Montagne K, Corby S, Ayav A, Plenat F. Champigneulle J: [primary clear cell sarcoma of the ileum]. Ann Pathol. 2007;27:369–72.

    Article  PubMed  Google Scholar 

  467. Comin CE, Novelli L, Tornaboni D, Messerini L. Clear cell sarcoma of the ileum: report of a case and review of literature. Virchows Arch. 2007;451:839–45.

    Article  PubMed  Google Scholar 

  468. Venkataraman G, Quinn AM, Williams J, Hammadeh R. Clear cell sarcoma of the small bowel: a potential pitfall. Case report. APMIS. 2005;113:716–9.

    Article  PubMed  Google Scholar 

  469. Antonescu CR, Nafa K, Segal NH, Dal Cin P, Ladanyi M. EWS-CREB1: a recurrent variant fusion in clear cell sarcoma – association with gastrointestinal location and absence of melanocytic differentiation. Clin Cancer Res. 2006;12:5356–62.

    Article  PubMed  CAS  Google Scholar 

  470. Panagopoulos I, Mertens F, Debiec-Rychter M, Isaksson M, Limon J, Kardas I, Domanski HA, Sciot R, Perek D, Crnalic S, Larsson O, Mandahl N. Molecular genetic characterization of the EWS/ATF1 fusion gene in clear cell sarcoma of tendons and aponeuroses. Int J Cancer. 2002;99:560–7.

    Article  PubMed  CAS  Google Scholar 

  471. Antonescu CR, Tschernyavsky SJ, Woodruff JM, Jungbluth AA, Brennan MF, Ladanyi M. Molecular diagnosis of clear cell sarcoma: detection of EWS-ATF1 and MITF-M transcripts and histopathological and ultrastructural analysis of 12 cases. J Mol Diagn JMD. 2002;4:44–52.

    Article  PubMed  CAS  Google Scholar 

  472. Coindre JM, Hostein I, Terrier P, Bouvier-Labit C, Collin F, Michels JJ, Trassard M, Marques B, Ranchere D, Guillou L. Diagnosis of clear cell sarcoma by real-time reverse transcriptase-polymerase chain reaction analysis of paraffin embedded tissues: clinicopathologic and molecular analysis of 44 patients from the French sarcoma group. Cancer. 2006;107:1055–64.

    Article  PubMed  CAS  Google Scholar 

  473. Wang WL, Mayordomo E, Zhang W, Hernandez VS, Tuvin D, Garcia L, Lev DC, Lazar AJ, Lopez-Terrada D. Detection and characterization of EWSR1/ATF1 and EWSR1/CREB1 chimeric transcripts in clear cell sarcoma (melanoma of soft parts). Mod Pathol. 2009;22:1201–9.

    Article  PubMed  CAS  Google Scholar 

  474. Fletcher JA. Translocation (12;22)(q13-14;q12) is a nonrandom aberration in soft-tissue clear-cell sarcoma. Genes Chromosomes Cancer. 1992;5:184.

    Article  PubMed  CAS  Google Scholar 

  475. Stenman G, Kindblom LG, Angervall L. Reciprocal translocation t(12;22)(q13;q13) in clear-cell sarcoma of tendons and aponeuroses. Genes Chromosomes Cancer. 1992;4:122–7.

    Article  PubMed  CAS  Google Scholar 

  476. Pellin A, Monteagudo C, Lopez-Gines C, Carda C, Boix J, Llombart-Bosch A. New type of chimeric fusion product between the EWS and ATFI genes in clear cell sarcoma (malignant melanoma of soft parts). Genes Chromosomes Cancer. 1998;23:358–60.

    Article  PubMed  CAS  Google Scholar 

  477. Rodriguez E, Sreekantaiah C, Reuter VE, Motzer RJ. Chaganti RS: t(12;22)(q13;q13) and trisomy 8 are nonrandom aberrations in clear-cell sarcoma. Cancer Genet Cytogenet. 1992;64:107–10.

    Article  PubMed  CAS  Google Scholar 

  478. Speleman F, Delattre O, Peter M, Hauben E, Van Roy N, Van Marck E. Malignant melanoma of the soft parts (clear-cell sarcoma): confirmation of EWS and ATF-1 gene fusion caused by a t(12;22) translocation. Mod Pathol. 1997;10:496–9.

    PubMed  CAS  Google Scholar 

  479. Hantschke M, Mentzel T, Rutten A, Palmedo G, Calonje E, Lazar AJ, Kutzner H. Cutaneous clear cell sarcoma: a clinicopathologic, immunohistochemical, and molecular analysis of 12 cases emphasizing its distinction from dermal melanoma. Am J Surg Pathol. 2010;34:216–22.

    Article  PubMed  PubMed Central  Google Scholar 

  480. Stockman DL, Miettinen M, Suster S, Spagnolo D, Dominguez-Malagon H, Hornick JL, Adsay V, Chou PM, Amanuel B, Vantuinen P, Zambrano EV. Malignant gastrointestinal neuroectodermal tumor: clinicopathologic, immunohistochemical, ultrastructural, and molecular analysis of 16 cases with a reappraisal of clear cell sarcoma-like tumors of the gastrointestinal tract. Am J Surg Pathol. 2012;36:857–68.

