Skip to main content

Breast Pathology

  • Chapter
  • First Online:
Oncological Surgical Pathology

Abstract

This chapter covers pertinent topics of breast pathology in a comprehensive fashion that will be useful for surgical pathology practice. The concise and thorough description of surgical pathology of breast diseases including normal anatomy, proliferative lesions, fibroepithelial lesions, myoepithelial lesions, papillary tumors, and malignant tumors is included in this chapter. In addition, the chapter includes the evaluation of breast surgical specimens and axillary lymph nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schoenwolf GC, Bleyl SB, Brauer PR. Larsen’s human embryology. 5th ed. Edinburgh: Churchill Livingstone; 2014.

    Google Scholar 

  2. Jensen HM. In: Bulbrook RD, Taylor DJ, editors. Breast pathology, emphasizing precancerous and cancer-associated lesions. Commentaries on research in breast disease, Vol. 2. New York: Liss; 1981.

    Google Scholar 

  3. Collins LC, Schnitt SJ. In: Mills SE, editor. Histology for pathologists; 2012.

    Google Scholar 

  4. Bocker W, et al. An immunohistochemical study of the breast using antibodies to basal and luminal keratins, alpha-smooth muscle actin, vimentin, collagen IV and laminin. Part I: Normal breast and benign proliferative lesions. Virchows Arch A Pathol Anat Histopathol. 1992;421:315–22.

    PubMed  CAS  Google Scholar 

  5. Yaziji H, Gown AM, Sneige N. Detection of stromal invasion in breast cancer: the myoepithelial markers. Adv Anat Pathol. 2000;7:100–9.

    PubMed  CAS  Google Scholar 

  6. Santagata S, et al. Taxonomy of breast cancer based on normal cell phenotype predicts outcome. J Clin Invest. 2014;124:859–70. https://doi.org/10.1172/JCI70941.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Keller PJ, et al. Mapping the cellular and molecular heterogeneity of normal and malignant breast tissues and cultured cell lines. Breast Cancer Res. 2010;12:R87. https://doi.org/10.1186/bcr2755.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lester SC. In: Kumar V, Abbas AK, Aster JC, editors. Robbins & Cotran pathologic basis of disease; 2014.

    Google Scholar 

  9. McCuaig R, Wu F, Dunn J, Rao S, Dahlstrom JE. The biological and clinical significance of stromal-epithelial interactions in breast cancer. Pathology. 2017;49:133–40. https://doi.org/10.1016/j.pathol.2016.10.009.

    Article  PubMed  CAS  Google Scholar 

  10. Dupont WD, Page DL. Risk factors for breast cancer in women with proliferative breast disease. N Engl J Med. 1985;312:146–51.

    PubMed  CAS  Google Scholar 

  11. Fitzgibbons PL, Henson DE, Hutter RV. Benign breast changes and the risk for subsequent breast cancer: an update of the 1985 consensus statement. Cancer Committee of the College of American Pathologists. Arch Pathol Lab Med. 1998;122:1053–5.

    PubMed  CAS  Google Scholar 

  12. Schnitt SJ, Morrow M, Tung NM. Refining risk assessment in women with benign breast disease: an ongoing dilemma. J Natl Cancer Inst. 2017;109:1–2.

    Google Scholar 

  13. Page DL, Dupont WD, Rogers LW, et al. Atypical hyperplastic lesions of the female breast. A long-term follow-up study. Cancer. 1985;55:2698–708.

    PubMed  CAS  Google Scholar 

  14. Tavassoli FA, Norris HJ. A comparison of the results of long-term follow-up for atypical intraductal hyperplasia and intraductal hyperplasia of the breast. Cancer. 1990;65:518–29.

    PubMed  CAS  Google Scholar 

  15. Sneige N, Lim SC, Whitman GJ, et al. Atypical ductal hyperplasia diagnosis by directional vacuum-assisted stereotactic biopsy of breast microcalcifications. Considerations for surgical excision. Am J Clin Pathol. 2003;119:248–53.

    PubMed  Google Scholar 

  16. Menen RS, Ganesan N, Bevers T, et al. Long-term safety of observation in selected women following core biopsy diagnosis of atypical ductal hyperplasia. Ann Surg Oncol. 2017;24:70–6.

    PubMed  Google Scholar 

  17. Nguyen CV, Albarracin CT, Whitman GJ, et al. Atypical ductal hyperplasia in directional vacuum-assisted biopsy of breast microcalcifications: considerations for surgical excision. Ann Surg Oncol. 2011;18:752–61.

    PubMed  Google Scholar 

  18. Moinfar F, Man YG, Lininger RA, et al. Use of keratin 35betaE12 as an adjunct in the diagnosis of mammary intraepithelial neoplasia-ductal type--benign and malignant intraductal proliferations. Am J Surg Pathol. 1999;23:1048–58.

    PubMed  CAS  Google Scholar 

  19. Otterbach F, Bankfalvi A, Bergner S, et al. Cytokeratin 5/6 immunohistochemistry assists the differential diagnosis of atypical proliferations of the breast. Histopathology. 2000;37:232–40.

    PubMed  CAS  Google Scholar 

  20. Lacroix-Triki M, Mery E, Voigt JJ, et al. Value of cytokeratin 5/6 immunostaining using D5/16 B4 antibody in the spectrum of proliferative intraepithelial lesions of the breast. A comparative study with 34betaE12 antibody. Virchows Arch. 2003;442:548–54.

    PubMed  CAS  Google Scholar 

  21. Bombonati A, Sgroi DC. The molecular pathology of breast cancer progression. J Pathol. 2011;223:307–17.

    PubMed  CAS  Google Scholar 

  22. Resetkova E, Khazai L, Albarracin CT, Arribas E. Clinical and radiologic data and core needle biopsy findings should dictate management of cellular fibroepithelial tumors of the breast. Breast J. 2010;16:573–80.

    PubMed  Google Scholar 

  23. Schuerch C 3rd, Rosen PP, Hirota T, et al. A pathologic study of benign breast diseases in Tokyo and New York. Cancer. 1982;50:1899–903.

    PubMed  Google Scholar 

  24. Nassar A, Visscher DW, Degnim AC, et al. Complex fibroadenoma and breast cancer risk: a Mayo Clinic Benign Breast Disease Cohort Study. Breast Cancer Res Treat. 2015;153:397–405.

    PubMed  PubMed Central  Google Scholar 

  25. Goehring C, Morabia A. Epidemiology of benign breast disease, with special attention to histologic types. Epidemiol Rev. 1997;19:310–27.

    PubMed  CAS  Google Scholar 

  26. Santen RJ, Mansel R. Benign breast disorders. N Engl J Med. 2005;353:275–85.

    PubMed  CAS  Google Scholar 

  27. Kuijper A, Mommers EC, van der Wall E, van Diest PJ. Histopathology of fibroadenoma of the breast. Am J Clin Pathol. 2001;115:736–42.

    PubMed  CAS  Google Scholar 

  28. Lee M, Soltanian HT. Breast fibroadenomas in adolescents: current perspectives. Adolesc Health Med Ther. 2015;6:159–63.

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Azzopardi JG, Ahmed A, Millis RR. Problems in breast pathology. Major Probl Pathol. 1979;11:i–xvi, 1–466.

    PubMed  Google Scholar 

  30. Carney JA, Toorkey BC. Ductal adenoma of the breast with tubular features. A probable component of the complex of myxomas, spotty pigmentation, endocrine overactivity, and schwannomas. Am J Surg Pathol. 1991;15:722–31.

    PubMed  CAS  Google Scholar 

  31. Carney JA, Gordon H, Carpenter PC, Shenoy BV, Go VL. The complex of myxomas, spotty pigmentation, and endocrine overactivity. Medicine. 1985;64:270–83.

    PubMed  CAS  Google Scholar 

  32. Kirschner LS, Carney JA, Pack SD, et al. Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nat Genet. 2000;26:89–92.

    PubMed  CAS  Google Scholar 

  33. Lozada JR, Burke KA, Maguire A, et al. Myxoid fibroadenomas differ from conventional fibroadenomas: a hypothesis-generating study. Histopathology. 2017;71:626–34.

    PubMed  PubMed Central  Google Scholar 

  34. Lakhani SR, Ellis IO, Schnitt SJ, Tang PH, van de Vijver MJ, editors. WHO classification of tumours of the breast. Lyon, France: International Agancy for Research on Cancer; 2012.

    Google Scholar 

  35. Dupont WD, Page DL, Parl FF, Vnencak-Jones CL, Plummer WD Jr, Rados MS, Schuyler PA. Long-term risk of breast cancer in women with fibroadenoma. N Engl J Med. 1994;331:10–5.

    PubMed  CAS  Google Scholar 

  36. Sklair-Levy M, Sella T, Alweiss T, Craciun I, Libson E, Mally B. Incidence and management of complex fibroadenomas. AJR Am J Roentgenol. 2008;190:214–8.

    PubMed  Google Scholar 

  37. Mies C, Rosen PP. Juvenile fibroadenoma with atypical epithelial hyperplasia. Am J Surg Pathol. 1987;11:184–90.

    PubMed  CAS  Google Scholar 

  38. Pike AM, Oberman HA. Juvenile (cellular) adenofibromas. A clinicopathologic study. Am J Surg Pathol. 1985;9:730–6.

    PubMed  CAS  Google Scholar 

  39. Ross DS, Giri DD, Akram MM, et al. Fibroepithelial lesions in the breast of adolescent females: a clinicopathological study of 54 cases. Breast J. 2017;23:182–92.

    PubMed  Google Scholar 

  40. Page DL. Diagnostic histopathology of the breast. Edinburgh: Churchill Livingstone; 1993.

    Google Scholar 

  41. Wulsin JH. Large breast tumors in adolescent females. Ann Surg. 1960;152:151–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Farrow JH, Ashikari H. Breast lesions in young girls. Surg Clin North Am. 1969;49:261–9.

    PubMed  CAS  Google Scholar 

  43. Amerson JR. Cystosarcoma phyllodes in adolescent females. A report of seven patients. Ann Surg. 1970;171:849–56.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Fekete P, Petrek J, Majmudar B, Someren A, Sandberg W. Fibroadenomas with stromal cellularity. A clinicopathologic study of 21 patients. Arch Pathol Lab Med. 1987;111:427–32.

    PubMed  CAS  Google Scholar 

  45. Jayasinghe Y, Simmons PS. Fibroadenomas in adolescence. Curr Opin Obstet Gynecol. 2009;21:402–6.

    PubMed  Google Scholar 

  46. Nambiar R, Kutty MK. Giant fibro-adenoma (cystosarcoma phyllodes) in adolescent females–a clinicopathological study. Br J Surg. 1974;61:113–7.

    PubMed  CAS  Google Scholar 

  47. Sosin M, Pulcrano M, Feldman ED, et al. Giant juvenile fibroadenoma: a systematic review with diagnostic and treatment recommendations. Gland Surg. 2015;4:312–21.

    PubMed  PubMed Central  Google Scholar 

  48. Gobbi D, Dall’Igna P, Alaggio R, Nitti D, Cecchetto G. Giant fibroadenoma of the breast in adolescents: report of 2 cases. J Pediatr Surg. 2009;44:e39–41.

    PubMed  Google Scholar 

  49. Fitzgibbons PL, Henson DE, Hutter RV. Benign breast changes and the risk for subsequent breast cancer: an update of the 1985 consensus statement. Cancer Committee of the College of American Pathologists. Arch Pathol Lab Med. 1998;122:1053–5.

    PubMed  CAS  Google Scholar 

  50. Carter BA, Page DL, Schuyler P, et al. No elevation in long-term breast carcinoma risk for women with fibroadenomas that contain atypical hyperplasia. Cancer. 2001;92:30–6.

    PubMed  CAS  Google Scholar 

  51. Abe H, Hanasawa K, Naitoh H, Endo Y, Tani T, Kushima R. Invasive ductal carcinoma within a fibroadenoma of the breast. Int J Clin Oncol. 2004;9:334–8.

    PubMed  Google Scholar 

  52. Ma XL, Kang L, Li BJ, He CN, Zhao HF. Invasive ductal carcinoma displayed “basal-like” feature arising within a breast fibroadenoma. Breast J. 2016;22:695–6.

    PubMed  Google Scholar 

  53. Butler R, Pinsky R, Jorns JM. Alveolar variant of invasive lobular carcinoma in a fibroadenoma. Breast J. 2012;18:613–4.

    PubMed  Google Scholar 

  54. Maiorano E, Albrizio M. Tubular adenoma of the breast: an immunohistochemical study of ten cases. Pathol Res Pract. 1995;191:1222–30.

    PubMed  CAS  Google Scholar 

  55. Salemis NS, Gemenetzis G, Karagkiouzis G, et al. Tubular adenoma of the breast: a rare presentation and review of the literature. J Clin Med Res. 2012;4:64–7.

    PubMed  PubMed Central  Google Scholar 

  56. McKenna AM, Pintilie M, Youngson B, Done SJ. Quantification of the morphologic features of fibroepithelial tumors of the breast. Arch Pathol Lab Med. 2007;131:1568–73.

    PubMed  Google Scholar 

  57. Karim RZ, Gerega SK, Yang YH, et al. Phyllodes tumours of the breast: a clinicopathological analysis of 65 cases from a single institution. Breast (Edinburgh, Scotland). 2009;18:165–70.

    CAS  Google Scholar 

  58. Tavassoli FA. Pathology of the breast. New York: McGraw-Hill; 2000.

    Google Scholar 

  59. Ward RM, Evans HL. Cystosarcoma phyllodes. A clinicopathologic study of 26 cases. Cancer. 1986;58:2282–9.

    PubMed  CAS  Google Scholar 

  60. Hawkins RE, Schofield JB, Fisher C, Wiltshaw E, McKinna JA. The clinical and histologic criteria that predict metastases from cystosarcoma phyllodes. Cancer. 1992;69:141–7.

    PubMed  CAS  Google Scholar 

  61. Tan PH, Jayabaskar T, Chuah KL, et al. Phyllodes tumors of the breast: the role of pathologic parameters. Am J Clin Pathol. 2005;123:529–40.

    PubMed  Google Scholar 

  62. Barth RJ Jr. Histologic features predict local recurrence after breast conserving therapy of phyllodes tumors. Breast Cancer Res Treat. 1999;57:291–5.

    PubMed  Google Scholar 

  63. Lenhard MS, Kahlert S, Himsl I, Ditsch N, Untch M, Bauerfeind I. Phyllodes tumour of the breast: clinical follow-up of 33 cases of this rare disease. Eur J Obstet Gynecol Reprod Biol. 2008;138:217–21.

    PubMed  Google Scholar 

  64. Moffat CJ, Pinder SE, Dixon AR, Elston CW, Blamey RW, Ellis IO. Phyllodes tumours of the breast: a clinicopathological review of thirty-two cases. Histopathology. 1995;27:205–18.

    PubMed  CAS  Google Scholar 

  65. Jacobs TW, Chen YY, Guinee DG Jr, et al. Fibroepithelial lesions with cellular stroma on breast core needle biopsy: are there predictors of outcome on surgical excision? Am J Clin Pathol. 2005;124:342–54.

    PubMed  Google Scholar 

  66. Zhang S, Kasznica J, Chandrasekhar R, Wilding G, Khoury T. Fibroepithelial lesion with cellular stroma: topoisomerase 2 is a helpful marker to differentiate fibroadenoma from phyllodes tumor on needle core biopsy. 99th Annual Meeting United States and Canadian Academy of Pathology. Washington, DC, 2010.