    Article  PubMed  PubMed Central  Google Scholar 

  481. Meis-Kindblom JM, Bergh P, Gunterberg B, Kindblom LG. Extraskeletal myxoid chondrosarcoma: a reappraisal of its morphologic spectrum and prognostic factors based on 117 cases. Am J Surg Pathol. 1999;23:636–50.

    Article  PubMed  CAS  Google Scholar 

  482. Hisaoka M, Hashimoto H. Extraskeletal myxoid chondrosarcoma: updated clinicopathological and molecular genetic characteristics. Pathol Int. 2005;55:453–63.

    Article  PubMed  Google Scholar 

  483. Goh YW, Spagnolo DV, Platten M, Caterina P, Fisher C, Oliveira AM, Nascimento AG. Extraskeletal myxoid chondrosarcoma: a light microscopic, immunohistochemical, ultrastructural and immuno-ultrastructural study indicating neuroendocrine differentiation. Histopathology. 2001;39:514–24.

    Article  PubMed  CAS  Google Scholar 

  484. Okamoto S, Hisaoka M, Ishida T, Imamura T, Kanda H, Shimajiri S, Hashimoto H. Extraskeletal myxoid chondrosarcoma: a clinicopathologic, immunohistochemical, and molecular analysis of 18 cases. Hum Pathol. 2001;32:1116–24.

    Article  PubMed  CAS  Google Scholar 

  485. Aigner T, Oliveira AM, Nascimento AG. Extraskeletal myxoid chondrosarcomas do not show a chondrocytic phenotype. Mod Pathol. 2004;17:214–21.

    Article  PubMed  Google Scholar 

  486. Demicco EG, Wang WL, Madewell JE, Huang D, Bui MM, Bridge JA, Meis JM. Osseous myxochondroid sarcoma: a detailed study of 5 cases of extraskeletal myxoid chondrosarcoma of the bone. Am J Surg Pathol. 2013;37:752–62.

    Article  PubMed  Google Scholar 

  487. Panagopoulos I, Mertens F, Isaksson M, Domanski HA, Brosjo O, Heim S, Bjerkehagen B, Sciot R, Dal Cin P, Fletcher JA, Fletcher CD, Mandahl N. Molecular genetic characterization of the EWS/CHN and RBP56/CHN fusion genes in extraskeletal myxoid chondrosarcoma. Genes Chromosomes Cancer. 2002;35:340–52.

    Article  PubMed  CAS  Google Scholar 

  488. Sjogren H, Meis-Kindblom J, Kindblom LG, Aman P, Stenman G. Fusion of the EWS-related gene TAF2N to TEC in extraskeletal myxoid chondrosarcoma. Cancer Res. 1999;59:5064–7.

    PubMed  CAS  Google Scholar 

  489. Panagopoulos I, Mencinger M, Dietrich CU, Bjerkehagen B, Saeter G, Mertens F, Mandahl N, Heim S. Fusion of the RBP56 and CHN genes in extraskeletal myxoid chondrosarcomas with translocation t(9;17)(q22;q11). Oncogene. 1999;18:7594–8.

    Article  PubMed  CAS  Google Scholar 

  490. Kawaguchi S, Wada T, Nagoya S, Ikeda T, Isu K, Yamashiro K, Kawai A, Ishii T, Araki N, Myoui A, Matsumoto S, Umeda T, Yoshikawa H, Hasegawa T. Extraskeletal myxoid chondrosarcoma: a Multi-Institutional Study of 42 Cases in Japan. Cancer. 2003;97:1285–92.

    Article  PubMed  Google Scholar 

  491. Oliveira AM, Sebo TJ, McGrory JE, Gaffey TA, Rock MG, Nascimento AG. Extraskeletal myxoid chondrosarcoma: a clinicopathologic, immunohistochemical, and ploidy analysis of 23 cases. Mod Pathol. 2000;13:900–8.

    Article  PubMed  CAS  Google Scholar 

  492. McGrory JE, Rock MG, Nascimento AG, Oliveira AM. Extraskeletal myxoid chondrosarcoma. Clin Orthop Relat Res. 2001;382:185–90.

    Article  Google Scholar 

  493. Gerald WL, Miller HK, Battifora H, Miettinen M, Silva EG, Rosai J. Intra-abdominal desmoplastic small round-cell tumor. Report of 19 cases of a distinctive type of high-grade polyphenotypic malignancy affecting young individuals. Am J Surg Pathol. 1991;15:499–513.

    Article  PubMed  CAS  Google Scholar 

  494. Tison V, Cerasoli S, Morigi F, Ladanyi M, Gerald WL, Rosai J. Intracranial desmoplastic small-cell tumor. Report of a case. Am J Surg Pathol. 1996;20:112–7.

    Article  PubMed  CAS  Google Scholar 

  495. Cummings OW, Ulbright TM, Young RH, Dei Tos AP, Fletcher CD, Hull MT. Desmoplastic small round cell tumors of the paratesticular region. A report of six cases. Am J Surg Pathol. 1997;21:219–25.

    Article  PubMed  CAS  Google Scholar 

  496. Wang LL, Perlman EJ, Vujanic GM, Zuppan C, Brundler MA, Cheung CR, Calicchio ML, Dubois S, Cendron M, Murata-Collins JL, Wenger GD, Strzelecki D, Barr FG, Collins T, Perez-Atayde AR, Kozakewich H. Desmoplastic small round cell tumor of the kidney in childhood. Am J Surg Pathol. 2007;31:576–84.