    Google Scholar 

  67. ElDemellawy D. Diagnostic utility of WT-1, Ki 67 and CD117 in fibroepithelial lesions of the breast 2010.

    Google Scholar 

  68. Phyllodes Tumor Version 3. 2017. Accessed January 7, 2018, at https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf.

  69. Phyllodes Tumor Practice Algorithm. 2017. Accessed January 7, 2018, at https://www.mdanderson.org/documents/for-physicians/algorithms/cancer-treatment/ca-treatment-phyllodes-web-algorithm.pdf.

  70. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59(4):225–49.

    PubMed  Google Scholar 

  71. Gapstur SM, Morrow M, Sellers TA. Hormone replacement therapy and risk of breast cancer with a favorable histology: results of the Iowa Women’s Health Study. JAMA. 1999;281(22):2091–7.

    PubMed  CAS  Google Scholar 

  72. Hwang ES, McLennan JL, Moore DH, Crawford BB, Esserman LJ, Ziegler JL. Ductal carcinoma in situ in BRCA mutation carriers. J Clin Oncol. 2007;25(6):642–7.

    PubMed  Google Scholar 

  73. Ernster VL, Barclay J, Kerlikowske K, Wilkie H, Ballard-Barbash R. Mortality among women with ductal carcinoma in situ of the breast in the population-based surveillance, epidemiology and end results program. Arch Intern Med. 2000;160(7):953–8.

    PubMed  CAS  Google Scholar 

  74. Stuart KE, Houssami N, Taylor R, Hayen A, Boyages J. Long-term outcomes of ductal carcinoma in situ of the breast: a systematic review, meta-analysis and meta-regression analysis. BMC Cancer. 2015;15:890.

    PubMed  PubMed Central  Google Scholar 

  75. Patnick J. NHS breast screening programme annual review 2010: Overcoming Barriers 2010.

    Google Scholar 

  76. Bijker N, Meijnen P, Peterse JL, et al. Breast-conserving treatment with or without radiotherapy in ductal carcinoma-in-situ: ten-year results of European Organisation for Research and Treatment of Cancer randomized phase III trial 10853–a study by the EORTC Breast Cancer Cooperative Group and EORTC Radiotherapy Group. J Clin Oncol. 2006;24(21):3381–7.

    PubMed  Google Scholar 

  77. Brennan ME, Turner RM, Ciatto S, et al. Ductal carcinoma in situ at core-needle biopsy: meta-analysis of underestimation and predictors of invasive breast cancer. Radiology. 2011;260(1):119–28.

    PubMed  Google Scholar 

  78. Wallis M, Tardivon A, Helbich T, Schreer I. Guidelines from the European Society of Breast Imaging for diagnostic interventional breast procedures. Eur Radiol. 2007;17(2):581–8.

    PubMed  Google Scholar 

  79. Jackman RJ, Rodriguez-Soto J. Breast microcalcifications: retrieval failure at prone stereotactic core and vacuum breast biopsy–frequency, causes, and outcome. Radiology. 2006;239(1):61–70.

    PubMed  Google Scholar 

  80. Kuhl CK, Schrading S, Bieling HB, et al. MRI for diagnosis of pure ductal carcinoma in situ: a prospective observational study. Lancet (London, England). 2007;370(9586):485–92.

    Google Scholar 

  81. Morrow M, Van Zee KJ, Solin LJ, et al. Society of Surgical Oncology-American Society for Radiation Oncology-American Society of Clinical Oncology Consensus Guideline on Margins for Breast-Conserving Surgery with Whole-Breast Irradiation in Ductal Carcinoma In Situ. Ann Surg Oncol. 2016;23(12):3801–10.

    PubMed  PubMed Central  Google Scholar 

  82. Consensus Conference on the classification of ductal carcinoma in situ. The Consensus Conference Committee. Cancer. 1997;80(9):1798–802.

    Google Scholar 

  83. Schwartz GF, Patchefsky AS, Finklestein SD, et al. Nonpalpable in situ ductal carcinoma of the breast. Predictors of multicentricity and microinvasion and implications for treatment. Arch Surg (Chicago, IL: 1960). 1989;124(1):29–32.

    CAS  Google Scholar 

  84. Lari SA, Kuerer HM. Biological markers in DCIS and risk of breast recurrence: a systematic review. J Cancer. 2011;2:232–61.

    PubMed  PubMed Central  Google Scholar 

  85. Gorringe KL, Fox SB. Ductal carcinoma in situ biology, biomarkers, and diagnosis. Front Oncol. 2017;7:248.

    PubMed  PubMed Central  Google Scholar 

  86. Rakovitch E, Nofech-Mozes S, Hanna W, et al. A population-based validation study of the DCIS Score predicting recurrence risk in individuals treated by breast-conserving surgery alone. Breast Cancer Res Treat. 2015;152(2):389–98.

    PubMed  PubMed Central  Google Scholar 

  87. Solin LJ, Gray R, Baehner FL, et al. A multigene expression assay to predict local recurrence risk for ductal carcinoma in situ of the breast. J Natl Cancer Inst. 2013;105(10):701–10.

    PubMed  PubMed Central  CAS  Google Scholar 

  88. Allred DC. Issues and updates: evaluating estrogen receptor-alpha, progesterone receptor, and HER2 in breast cancer. Mod Pathol. 2010;23(Suppl 2):S52–9.

    PubMed  CAS  Google Scholar 

  89. Allred DC, Anderson SJ, Paik S, et al. Adjuvant tamoxifen reduces subsequent breast cancer in women with estrogen receptor-positive ductal carcinoma in situ: a study based on NSABP protocol B-24. J Clin Oncol. 2012;30(12):1268–73.

    PubMed  PubMed Central  CAS  Google Scholar 

  90. Allred DC, Carlson RW, Berry DA, et al. NCCN Task Force Report: estrogen receptor and progesterone receptor testing in breast cancer by immunohistochemistry. J Natl Compr Canc Netw. 2009;7(Suppl 6):S1–S21. quiz S22–23

    PubMed  CAS  Google Scholar 

  91. Fisher B, Dignam J, Wolmark N, et al. Tamoxifen in treatment of intraductal breast cancer: National Surgical Adjuvant Breast and Bowel Project B-24 randomised controlled trial. Lancet (London, England). 1999;353(9169):1993–2000.

    CAS  Google Scholar 

  92. Hammond ME, Hayes DF, Dowsett M, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version). Arch Pathol Lab Med. 2010;134(7):e48–72.

    PubMed  CAS  Google Scholar 

  93. Kim SY, Jung SH, Kim MS, et al. Genomic differences between pure ductal carcinoma in situ and synchronous ductal carcinoma in situ with invasive breast cancer. Oncotarget. 2015;6(10):7597–607.

    PubMed  PubMed Central  Google Scholar 

  94. Johnson CE, Gorringe KL, Thompson ER, et al. Identification of copy number alterations associated with the progression of DCIS to invasive ductal carcinoma. Breast Cancer Res Treat. 2012;133(3):889–98.

    PubMed  CAS  Google Scholar 

  95. Martelotto LG, Baslan T, Kendall J, et al. Whole-genome single-cell copy number profiling from formalin-fixed paraffin-embedded samples. Nat Med. 2017;23(3):376–85.

    PubMed  PubMed Central  CAS  Google Scholar 

  96. Afghahi A, Forgo E, Mitani AA, et al. Chromosomal copy number alterations for associations of ductal carcinoma in situ with invasive breast cancer. Breast Cancer Res. 2015;17:108.

    PubMed  PubMed Central  Google Scholar 

  97. Gorringe KL, Hunter SM, Pang JM, et al. Copy number analysis of ductal carcinoma in situ with and without recurrence. Mod Pathol. 2015;28(9):1174–84.

    PubMed  CAS  Google Scholar 

  98. Whitfield R, Kollias J, De Silva P, Zorbas H, Maddern G. Use of trastuzumab in Australia and New Zealand: results from the National Breast Cancer Audit. ANZ J Surg. 2012;82(4):234–9.

    PubMed  Google Scholar 

  99. Pang JB, Savas P, Fellowes AP, et al. Breast ductal carcinoma in situ carry mutational driver events representative of invasive breast cancer. Mod Pathol. 2017;30(7):952–63.

    PubMed  CAS  Google Scholar 

  100. Li H, Zhu R, Wang L, et al. PIK3CA mutations mostly begin to develop in ductal carcinoma of the breast. Exp Mol Pathol. 2010;88(1):150–5.

    PubMed  CAS  Google Scholar 

  101. Maffuz A, Barroso-Bravo S, Najera I, Zarco G, Alvarado-Cabrero I, Rodriguez-Cuevas SA. Tumor size as predictor of microinvasion, invasion, and axillary metastasis in ductal carcinoma in situ. J Exp Clin Cancer Res. 2006;25(2):223–7.

    PubMed  CAS  Google Scholar 

  102. Cuzick J, Sestak I, Pinder SE, et al. Effect of tamoxifen and radiotherapy in women with locally excised ductal carcinoma in situ: long-term results from the UK/ANZ DCIS trial. Lancet Oncol. 2011;12(1):21–9.

    PubMed  CAS  Google Scholar 

  103. Donker M, Litiere S, Werutsky G, et al. Breast-conserving treatment with or without radiotherapy in ductal carcinoma in situ: 15-year recurrence rates and outcome after a recurrence, from the EORTC 10853 randomized phase III trial. J Clin Oncol. 2013;31(32):4054–9.

    PubMed  Google Scholar 

  104. Wapnir IL, Dignam JJ, Fisher B, et al. Long-term outcomes of invasive ipsilateral breast tumor recurrences after lumpectomy in NSABP B-17 and B-24 randomized clinical trials for DCIS. J Natl Cancer Inst. 2011;103(6):478–88.

    PubMed  PubMed Central  Google Scholar 

  105. Pinder SE, Duggan C, Ellis IO, et al. A new pathological system for grading DCIS with improved prediction of local recurrence: results from the UKCCCR/ANZ DCIS trial. Br J Cancer. 2010;103(1):94–100.

    PubMed  PubMed Central  CAS  Google Scholar 

  106. Rudloff U, Jacks LM, Goldberg JI, et al. Nomogram for predicting the risk of local recurrence after breast-conserving surgery for ductal carcinoma in situ. J Clin Oncol. 2010;28(23):3762–9.

    PubMed  Google Scholar 

  107. Silverstein MJ, Lagios MD. Choosing treatment for patients with ductal carcinoma in situ: fine tuning the University of Southern California/Van Nuys Prognostic Index. J Natl Cancer Inst Monogr. 2010;2010(41):193–6.

    PubMed  PubMed Central  Google Scholar 

  108. Elshof LE, Tryfonidis K, Slaets L, et al. Feasibility of a prospective, randomised, open-label, international multicentre, phase III, non-inferiority trial to assess the safety of active surveillance for low risk ductal carcinoma in situ – the LORD study. Eur J Cancer (Oxford, England: 1990). 2015;51(12):1497–510.

    Google Scholar 

  109. Lewis JT, Hartmann LC, Vierkant RA, et al. An analysis of breast cancer risk in women with single, multiple, and atypical papilloma. Am J Surg Pathol. 2006;30(6):665–72.

    PubMed  Google Scholar 

  110. Ohuchi N, Abe R, Kasai M. Possible cancerous change of intraductal papillomas of the breast. A 3-D reconstruction study of 25 cases. Cancer. 1984;54(4):605–11.

    PubMed  CAS  Google Scholar 

  111. Tan PH, Aw MY, Yip G, et al. Cytokeratins in papillary lesions of the breast: is there a role in distinguishing intraductal papilloma from papillary ductal carcinoma in situ? Am J Surg Pathol. 2005;29(5):625–32.

    PubMed  Google Scholar 

  112. Tan PH, Schnitt SJ, van de Vijver MJ, Ellis IO, Lakhani SR. Papillary and neuroendocrine breast lesions: the WHO stance. Histopathology. 2015;66(6):761–70.

    PubMed  Google Scholar 

  113. Tse GM, Tan PH, Moriya T. The role of immunohistochemistry in the differential diagnosis of papillary lesions of the breast. J Clin Pathol. 2009;62(5):407–13.

    PubMed  CAS  Google Scholar 

  114. Nagi C, Bleiweiss I, Jaffer S. Epithelial displacement in breast lesions: a papillary phenomenon. Arch Pathol Lab Med. 2005;129(11):1465–9.

    PubMed  Google Scholar 

  115. Ichihara S, Fujimoto T, Hashimoto K, Moritani S, Hasegawa M, Yokoi T. Double immunostaining with p63 and high-molecular-weight cytokeratins distinguishes borderline papillary lesions of the breast. Pathol Int. 2007;57(3):126–32.

    PubMed  Google Scholar 

  116. Page DL, Salhany KE, Jensen RA, Dupont WD. Subsequent breast carcinoma risk after biopsy with atypia in a breast papilloma. Cancer. 1996;78(2):258–66.

    PubMed  CAS  Google Scholar 

  117. Tavassoli FA. Pathology of the breast. 2nd ed. Stamford, CT: Appleton & Lange; 1999.

    Google Scholar 

  118. Troxell ML, Levine J, Beadling C, et al. High prevalence of PIK3CA/AKT pathway mutations in papillary neoplasms of the breast. Mod Pathol. 2010;23(1):27–37.

    PubMed  CAS  Google Scholar 

  119. Di Cristofano C, Mrad K, Zavaglia K, et al. Papillary lesions of the breast: a molecular progression? Breast Cancer Res Treat. 2005;90(1):71–6.

    PubMed  Google Scholar 

  120. Page DL, Dupont WD. Indicators of increased breast cancer risk in humans. J Cell Biochem Suppl. 1992;16g:175–82.

    PubMed  CAS  Google Scholar 

  121. Putti TC, Pinder SE, Elston CW, Lee AH, Ellis IO. Breast pathology practice: most common problems in a consultation service. Histopathology. 2005;47(5):445–57.

    PubMed  CAS  Google Scholar 

  122. Schnitt S, Collins L. Papillary lesions. In: Biopsy interpretation of the breast. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2008. p. 205–35.

    Google Scholar 

  123. Wen X, Cheng W. Nonmalignant breast papillary lesions at core-needle biopsy: a meta-analysis of underestimation and influencing factors. Ann Surg Oncol. 2013;20(1):94–101.

    PubMed  Google Scholar 

  124. Ueng S-H, Mezzetti T, Tavassoli FA. Papillary neoplasms of the breast: a review. Arch Pathol Lab Med. 2009;133(6):893–907.

    PubMed  Google Scholar 

  125. Hill CB, Yeh IT. Myoepithelial cell staining patterns of papillary breast lesions: from intraductal papillomas to invasive papillary carcinomas. Am J Clin Pathol. 2005;123(1):36–44.

    PubMed  Google Scholar 

  126. Lefkowitz M, Lefkowitz W, Wargotz ES. Intraductal (intracystic) papillary carcinoma of the breast and its variants: a clinicopathological study of 77 cases. Hum Pathol. 1994;25(8):802–9.

    PubMed  CAS  Google Scholar 

  127. Otterbach F, Bankfalvi A, Bergner S, Decker T, Krech R, Boecker W. Cytokeratin 5/6 immunohistochemistry assists the differential diagnosis of atypical proliferations of the breast. Histopathology. 2000;37(3):232–40.

    PubMed  CAS  Google Scholar 

  128. Lininger RA, Park WS, Man YG, et al. LOH at 16p13 is a novel chromosomal alteration detected in benign and malignant microdissected papillary neoplasms of the breast. Hum Pathol. 1998;29(10):1113–8.