    Article  PubMed  Google Scholar 

  497. Philippe-Chomette P, Kabbara N, Andre N, Pierron G, Coulomb A, Laurence V, Blay JY, Delattre O, Schleiermacher G, Orbach D. Desmoplastic small round cell tumors with EWS-WT1 fusion transcript in children and young adults. Pediatr Blood Cancer. 2012;58:891–7.

    Article  PubMed  Google Scholar 

  498. Wong HH, Hatcher HM, Benson C, Al-Muderis O, Horan G, Fisher C, Earl HM, Judson I. Desmoplastic small round cell tumour: characteristics and prognostic factors of 41 patients and review of the literature. Clin Sarcoma Res. 2013;3:14.

    Article  PubMed  PubMed Central  Google Scholar 

  499. Mora J, Modak S, Cheung NK, Meyers P, de Alava E, Kushner B, Magnan H, Tirado OM, Laquaglia M, Ladanyi M, Rosai J. Desmoplastic small round cell tumor 20 years after its discovery. Future Oncol. 2015;11:1071–81.

    Article  PubMed  CAS  Google Scholar 

  500. Ordonez NG. Desmoplastic small round cell tumor: I: a histopathologic study of 39 cases with emphasis on unusual histological patterns. Am J Surg Pathol. 1998;22:1303–13.

    Article  PubMed  CAS  Google Scholar 

  501. Gerald WL, Rosai J. Desmoplastic small cell tumor with multi-phenotypic differentiation. Zentralbl Pathol. 1993;139:141–51.

    PubMed  CAS  Google Scholar 

  502. Ordonez NG. Desmoplastic small round cell tumor: II: an ultrastructural and immunohistochemical study with emphasis on new immunohistochemical markers. Am J Surg Pathol. 1998;22:1314–27.

    Article  PubMed  CAS  Google Scholar 

  503. Gerald WL, Rosai J, Ladanyi M. Characterization of the genomic breakpoint and chimeric transcripts in the EWS-WT1 gene fusion of desmoplastic small round cell tumor. Proc Natl Acad Sci U S A. 1995;92:1028–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  504. Ladanyi M, Gerald W. Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor. Cancer Res. 1994;54:2837–40.

    PubMed  CAS  Google Scholar 

  505. Ladanyi M, Gerald WL. Specificity of the EWS/WT1 gene fusion for desmoplastic small round cell tumour. J Pathol. 1996;180:462.

    Article  PubMed  CAS  Google Scholar 

  506. Rodriguez E, Sreekantaiah C, Gerald W, Reuter VE, Motzer RJ, Chaganti RS. A recurring translocation, t(11;22)(p13;q11.2), characterizes intra-abdominal desmoplastic small round-cell tumors. Cancer Genet Cytogenet. 1993;69:17–21.

    Article  PubMed  CAS  Google Scholar 

  507. Hill DA, Pfeifer JD, Marley EF, Dehner LP, Humphrey PA, Zhu X, Swanson PE. WT1 staining reliably differentiates desmoplastic small round cell tumor from Ewing sarcoma/primitive neuroectodermal tumor. An immunohistochemical and molecular diagnostic study. Am J Clin Pathol. 2000;114:345–53.

    Article  PubMed  CAS  Google Scholar 

  508. Kushner BH, LaQuaglia MP, Wollner N, Meyers PA, Lindsley KL, Ghavimi F, Merchant TE, Boulad F, Cheung NK, Bonilla MA, Crouch G, Kelleher JF Jr, Steinherz PG, Gerald WL. Desmoplastic small round-cell tumor: prolonged progression-free survival with aggressive multimodality therapy. J Clin Oncol. 1996;14:1526–31.

    Article  PubMed  CAS  Google Scholar 

  509. Lal DR, Su WT, Wolden SL, Loh KC, Modak S, La Quaglia MP. Results of multimodal treatment for desmoplastic small round cell tumors. J Pediatr Surg. 2005;40:251–5.

    Article  PubMed  Google Scholar 

  510. Folpe AL, Goldblum JR, Rubin BP, Shehata BM, Liu W, Dei Tos AP, Weiss SW. Morphologic and immunophenotypic diversity in Ewing family tumors: a study of 66 genetically confirmed cases. Am J Surg Pathol. 2005;29:1025–33.

    Article  PubMed  Google Scholar 

  511. Ehrig T, Billings SD, Fanburg-Smith JC. Superficial primitive neuroectodermal tumor/Ewing sarcoma (PN/ES): same tumor as deep PN/ES or new entity? Ann Diagn Pathol. 2007;11:153–9.

    Article  PubMed  Google Scholar 

  512. Shingde MV, Buckland M, Busam KJ, McCarthy SW, Wilmott J, Thompson JF, Scolyer RA. Primary cutaneous Ewing sarcoma/primitive neuroectodermal tumour: a clinicopathological analysis of seven cases highlighting diagnostic pitfalls and the role of FISH testing in diagnosis. J Clin Pathol. 2009;62:915–9.

    Article  PubMed  CAS  Google Scholar 

  513. Marino-Enriquez A, Fletcher CD. Round cell sarcomas – biologically important refinements in subclassification. Int J Biochem Cell Biol. 2014;53:493–504.