    PubMed  CAS  Google Scholar 

  129. Carter D, Orr SL, Merino MJ. Intracystic papillary carcinoma of the breast. After mastectomy, radiotherapy or excisional biopsy alone. Cancer. 1983;52(1):14–9.

    PubMed  CAS  Google Scholar 

  130. Collins LC, Carlo VP, Hwang H, Barry TS, Gown AM, Schnitt SJ. Intracystic papillary carcinomas of the breast: a reevaluation using a panel of myoepithelial cell markers. Am J Surg Pathol. 2006;30(8):1002–7.

    PubMed  Google Scholar 

  131. Esposito NN, Dabbs DJ, Bhargava R. Are encapsulated papillary carcinomas of the breast in situ or invasive? A basement membrane study of 27 cases. Am J Clin Pathol. 2009;131(2):228–42.

    PubMed  Google Scholar 

  132. Tsuda H, Takarabe T, Inazawa J, Hirohashi S. Detection of numerical alterations of chromosomes 3, 7, 17 and X in low-grade intracystic papillary tumors of the breast by multi-color fluorescence in situ hybridization. Breast Cancer (Tokyo, Japan). 1997;4(4):247–52.

    CAS  Google Scholar 

  133. Leal C, Costa I, Fonseca D, Lopes P, Bento MJ, Lopes C. Intracystic (encysted) papillary carcinoma of the breast: a clinical, pathological, and immunohistochemical study. Hum Pathol. 1998;29(10):1097–104.

    PubMed  CAS  Google Scholar 

  134. Harris KP, Faliakou EC, Exon DJ, Nasiri N, Sacks NP, Gui GP. Treatment and outcome of intracystic papillary carcinoma of the breast. Br J Surg. 1999;86(10):1274.

    PubMed  CAS  Google Scholar 

  135. Calderaro J, Espie M, Duclos J, et al. Breast intracystic papillary carcinoma: an update. Breast J. 2009;15(6):639–44.

    PubMed  Google Scholar 

  136. Mulligan AM, O’Malley FP. Metastatic potential of encapsulated (intracystic) papillary carcinoma of the breast: a report of 2 cases with axillary lymph node micrometastases. Int J Surg Pathol. 2007;15(2):143–7.

    PubMed  Google Scholar 

  137. Rakha EA, Gandhi N, Climent F, et al. Encapsulated papillary carcinoma of the breast: an invasive tumor with excellent prognosis. Am J Surg Pathol. 2011;35(8):1093–103.

    PubMed  Google Scholar 

  138. Rakha EA, Varga Z, Elsheik S, Ellis IO. High-grade encapsulated papillary carcinoma of the breast: an under-recognized entity. Histopathology. 2015;66(5):740–6.

    PubMed  Google Scholar 

  139. Maluf HM, Koerner FC. Solid papillary carcinoma of the breast. A form of intraductal carcinoma with endocrine differentiation frequently associated with mucinous carcinoma. Am J Surg Pathol. 1995;19(11):1237–44.

    PubMed  CAS  Google Scholar 

  140. Farshid G, Moinfar F, Meredith DJ, Peiterse S, Tavassoli FA. Spindle cell ductal carcinoma in situ. An unusual variant of ductal intra-epithelial neoplasia that simulates ductal hyperplasia or a myoepithelial proliferation. Virchows Arch. 2001;439(1):70–7.

    PubMed  CAS  Google Scholar 

  141. Tsang WY, Chan JK. Endocrine ductal carcinoma in situ (E-DCIS) of the breast: a form of low-grade DCIS with distinctive clinicopathologic and biologic characteristics. Am J Surg Pathol. 1996;20(8):921–43.

    PubMed  CAS  Google Scholar 

  142. Nassar H, Qureshi H, Adsay NV, Visscher D. Clinicopathologic analysis of solid papillary carcinoma of the breast and associated invasive carcinomas. Am J Surg Pathol. 2006;30(4):501–7.

    PubMed  Google Scholar 

  143. Otsuki Y, Yamada M, Shimizu S, et al. Solid-papillary carcinoma of the breast: clinicopathological study of 20 cases. Pathol Int. 2007;57(7):421–9.

    PubMed  Google Scholar 

  144. Moritani S, Ichihara S, Kushima R, et al. Myoepithelial cells in solid variant of intraductal papillary carcinoma of the breast: a potential diagnostic pitfall and a proposal of an immunohistochemical panel in the differential diagnosis with intraductal papilloma with usual ductal hyperplasia. Virchows Arch. 2007;450(5):539–47.

    PubMed  Google Scholar 

  145. Rabban JT, Koerner FC, Lerwill MF. Solid papillary ductal carcinoma in situ versus usual ductal hyperplasia in the breast: a potentially difficult distinction resolved by cytokeratin 5/6. Hum Pathol. 2006;37(7):787–93.

    PubMed  CAS  Google Scholar 

  146. Nicolas MM, Wu Y, Middleton LP, Gilcrease MZ. Loss of myoepithelium is variable in solid papillary carcinoma of the breast. Histopathology. 2007;51(5):657–65.

    PubMed  CAS  Google Scholar 

  147. Collins LC, Schnitt SJ. Papillary lesions of the breast: selected diagnostic and management issues. Histopathology. 2008;52(1):20–9.

    Google Scholar 

  148. Lakhani, Sunil R. WHO Classification of Tumors of the Breast.International Agency for Research on Cancer; World Health Organization. Lyon : International Agency for Research on Cancer, 2012.

    Google Scholar 

  149. Weigelt B, Geyer FC, Horlings HM, Kreike B, Halfwerk H, Reis-Filho JS. Mucinous and neuroendocrine breast carcinomas are transcriptionally distinct from invasive ductal carcinomas of no special type. Mod Pathol. 2009;22(11):1401–14.

    PubMed  CAS  Google Scholar 

  150. Weigelt B, Horlings HM, Kreike B, et al. Refinement of breast cancer classification by molecular characterization of histological special types. J Pathol. 2008;216(2):141–50.

    PubMed  CAS  Google Scholar 

  151. Deugnier MA, Teuliere J, Faraldo MM, Thiery JP, Glukhova MA. The importance of being a myoepithelial cell. Breast Cancer Res. 2002;4(6):224–30.

    PubMed  PubMed Central  CAS  Google Scholar 

  152. Clarke C, Sandle J, Lakhani SR. Myoepithelial cells: pathology, cell separation and markers of myoepithelial differentiation. J Mammary Gland Biol Neoplasia. 2005;10(3):273–80.

    PubMed  Google Scholar 

  153. Gudjonsson T, Adriance MC, Sternlicht MD, Petersen OW, Bissell MJ. Myoepithelial cells: their origin and function in breast morphogenesis and neoplasia. J Mammary Gland Biol Neoplasia. 2005;10(3):261–72.

    PubMed  PubMed Central  Google Scholar 

  154. Hamperl H. The myothelia (myoepithelial cells). Normal state; regressive changes; hyperplasia; tumors. Curr Top Pathol. 1970;53:161–220.

    PubMed  CAS  Google Scholar 

  155. Yaziji H, Gown AM, Sneige N. Detection of stromal invasion in breast cancer: the myoepithelial markers. Adv Anat Pathol. 2000;7(2):100–9.

    PubMed  CAS  Google Scholar 

  156. Dewar R, Fadare O, Gilmore H, Gown AM. Best practices in diagnostic immunohistochemistry: myoepithelial markers in breast pathology. Arch Pathol Lab Med. 2011;135(4):422–9.

    PubMed  Google Scholar 

  157. Corben AD, Lerwill MF. Use of Myoepithelial Cell Markers in the Differential Diagnosis of Benign, In situ, and Invasive Lesions of the Breast. Surg Pathol Clin. 2009;2(2):351–73.