    Article  PubMed  CAS  Google Scholar 

  514. Riggi N, Suva ML, Suva D, Cironi L, Provero P, Tercier S, Joseph JM, Stehle JC, Baumer K, Kindler V, Stamenkovic I. EWS-FLI-1 expression triggers a Ewing’s sarcoma initiation program in primary human mesenchymal stem cells. Cancer Res. 2008;68:2176–85.

    Article  PubMed  CAS  Google Scholar 

  515. Fletcher JA. Ewing’s sarcoma oncogene structure: a novel prognostic marker? J Clin Oncol. 1998;16:1241–3.

    Article  PubMed  CAS  Google Scholar 

  516. Fletcher JA. Cytogenetics of soft tissue tumors. Cancer Treat Res. 1997;91:9–29.

    Article  PubMed  CAS  Google Scholar 

  517. Yamashita K, Fletcher CD. PEComa presenting in bone: clinicopathologic analysis of 6 cases and literature review. Am J Surg Pathol. 2010;34:1622–9.

    Article  PubMed  Google Scholar 

  518. Sukov WR, Cheville JC, Amin MB, Gupta R, Folpe AL. Perivascular epithelioid cell tumor (PEComa) of the urinary bladder: report of 3 cases and review of the literature. Am J Surg Pathol. 2009;33:304–8.

    Article  PubMed  Google Scholar 

  519. Martignoni G, Pea M, Zampini C, Brunelli M, Segala D, Zamboni G, Bonetti F. PEComas of the kidney and of the genitourinary tract. Semin Diagn Pathol. 2015;32:140–59.

    Article  PubMed  Google Scholar 

  520. Martignoni G, Pea M, Reghellin D, Zamboni G, Bonetti F. PEComas: the past, the present and the future. Virchows Arch. 2008;452:119–32.

    Article  PubMed  Google Scholar 

  521. Martignoni G, Pea M, Reghellin D, Zamboni G, Bonetti F. Perivascular epithelioid cell tumor (PEComa) in the genitourinary tract. Adv Anat Pathol. 2007;14:36–41.

    Article  PubMed  Google Scholar 

  522. Hornick JL, Fletcher CD. Sclerosing PEComa: clinicopathologic analysis of a distinctive variant with a predilection for the retroperitoneum. Am J Surg Pathol. 2008;32:493–501.

    Article  PubMed  Google Scholar 

  523. Hornick JL, Fletcher CD. PEComa: what do we know so far? Histopathology. 2006;48:75–82.

    Article  PubMed  CAS  Google Scholar 

  524. Folpe AL, Mentzel T, Lehr HA, Fisher C, Balzer BL, Weiss SW. Perivascular epithelioid cell neoplasms of soft tissue and gynecologic origin: a clinicopathologic study of 26 cases and review of the literature. Am J Surg Pathol. 2005;29:1558–75.

    Article  PubMed  Google Scholar 

  525. Doyle LA, Hornick JL, Fletcher CD. PEComa of the gastrointestinal tract: clinicopathologic study of 35 cases with evaluation of prognostic parameters. Am J Surg Pathol. 2013;37:1769–82.

    Article  PubMed  Google Scholar 

  526. Bleeker JS, Quevedo JF, Folpe AL. “Malignant” perivascular epithelioid cell neoplasm: risk stratification and treatment strategies. Sarcoma. 2012;2012:541626.

    Article  PubMed  PubMed Central  Google Scholar 

  527. Alaggio R, Cecchetto G, Martignoni G, Bisogno G, Cheng L, Sperli D, d’Amore ES, Dall’Igna P. Malignant perivascular epithelioid cell tumor in children: description of a case and review of the literature. J Pediatr Surg. 2012;47:e31–40.

    Article  PubMed  Google Scholar 

  528. Shen Q, Rao Q, Xia QY, Yu B, Shi QL, Zhang RS, Zhou XJ. Perivascular epithelioid cell tumor (PEComa) with TFE3 gene rearrangement: clinicopathological, immunohistochemical, and molecular features. Virchows Arch. 2014;465:607–13.

    Article  PubMed  CAS  Google Scholar 

  529. Malinowska I, Kwiatkowski DJ, Weiss S, Martignoni G, Netto G, Argani P. Perivascular epithelioid cell tumors (PEComas) harboring TFE3 gene rearrangements lack the TSC2 alterations characteristic of conventional PEComas: further evidence for a biological distinction. Am J Surg Pathol. 2012;36:783–4.

    Article  PubMed  PubMed Central  Google Scholar 

  530. Chang KL, Folpe AL. Diagnostic utility of microphthalmia transcription factor in malignant melanoma and other tumors. Adv Anat Pathol. 2001;8:273–5.

    Article  PubMed  CAS  Google Scholar 

  531. Argani P, Aulmann S, Illei PB, Netto GJ, Ro J, Cho HY, Dogan S, Ladanyi M, Martignoni G, Goldblum JR, Weiss SW. A distinctive subset of PEComas harbors TFE3 gene fusions. Am J Surg Pathol. 2010;34:1395–406.

    Article  PubMed  Google Scholar 

  532. Rao Q, Cheng L, Xia QY, Liu B, Li L, Shi QL, Shi SS, Yu B, Zhang RS, Ma HH, Lu ZF, Tu P, Zhou XJ. Cathepsin K expression in a wide spectrum of perivascular epithelioid cell neoplasms (PEComas): a clinicopathological study emphasizing extrarenal PEComas. Histopathology. 2013;62:642–50.