    PubMed  Google Scholar 

  158. Eusebi V, Cunsolo A, Fedeli F, Severi B, Scarani P. Benign smooth muscle cell metaplasia in breast. Tumori. 1980;66(5):643–53.

    PubMed  CAS  Google Scholar 

  159. Daroca PJ Jr, Reed RJ, Love GL, Kraus SD. Myoid hamartomas of the breast. Hum Pathol. 1985;16(3):212–9.

    PubMed  Google Scholar 

  160. Shepstone BJ, Wells CA, Berry AR, Ferguson JD. Mammographic appearance and histopathological description of a muscular hamartoma of the breast. Br J Radiol. 1985;58(689):459–61.

    PubMed  CAS  Google Scholar 

  161. Raju GC. The histological and immunohistochemical evidence of squamous metaplasia from the myoepithelial cells in the breast. Histopathology. 1990;17(3):272–5.

    PubMed  CAS  Google Scholar 

  162. Tavassoli FA. Myoepithelial lesions of the breast. Myoepitheliosis, adenomyoepithelioma, and myoepithelial carcinoma. Am J Surg Pathol. 1991;15(6):554–68.

    PubMed  CAS  Google Scholar 

  163. Urban JA, Adair FE. Sclerosing adenosis. Cancer. 1949;2(4):625–34.

    PubMed  CAS  Google Scholar 

  164. Foote FW, Stewart FW. Comparative studies of cancerous versus noncancerous breasts. Ann Surg. 1945;121(2):197–222.

    PubMed  PubMed Central  CAS  Google Scholar 

  165. MacErlean DP, Nathan BE. Calcification in sclerosing adenosis simulating malignant breast calcification. Br J Radiol. 1972;45(540):944–5.

    PubMed  CAS  Google Scholar 

  166. Nielsen BB. Adenosis tumour of the breast–a clinicopathological investigation of 27 cases. Histopathology. 1987;11(12):1259–75.

    PubMed  CAS  Google Scholar 

  167. Jensen RA, Page DL, Dupont WD, Rogers LW. Invasive breast cancer risk in women with sclerosing adenosis. Cancer. 1989;64(10):1977–83.

    PubMed  CAS  Google Scholar 

  168. Davies JD. Neural invasion in benign mammary dysplasia. J Pathol. 1973;109(3):225–31.

    PubMed  CAS  Google Scholar 

  169. Fechner RE. Lobular carcinoma in situ in sclerosing adenosis. A potential source of confusion with invasive carcinoma. Am J Surg Pathol. 1981;5(3):233–9.

    PubMed  CAS  Google Scholar 

  170. Eusebi V, Collina G, Bussolati G. Carcinoma in situ in sclerosing adenosis of the breast: an immunocytochemical study. Semin Diagn Pathol. 1989;6(2):146–52.

    PubMed  CAS  Google Scholar 

  171. Resetkova E, Albarracin C, Sneige N. Collagenous spherulosis of breast: morphologic study of 59 cases and review of the literature. Am J Surg Pathol. 2006;30(1):20–7.

    PubMed  Google Scholar 

  172. Clement PB, Young RH, Azzopardi JG. Collagenous spherulosis of the breast. Am J Surg Pathol. 1987;11(6):411–7.

    PubMed  CAS  Google Scholar 

  173. Grignon DJ, Ro JY, Mackay BN, Ordonez NG, Ayala AG. Collagenous spherulosis of the breast. Immunohistochemical and ultrastructural studies. Am J Clin Pathol. 1989;91(4):386–92.

    PubMed  CAS  Google Scholar 

  174. Rosen PP. Adenomyoepithelioma of the breast. Hum Pathol. 1987;18(12):1232–7.

    PubMed  CAS  Google Scholar 

  175. Loose JH, Patchefsky AS, Hollander IJ, Lavin LS, Cooper HS, Katz SM. Adenomyoepithelioma of the breast. A spectrum of biologic behavior. Am J Surg Pathol. 1992;16(9):868–76.

    PubMed  CAS  Google Scholar 

  176. Cai RZ, Tan PH. Adenomyoepithelioma of the breast with squamous and sebaceous metaplasia. Pathology. 2005;37(6):557–9.

    PubMed  Google Scholar 

  177. Young RH, Clement PB. Adenomyoepithelioma of the breast. A report of three cases and review of the literature. Am J Clin Pathol. 1988;89(3):308–14.

    PubMed  CAS  Google Scholar 

  178. Pauwels C, De Potter C. Adenomyoepithelioma of the breast with features of malignancy. Histopathology. 1994;24(1):94–6.

    PubMed  CAS  Google Scholar 

  179. Rasbridge SA, Millis RR. Adenomyoepithelioma of the breast with malignant features. Virchows Arch. 1998;432(2):123–30.

    PubMed  CAS  Google Scholar 

  180. Ahmed AA, Heller DS. Malignant adenomyoepithelioma of the breast with malignant proliferation of epithelial and myoepithelial elements: a case report and review of the literature. Arch Pathol Lab Med. 2000;124(4):632–6.

    PubMed  CAS  Google Scholar 

  181. Fan F, Smith W, Wang X, Jewell W, Thomas PA, Tawfik O. Myoepithelial carcinoma of the breast arising in an adenomyoepithelioma: mammographic, ultrasound and histologic features. Breast J. 2007;13(2):203–4.

    PubMed  Google Scholar 

  182. Noel JC, Simon P, Aguilar SF. Malignant myoepithelioma arising in cystic adenomyoepithelioma. Breast J. 2006;12(4):386.

    PubMed  Google Scholar 

  183. Simpson RH, Cope N, Skalova A, Michal M. Malignant adenomyoepithelioma of the breast with mixed osteogenic, spindle cell, and carcinomatous differentiation. Am J Surg Pathol. 1998;22(5):631–6.

    PubMed  CAS  Google Scholar 

  184. Chen PC, Chen CK, Nicastri AD, Wait RB. Myoepithelial carcinoma of the breast with distant metastasis and accompanied by adenomyoepitheliomas. Histopathology. 1994;24(6):543–8.

    PubMed  CAS  Google Scholar 

  185. Michal M, Baumruk L, Burger J, Manhalova M. Adenomyoepithelioma of the breast with undifferentiated carcinoma component. Histopathology. 1994;24(3):274–6.

    PubMed  CAS  Google Scholar 

  186. Behranwala KA, Nasiri N, A’Hern R, Gui GP. Clinical presentation and long-term outcome of pure myoepithelial carcinoma of the breast. Eur J Surg Oncol. 2004;30(4):357–61.

    PubMed  CAS  Google Scholar 

  187. Buza N, Zekry N, Charpin C, Tavassoli FA. Myoepithelial carcinoma of the breast: a clinicopathological and immunohistochemical study of 15 diagnostically challenging cases. Virchows Arch. 2010;457(3):337–45.

    PubMed  CAS  Google Scholar 

  188. Tan PH, Ellis IO. Myoepithelial and epithelial-myoepithelial, mesenchymal and fibroepithelial breast lesions: updates from the WHO Classification of Tumours of the Breast 2012. J Clin Pathol. 2013;66(6):465–70.

    PubMed  CAS  Google Scholar 

  189. Moulder S, Moroney J, Helgason T, Wheler J, Booser D, Albarracin C, et al. Responses to liposomal Doxorubicin, bevacizumab, and temsirolimus in metaplastic carcinoma of the breast: biologic rationale and implications for stem-cell research in breast cancer. J Clin Oncol. 2011;29(19):e572–5.

    PubMed  Google Scholar 

  190. Moulder S, Helgason T, Janku F, Wheler J, Moroney J, Booser D, et al. Inhibition of the phosphoinositide 3-kinase pathway for the treatment of patients with metastatic metaplastic breast cancer. Ann Oncol. 2015;26(7):1346–52.