    Article  PubMed  Google Scholar 

  533. Martignoni G, Bonetti F, Chilosi M, Brunelli M, Segala D, Amin MB, Argani P, Eble JN, Gobbo S, Pea M. Cathepsin K expression in the spectrum of perivascular epithelioid cell (PEC) lesions of the kidney. Mod Pathol. 2012;25:100–11.

    Article  PubMed  CAS  Google Scholar 

  534. Bleeker JS, Quevedo JF, Folpe AL. Malignant perivascular epithelioid cell tumor of the uterus. Rare Tumors. 2012;4:e14.

    Article  PubMed  PubMed Central  Google Scholar 

  535. Burke AP, Virmani R. Sarcomas of the great vessels. A clinicopathologic study. Cancer. 1993;71:1761–73.

    Article  PubMed  CAS  Google Scholar 

  536. Raaf HN, Raaf JH. Sarcomas related to the heart and vasculature. Semin Surg Oncol. 1994;10:374–82.

    Article  PubMed  CAS  Google Scholar 

  537. Keel SB, Bacha E, Mark EJ, Nielsen GP, Rosenberg AE. Primary pulmonary sarcoma: a clinicopathologic study of 26 cases. Mod Pathol. 1999;12:1124–31.

    PubMed  CAS  Google Scholar 

  538. Nishida N, Yutani C, Ishibashi-Ueda H, Tsukamoto Y, Ikeda Y, Nakamura Y. Histopathological characterization of aortic intimal sarcoma with multiple tumor emboli. Pathol Int. 2000;50:923–7.

    Article  PubMed  CAS  Google Scholar 

  539. Sebenik M, Ricci A Jr, DiPasquale B, Mody K, Pytel P, Jee KJ, Knuutila S, Scholes J. Undifferentiated intimal sarcoma of large systemic blood vessels: report of 14 cases with immunohistochemical profile and review of the literature. Am J Surg Pathol. 2005;29:1184–93.

    Article  PubMed  Google Scholar 

  540. Murthy MS, Meckstroth CV, Merkle BH, Huston JT, Cattaneo SM. Primary intimal sarcoma of pulmonary valve and trunk with osteogenic sarcomatous elements. Report of a case considered to be pulmonary embolus. Arch Pathol Lab Med. 1976;100:649–51.

    PubMed  CAS  Google Scholar 

  541. Laskin WB, Silverman TA, Enzinger FM. Postradiation soft tissue sarcomas. An analysis of 53 cases. Cancer. 1988;62:2330–40.

    Article  PubMed  CAS  Google Scholar 

  542. Weiss SW, Enzinger FM. Malignant fibrous histiocytoma: an analysis of 200 cases. Cancer. 1978;41:2250–66.

    Article  PubMed  CAS  Google Scholar 

  543. Le Doussal V, Coindre JM, Leroux A, Hacene K, Terrier P, Bui NB, Bonichon F, Collin F, Mandard AM, Contesso G. Prognostic factors for patients with localized primary malignant fibrous histiocytoma: a multicenter study of 216 patients with multivariate analysis. Cancer. 1996;77:1823–30.

    Article  PubMed  Google Scholar 

  544. Fletcher CD, Gustafson P, Rydholm A, Willen H, Akerman M. Clinicopathologic re-evaluation of 100 malignant fibrous histiocytomas: prognostic relevance of subclassification. J Clin Oncol. 2001;19:3045–50.

    Article  PubMed  CAS  Google Scholar 

  545. Coindre JM, Hostein I, Maire G, Derre J, Guillou L, Leroux A, Ghnassia JP, Collin F, Pedeutour F, Aurias A. Inflammatory malignant fibrous histiocytomas and dedifferentiated liposarcomas: histological review, genomic profile, and MDM2 and CDK4 status favour a single entity. J Pathol. 2004;203:822–30.

    Article  PubMed  CAS  Google Scholar 

  546. Tanas MR, Rubin BP, Tubbs RR, Billings SD, Downs-Kelly E, Goldblum JR. Utilization of fluorescence in situ hybridization in the diagnosis of 230 mesenchymal neoplasms: an institutional experience. Arch Pathol Lab Med. 2010;134:1797–803.

    Article  PubMed  Google Scholar 

  547. Cancer Genome Atlas Research Network. Electronic address edsc, Cancer Genome Atlas Research Network. Comprehensive and integrated genomic characterization of adult soft tissue sarcomas. Cell. 2017;171:950–65.e28.

    Article  CAS  Google Scholar 

  548. Fanburg-Smith JC, Spiro IJ, Katapuram SV, Mankin HJ, Rosenberg AE. Infiltrative subcutaneous malignant fibrous histiocytoma: a comparative study with deep malignant fibrous histiocytoma and an observation of biologic behavior. Ann Diagn Pathol. 1999;3:1–10.

    Article  PubMed  CAS  Google Scholar 

  549. Kawamura-Saito M, Yamazaki Y, Kaneko K, Kawaguchi N, Kanda H, Mukai H, Gotoh T, Motoi T, Fukayama M, Aburatani H, Takizawa T, Nakamura T. Fusion between CIC and DUX4 up-regulates PEA3 family genes in Ewing-like sarcomas with t(4;19)(q35;q13) translocation. Hum Mol Genet. 2006;15:2125–37.

    Article  PubMed  CAS  Google Scholar 

  550. Italiano A, Sung YS, Zhang L, Singer S, Maki RG, Coindre JM, Antonescu CR. High prevalence of CIC fusion with double-homeobox (DUX4) transcription factors in EWSR1-negative undifferentiated small blue round cell sarcomas. Genes Chromosomes Cancer. 2012;51:207–18.

    Article  PubMed  CAS  Google Scholar 

  551. Graham C, Chilton-MacNeill S, Zielenska M, Somers GR. The CIC-DUX4 fusion transcript is present in a subgroup of pediatric primitive round cell sarcomas. Hum Pathol. 2012;43:180–9.

    Article  PubMed  CAS  Google Scholar 

  552. Sugita S, Arai Y, Tonooka A, Hama N, Totoki Y, Fujii T, Aoyama T, Asanuma H, Tsukahara T, Kaya M, Shibata T, Hasegawa T. A novel CIC-FOXO4 gene fusion in undifferentiated small round cell sarcoma: a genetically distinct variant of Ewing-like sarcoma. Am J Surg Pathol. 2014;38:1571–6.

    Article  PubMed  Google Scholar 

  553. Solomon DA, Brohl AS, Khan J, Miettinen M. Clinicopathologic features of a second patient with Ewing-like sarcoma harboring CIC-FOXO4 gene fusion. Am J Surg Pathol. 2014;38:1724–5.

    Article  PubMed  PubMed Central  Google Scholar 

  554. Smith SC, Buehler D, Choi EY, McHugh JB, Rubin BP, Billings SD, Balzer B, Thomas DG, Lucas DR, Goldblum JR, Patel RM. CIC-DUX sarcomas demonstrate frequent MYC amplification and ETS-family transcription factor expression. Mod Pathol. 2015;28:57–68.

    Article  PubMed  CAS  Google Scholar 

  555. Hung YP, Fletcher CD, Hornick JL. Evaluation of NKX2-2 expression in round cell sarcomas and other tumors with EWSR1 rearrangement: imperfect specificity for Ewing sarcoma. Mod Pathol. 2016;29:370–80.

    Article  PubMed  CAS  Google Scholar 

  556. Siegele B, Roberts J, Black JO, Rudzinski E, Vargas SO, Galambos C. DUX4 immunohistochemistry is a highly sensitive and specific marker for CIC-DUX4 fusion-positive round cell tumor. Am J Surg Pathol. 2017;41:423–9.

    Article  PubMed  Google Scholar 

  557. Yoshida A, Goto K, Kodaira M, Kobayashi E, Kawamoto H, Mori T, Yoshimoto S, Endo O, Kodama N, Kushima R, Hiraoka N, Motoi T, Kawai A. CIC-rearranged sarcomas: a study of 20 cases and comparisons with Ewing sarcomas. Am J Surg Pathol. 2016;40:313–23.

    Article  PubMed  Google Scholar 

  558. Choi EY, Thomas DG, McHugh JB, Patel RM, Roulston D, Schuetze SM, Chugh R, Biermann JS, Lucas DR. Undifferentiated small round cell sarcoma with t(4;19)(q35;q13.1) CIC-DUX4 fusion: a novel highly aggressive soft tissue tumor with distinctive histopathology. Am J Surg Pathol. 2013;37:1379–86.

    Article  PubMed  Google Scholar 

  559. Antonescu CR, Owosho AA, Zhang L, Chen S, Deniz K, Huryn JM, Kao YC, Huang SC, Singer S, Tap W, Schaefer IM, Fletcher CD. Sarcomas with CIC-rearrangements are a distinct pathologic entity with aggressive outcome: a clinicopathologic and molecular study of 115 cases. Am J Surg Pathol. 2017;41:941–9.

    Article  PubMed  PubMed Central  Google Scholar 

  560. Yamada Y, Kuda M, Kohashi K, Yamamoto H, Takemoto J, Ishii T, Iura K, Maekawa A, Bekki H, Ito T, Otsuka H, Kuroda M, Honda Y, Sumiyoshi S, Inoue T, Kinoshita N, Nishida A, Yamashita K, Ito I, Komune S, Taguchi T, Iwamoto Y, Oda Y. Histological and immunohistochemical characteristics of undifferentiated small round cell sarcomas associated with CIC-DUX4 and BCOR-CCNB3 fusion genes. Virchows Arch. 2017;470:373–80.

    Article  PubMed  CAS  Google Scholar 

  561. Pierron G, Tirode F, Lucchesi C, Reynaud S, Ballet S, Cohen-Gogo S, Perrin V, Coindre JM, Delattre O. A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion. Nat Genet. 2012;44:461–6.

    Article  PubMed  CAS  Google Scholar 

  562. Kao YC, Sung YS, Zhang L, Jungbluth AA, Huang SC, Argani P, Agaram NP, Zin A, Alaggio R, Antonescu CR. BCOR overexpression is a highly sensitive marker in round cell sarcomas with BCOR genetic abnormalities. Am J Surg Pathol. 2016;40:1670–8.

    Article  PubMed  PubMed Central  Google Scholar 

  563. Ludwig K, Alaggio R, Zin A, Peron M, Guzzardo V, Benini S, Righi A, Gambarotti M. BCOR-CCNB3 undifferentiated sarcoma-does immunohistochemistry help in the identification? Pediatr Dev Pathol. 2017;20:321–9.