    PubMed  PubMed Central  CAS  Google Scholar 

  191. Foote FW, Stewart FW. Lobular carcinoma in situ: a rare form of mammary cancer. Am J Pathol. 1941;17(4):491–6.3.

    PubMed  PubMed Central  CAS  Google Scholar 

  192. Haagensen CD, Lane N, Lattes R, Bodian C. Lobular neoplasia (so-called lobular carcinoma in situ) of the breast. Cancer. 1978;42(2):737–69.

    PubMed  CAS  Google Scholar 

  193. Andersen JA. Lobular carcinoma in situ of the breast with ductal involvement. Frequency and possible influence on prognosis. Acta Pathol Microbiol Scand A. 1974;82(5):655–62.

    PubMed  CAS  Google Scholar 

  194. Fechner RE. Epithelial alterations in the extralobular ducts of breasts with lobular carcinoma. Arch Pathol. 1972;93(2):164–71.

    PubMed  CAS  Google Scholar 

  195. Page DL, Vander Zwaag R, Rogers LW, Williams LT, Walker WE, Hartmann WH. Relation between component parts of fibrocystic disease complex and breast cancer. J Natl Cancer Inst. 1978;61(4):1055–63.

    PubMed  CAS  Google Scholar 

  196. Page DL, Dupont WD, Rogers LW, Rados MS. Atypical hyperplastic lesions of the female breast. A long-term follow-up study. Cancer. 1985;55(11):2698–708.

    PubMed  CAS  Google Scholar 

  197. Page DL, Kidd TE Jr, Dupont WD, Simpson JF, Rogers LW. Lobular neoplasia of the breast: higher risk for subsequent invasive cancer predicted by more extensive disease. Hum Pathol. 1991;22(12):1232–9.

    PubMed  CAS  Google Scholar 

  198. Rosen PP, Kosloff C, Lieberman PH, Adair F, Braun DW Jr. Lobular carcinoma in situ of the breast. Detailed analysis of 99 patients with average follow-up of 24 years. Am J Surg Pathol. 1978;2(3):225–51.

    PubMed  CAS  Google Scholar 

  199. Andersen JA, Vendelboe ML. Cytoplasmic mucous globules in lobular carcinoma in situ. Diagnosis and prognosis. Am J Surg Pathol. 1981;5(3):251–5.

    PubMed  CAS  Google Scholar 

  200. Gad A, Azzopardi JG. Lobular carcinoma of the breast: a special variant of mucin-secreting carcinoma. J Clin Pathol. 1975;28(9):711–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  201. Rosner D, Bedwani RN, Vana J, Baker HW, Murphy GP. Noninvasive breast carcinoma: results of a national survey by the American College of Surgeons. Ann Surg. 1980;192(2):139–47.

    PubMed  PubMed Central  CAS  Google Scholar 

  202. Lattes R. Lobular neoplasia (lobular carcinoma in situ) of the breast – a histological entity of controversial clinical significance. Pathol Res Pract. 1980;166(4):415–29.

    PubMed  CAS  Google Scholar 

  203. Haagensen CD, Lane N, Bodian C. Coexisting lobular neoplasia and carcinoma of the breast. Cancer. 1983;51(8):1468–82.

    PubMed  CAS  Google Scholar 

  204. Morris DM, Walker AP, Coker DC. Lack of efficacy of xeromammography in preoperatively detecting lobular carcinoma in situ of the breast. Breast Cancer Res Treat. 1981;1(4):365–8.

    PubMed  CAS  Google Scholar 

  205. Report of the Working Group to review the National Cancer Institute-American Cancer Society Breast Cancer Detection Demonstration Projects. J Natl Cancer Inst. 1979;62(3):639–709.

    Google Scholar 

  206. Pope TL Jr, Fechner RE, Wilhelm MC, Wanebo HJ, de Paredes ES. Lobular carcinoma in situ of the breast: mammographic features. Radiology. 1988;168(1):63–6.

    PubMed  Google Scholar 

  207. Hutter RV, Snyder RE, Lucas JC, Foote FW Jr, Farrow JH. Clinical and pathologic correlation with mammographic findings in lobular carcinoma in situ. Cancer. 1969;23(4):826–39.

    PubMed  CAS  Google Scholar 

  208. Flanagan MR, Rendi MH, Calhoun KE, Anderson BO, Javid SH. Pleomorphic lobular carcinoma in situ: radiologic-pathologic features and clinical management. Ann Surg Oncol. 2015;22(13):4263–9.

    PubMed  PubMed Central  Google Scholar 

  209. Middleton LP, Palacios DM, Bryant BR, Krebs P, Otis CN, Merino MJ. Pleomorphic lobular carcinoma: morphology, immunohistochemistry, and molecular analysis. Am J Surg Pathol. 2000;24(12):1650–6.

    PubMed  CAS  Google Scholar 

  210. Sneige N, Wang J, Baker BA, Krishnamurthy S, Middleton LP. Clinical, histopathologic, and biologic features of pleomorphic lobular (ductal-lobular) carcinoma in situ of the breast: a report of 24 cases. Mod Pathol. 2002;15(10):1044–50.

    PubMed  Google Scholar 

  211. Fives C, O’Neill CJ, Murphy R, Corrigan MA, O'Sullivan MJ, Feeley L, et al. When pathological and radiological correlation is achieved, excision of fibroadenoma with lobular neoplasia on core biopsy is not warranted. Breast. 2016;30:125–9.

    PubMed  CAS  Google Scholar 

  212. Eusebi V, Betts C, Haagensen DE Jr, Gugliotta P, Bussolati G, Azzopardi JG. Apocrine differentiation in lobular carcinoma of the breast: a morphologic, immunologic, and ultrastructural study. Hum Pathol. 1984;15(2):134–40.

    PubMed  CAS  Google Scholar 

  213. Battifora H. Intracytoplasmic lumina in breast carcinoma: a helpful histopathologic feature. Arch Pathol. 1975;99(11):614–7.

    PubMed  CAS  Google Scholar 

  214. Breslow A, Brancaccio ME. Intracellular mucin production by lobular breast carcinoma cells. Arch Pathol Lab Med. 1976;100(11):620–1.

    PubMed  CAS  Google Scholar 

  215. Jacobs TW, Pliss N, Kouria G, Schnitt SJ. Carcinomas in situ of the breast with indeterminate features: role of E-cadherin staining in categorization. Am J Surg Pathol. 2001;25(2):229–36.

    PubMed  CAS  Google Scholar 

  216. Page DL, Dupont WD, Rogers LW. Ductal involvement by cells of atypical lobular hyperplasia in the breast: a long-term follow-up study of cancer risk. Hum Pathol. 1988;19(2):201–7.

    PubMed  CAS  Google Scholar 

  217. Fechner RE. Lobular carcinoma in situ in sclerosing adenosis. A potential source of confusion with invasive carcinoma. Am J Surg Pathol. 1981;5(3):233–9.

    PubMed  CAS  Google Scholar 

  218. Sgroi D, Koerner FC. Involvement of collagenous spherulosis by lobular carcinoma in situ. Potential confusion with cribriform ductal carcinoma in situ. Am J Surg Pathol. 1995;19(12):1366–70.

    PubMed  CAS  Google Scholar 

  219. Bur ME, Zimarowski MJ, Schnitt SJ, Baker S, Lew R. Estrogen receptor immunohistochemistry in carcinoma in situ of the breast. Cancer. 1992;69(5):1174–81.

    PubMed  CAS  Google Scholar 

  220. Pallis L, Wilking N, Cedermark B, Rutqvist LE, Skoog L. Receptors for estrogen and progesterone in breast carcinoma in situ. Anticancer Res. 1992;12(6B):2113–5.

    PubMed  CAS  Google Scholar 

  221. Ramachandra S, Machin L, Ashley S, Monaghan P, Gusterson BA. Immunohistochemical distribution of c-erbB-2 in in situ breast carcinoma--a detailed morphological analysis. J Pathol. 1990;161(1):7–14.