    Article  PubMed  Google Scholar 

  564. Specht K, Zhang L, Sung YS, Nucci M, Dry S, Vaiyapuri S, Richter GH, Fletcher CD, Antonescu CR. Novel BCOR-MAML3 and ZC3H7B-BCOR gene fusions in undifferentiated small blue round cell sarcomas. Am J Surg Pathol. 2016;40:433–42.

    Article  PubMed  PubMed Central  Google Scholar 

  565. Peters TL, Kumar V, Polikepahad S, Lin FY, Sarabia SF, Liang Y, Wang WL, Lazar AJ, Doddapaneni H, Chao H, Muzny DM, Wheeler DA, Okcu MF, Plon SE, Hicks MJ, Lopez-Terrada D, Parsons DW, Roy A. BCOR-CCNB3 fusions are frequent in undifferentiated sarcomas of male children. Mod Pathol. 2015;28:575–86.

    Article  PubMed  CAS  Google Scholar 

  566. Matsuyama A, Shiba E, Umekita Y, Nosaka K, Kamio T, Yanai H, Miyasaka C, Watanabe R, Ito I, Tamaki T, Hayashi S, Hisaoka M. Clinicopathologic diversity of undifferentiated sarcoma with BCOR-CCNB3 fusion: analysis of 11 cases with a reappraisal of the utility of immunohistochemistry for BCOR and CCNB3. Am J Surg Pathol. 2017;41:1713–21.

    Article  PubMed  Google Scholar 

  567. Li WS, Liao IC, Wen MC, Lan HH, Yu SC, Huang HY. BCOR-CCNB3-positive soft tissue sarcoma with round-cell and spindle-cell histology: a series of four cases highlighting the pitfall of mimicking poorly differentiated synovial sarcoma. Histopathology. 2016;69:792–801.

    Article  PubMed  Google Scholar 

  568. Haller F, Knopf J, Ackermann A, Bieg M, Kleinheinz K, Schlesner M, Moskalev EA, Will R, Satir AA, Abdelmagid IE, Giedl J, Carbon R, Rompel O, Hartmann A, Wiemann S, Metzler M, Agaimy A. Paediatric and adult soft tissue sarcomas with NTRK1 gene fusions: a subset of spindle cell sarcomas unified by a prominent myopericytic/haemangiopericytic pattern. J Pathol. 2016;238:700–10.

    Article  PubMed  CAS  Google Scholar 

  569. Miettinen M, Furlong M, Sarlomo-Rikala M, Burke A, Sobin LH, Lasota J. Gastrointestinal stromal tumors, intramural leiomyomas, and leiomyosarcomas in the rectum and anus: a clinicopathologic, immunohistochemical, and molecular genetic study of 144 cases. Am J Surg Pathol. 2001;25:1121–33.

    Article  CAS  PubMed  Google Scholar 

  570. Miettinen M, Lasota J, Sobin LH. Gastrointestinal stromal tumors of the stomach in children and young adults: a clinicopathologic, immunohistochemical, and molecular genetic study of 44 cases with long-term follow-up and review of the literature. Am J Surg Pathol. 2005;29:1373–81.

    Article  PubMed  Google Scholar 

  571. Miettinen M, Makhlouf H, Sobin LH, Lasota J. Gastrointestinal stromal tumors of the jejunum and ileum: a clinicopathologic, immunohistochemical, and molecular genetic study of 906 cases before imatinib with long-term follow-up. Am J Surg Pathol. 2006;30:477–89.

    Article  PubMed  Google Scholar 

  572. Miettinen M, Monihan JM, Sarlomo-Rikala M, Kovatich AJ, Carr NJ, Emory TS, Sobin LH. Gastrointestinal stromal tumors/smooth muscle tumors (GISTs) primary in the omentum and mesentery: clinicopathologic and immunohistochemical study of 26 cases. Am J Surg Pathol. 1999;23:1109–18.

    Article  PubMed  CAS  Google Scholar 

  573. Miettinen M, Sobin LH. Gastrointestinal stromal tumors in the appendix: a clinicopathologic and immunohistochemical study of four cases. Am J Surg Pathol. 2001;25:1433–7.

    Article  PubMed  CAS  Google Scholar 

  574. Miettinen M, Sobin LH, Lasota J. Gastrointestinal stromal tumors presenting as omental masses – a clinicopathologic analysis of 95 cases. Am J Surg Pathol. 2009;33:1267–75.

    Article  PubMed  Google Scholar 

  575. Miettinen M, Lasota J. Gastrointestinal stromal tumors: review on morphology, molecular pathology, prognosis, and differential diagnosis. Arch Pathol Lab Med. 2006;130:1466–78.

    Article  PubMed  CAS  Google Scholar 

  576. Miettinen M, Fetsch JF, Sobin LH, Lasota J. Gastrointestinal stromal tumors in patients with neurofibromatosis 1: a clinicopathologic and molecular genetic study of 45 cases. Am J Surg Pathol. 2006;30:90–6.

    Article  PubMed  Google Scholar 

  577. Miettinen M, Killian JK, Wang ZF, Lasota J, Lau C, Jones L, Walker R, Pineda M, Zhu YJ, Kim SY, Helman L, Meltzer P. Immunohistochemical loss of succinate dehydrogenase subunit A (SDHA) in gastrointestinal stromal tumors (GISTs) signals SDHA germline mutation. Am J Surg Pathol. 2013;37:234–40.