    PubMed  CAS  Google Scholar 

  222. Somerville JE, Clarke LA, Biggart JD. c-erbB-2 overexpression and histological type of in situ and invasive breast carcinoma. J Clin Pathol. 1992;45(1):16–20.

    PubMed  PubMed Central  CAS  Google Scholar 

  223. Rudas M, Neumayer R, Gnant MF, Mittelbock M, Jakesz R, Reiner A. p53 protein expression, cell proliferation and steroid hormone receptors in ductal and lobular in situ carcinomas of the breast. Eur J Cancer. 1997;33(1):39–44.

    PubMed  CAS  Google Scholar 

  224. Vos CB, Cleton-Jansen AM, Berx G, de Leeuw WJ, ter Haar NT, van Roy F, et al. E-cadherin inactivation in lobular carcinoma in situ of the breast: an early event in tumorigenesis. Br J Cancer. 1997;76(9):1131–3.

    PubMed  PubMed Central  CAS  Google Scholar 

  225. Shin SJ, Lal A, De Vries S, Suzuki J, Roy R, Hwang ES, et al. Florid lobular carcinoma in situ: molecular profiling and comparison to classic lobular carcinoma in situ and pleomorphic lobular carcinoma in situ. Hum Pathol. 2013;44(10):1998–2009.

    PubMed  CAS  Google Scholar 

  226. Chen YY, Hwang ES, Roy R, DeVries S, Anderson J, Wa C, et al. Genetic and phenotypic characteristics of pleomorphic lobular carcinoma in situ of the breast. Am J Surg Pathol. 2009;33(11):1683–94.

    PubMed  PubMed Central  Google Scholar 

  227. Reis-Filho JS, Simpson PT, Jones C, Steele D, Mackay A, Iravani M, et al. Pleomorphic lobular carcinoma of the breast: role of comprehensive molecular pathology in characterization of an entity. J Pathol. 2005;207(1):1–13.

    PubMed  CAS  Google Scholar 

  228. Ciatto S, Cataliotti L, Cardona G, Bianchi S. Risk of infiltrating breast cancer subsequent to lobular carcinoma in situ. The Coordinating Center and Writing Committee of FONCAM (National Task Force for Breast Cancer). Tumori. 1992;78(4):244–6.

    PubMed  CAS  Google Scholar 

  229. Fisher ER, Costantino J, Fisher B, Palekar AS, Paik SM, Suarez CM, et al. Pathologic findings from the National Surgical Adjuvant Breast Project (NSABP) Protocol B-17. Five-year observations concerning lobular carcinoma in situ. Cancer. 1996;78(7):1403–16.

    PubMed  CAS  Google Scholar 

  230. Ottesen GL, Graversen HP, Blichert-Toft M, Zedeler K, Andersen JA. Lobular carcinoma in situ of the female breast. Short-term results of a prospective nationwide study. The Danish Breast Cancer Cooperative Group. Am J Surg Pathol. 1993;17(1):14–21.

    PubMed  CAS  Google Scholar 

  231. Renshaw AA, Derhagopian RP, Martinez P, Gould EW. Lobular neoplasia in breast core needle biopsy specimens is associated with a low risk of ductal carcinoma in situ or invasive carcinoma on subsequent excision. Am J Clin Pathol. 2006;126(2):310–3.

    PubMed  Google Scholar 

  232. Chivukula M, Haynik DM, Brufsky A, Carter G, Dabbs DJ. Pleomorphic lobular carcinoma in situ (PLCIS) on breast core needle biopsies: clinical significance and immunoprofile. Am J Surg Pathol. 2008;32(11):1721–6.

    PubMed  Google Scholar 

  233. Vogel VG, Costantino JP, Wickerham DL, Cronin WM, Cecchini RS, Atkins JN, et al. Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA. 2006;295(23):2727–41.

    PubMed  CAS  Google Scholar 

  234. Colditz G, Chia KS. In: Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, Vijver MJ, editors. WHO classification of tumours of the breast; 2012.

    Google Scholar 

  235. Hoda SA. In: Hoda SA, Brogi E, Koerner FC, Rosen PP, editors. Rosen’s breast pathology; 2014.

    Google Scholar 

  236. Schnitt SJ, Collins LC. Biopsy interpretation of the breast. 2nd ed; 2013.

    Google Scholar 

  237. Hilson JB, Schnitt SJ, Collins LC. Phenotypic alterations in ductal carcinoma in situ-associated myoepithelial cells: biologic and diagnostic implications. Am J Surg Pathol. 2009;33:227–32. https://doi.org/10.1097/PAS.0b013e318180431d.

    Article  PubMed  Google Scholar 

  238. Elston CW, Ellis IO. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991;19:403–10.

    PubMed  CAS  Google Scholar 

  239. Rakha EA, et al. Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res. 2010;12:207. https://doi.org/10.1186/bcr2607.

    Article  PubMed  PubMed Central  Google Scholar 

  240. Ellis IO, Simpson JF, Reis-Filho JS, Decker T. In: Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, Vijver MJ, editors. WHO classification of tumours of the breast; 2012.

    Google Scholar 

  241. de Mascarel I, et al. Obvious peritumoral emboli: an elusive prognostic factor reappraised. Multivariate analysis of 1320 node-negative breast cancers. Eur J Cancer. 1998;34:58–65.

    PubMed  Google Scholar 

  242. Lee AH, et al. Prognostic value of lymphovascular invasion in women with lymph node negative invasive breast carcinoma. Eur J Cancer. 2006;42:357–62. https://doi.org/10.1016/j.ejca.2005.10.021.

    Article  PubMed  CAS  Google Scholar 

  243. Ren S, Abuel-Haija M, Khurana JS, Zhang X. D2-40: an additional marker for myoepithelial cells of breast and the precaution in interpreting tumor lymphovascular invasion. Int J Clin Exp Pathol. 2011;4:175–82.

    PubMed  PubMed Central  Google Scholar 

  244. Hammond ME, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version). Arch Pathol Lab Med. 2010;134:e48–72. https://doi.org/10.1043/1543-2165-134.7.e48.

    Article  PubMed  CAS  Google Scholar 

  245. Wolff AC, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Arch Pathol Lab Med. 2014;138:241–56. https://doi.org/10.5858/arpa.2013-0953-SA.

    Article  PubMed  Google Scholar 

  246. Hilton HN, Clarke CL, Graham JD. Estrogen and progesterone signalling in the normal breast and its implications for cancer development. Mol Cell Endocrinol. 2017; https://doi.org/10.1016/j.mce.2017.08.011.

  247. Allred DC, Miller K, Viale G, Brogi E, Isola J. In: Lakhani SR, Ellis IO, Schnitt SJ, Tan PH, Vijver MJ, editors. WHO classification of tumours of the breast; 2012.

    Google Scholar 

  248. Schiff R, Osborne CK, Fuqua SAW. In: Harris JR, Lippman ME, Morrow M, Osborne CK, editors. Diseases of the breast; 2010.

    Google Scholar 

  249. Dowsett M, et al. Benefit from adjuvant tamoxifen therapy in primary breast cancer patients according oestrogen receptor, progesterone receptor, EGF receptor and HER2 status. Ann Oncol. 2006;17:818–26. https://doi.org/10.1093/annonc/mdl016.

    Article  PubMed  CAS  Google Scholar 

  250. Calhoun BC, Collins LC. Predictive markers in breast cancer: an update on ER and HER2 testing and reporting. Semin Diagn Pathol. 2015;32:362–9. https://doi.org/10.1053/j.semdp.2015.02.011.

    Article  PubMed  Google Scholar 

  251. Greer LT, et al. Does breast tumor heterogeneity necessitate further immunohistochemical staining on surgical specimens? J Am Coll Surg. 2013;216:239–51. https://doi.org/10.1016/j.jamcollsurg.2012