    Article  PubMed  PubMed Central  Google Scholar 

  578. Miettinen M, Sobin LH, Sarlomo-Rikala M. Immunohistochemical spectrum of GISTs at different sites and their differential diagnosis with a reference to CD117 (KIT). Mod Pathol. 2000;13:1134–42.

    Article  PubMed  CAS  Google Scholar 

  579. Miettinen M. Gastrointestinal stromal tumors. An immunohistochemical study of cellular differentiation. Am J Clin Pathol. 1988;89:601–10.

    Article  PubMed  CAS  Google Scholar 

  580. Miettinen M, Virolainen M, Maarit Sarlomo R. Gastrointestinal stromal tumors – value of CD34 antigen in their identification and separation from true leiomyomas and schwannomas. Am J Surg Pathol. 1995;19:207–16.

    Article  PubMed  CAS  Google Scholar 

  581. Miettinen M, Wang ZF, Lasota J. DOG1 antibody in the differential diagnosis of gastrointestinal stromal tumors: a study of 1840 cases. Am J Surg Pathol. 2009;33:1401–8.

    Article  PubMed  Google Scholar 

  582. Steigen SE, Eide TJ, Wasag B, Lasota J, Miettinen M. Mutations in gastrointestinal stromal tumors – a population-based study from Northern Norway. APMIS. 2007;115:289–98.

    Article  PubMed  CAS  Google Scholar 

  583. Yang J, Du X, Lazar AJ, Pollock R, Hunt K, Chen K, Hao X, Trent J, Zhang W. Genetic aberrations of gastrointestinal stromal tumors. Cancer. 2008;113:1532–43.

    Article  PubMed  CAS  Google Scholar 

  584. Wang WL, Conley A, Reynoso D, Nolden L, Lazar AJ, George S, Trent JC. Mechanisms of resistance to imatinib and sunitinib in gastrointestinal stromal tumor. Cancer Chemother Pharmacol. 2011;67(Suppl 1):S15–24.

    Article  PubMed  CAS  Google Scholar 

  585. Lasota J, Miettinen M. Clinical significance of oncogenic KIT and PDGFRA mutations in gastrointestinal stromal tumours. Histopathology. 2008;53:245–66.

    Article  PubMed  CAS  Google Scholar 

  586. Boikos SA, Pappo AS, Killian JK, LaQuaglia MP, Weldon CB, George S, Trent JC, von Mehren M, Wright JA, Schiffman JD, Raygada M, Pacak K, Meltzer PS, Miettinen MM, Stratakis C, Janeway KA, Helman LJ. Molecular subtypes of KIT/PDGFRA wild-type gastrointestinal stromal tumors: a report from the National Institutes of Health Gastrointestinal Stromal Tumor Clinic. JAMA Oncol. 2016;2:922–8.

    Article  PubMed  PubMed Central  Google Scholar 

  587. Miettinen M, Wang ZF, Sarlomo-Rikala M, Osuch C, Rutkowski P, Lasota J. Succinate dehydrogenase-deficient GISTs: a clinicopathologic, immunohistochemical, and molecular genetic study of 66 gastric GISTs with predilection to young age. Am J Surg Pathol. 2011;35:1712–21.

    Article  PubMed  PubMed Central  Google Scholar 

  588. Demetri GD, von Mehren M, Antonescu CR, DeMatteo RP, Ganjoo KN, Maki RG, Pisters PW, Raut CP, Riedel RF, Schuetze S, Sundar HM, Trent JC, Wayne JD. NCCN Task Force report: update on the management of patients with gastrointestinal stromal tumors. J Natl Compr Cancer Netw. 2010;8 Suppl 2:S1–41; quiz S2–4.

    Google Scholar 

  589. Patel S. Navigating risk stratification systems for the management of patients with GIST. Ann Surg Oncol. 2011;18:1698–704.

    Article  PubMed  Google Scholar 

  590. Miettinen M, Lasota J. Succinate dehydrogenase deficient gastrointestinal stromal tumors (GISTs) – a review. Int J Biochem Cell Biol. 2014;53:514–9.

    Article  PubMed  CAS  Google Scholar 

  591. Dumont AG, Rink L, Godwin AK, Miettinen M, Joensuu H, Strosberg JR, Gronchi A, Corless CL, Goldstein D, Rubin BP, Maki RG, Lazar AJ, Lev D, Trent JC, von Mehren M. A nonrandom association of gastrointestinal stromal tumor (GIST) and desmoid tumor (deep fibromatosis): case series of 28 patients. Ann Oncol. 2012;23:1335–40.

    Article  PubMed  CAS  Google Scholar 

  592. Miettinen M, Kraszewska E, Sobin LH, Lasota J. A nonrandom association between gastrointestinal stromal tumors and myeloid leukemia. Cancer. 2008;112:645–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Lien Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, WL., Lazar, A.J. (2020). Soft Tissue. In: Moran, C.A., Kalhor, N., Weissferdt, A. (eds) Oncological Surgical Pathology . Springer, Cham. https://doi.org/10.1007/978-3-319-96681-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96681-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96680-9

  • Online ISBN: 978-3-319-96681-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics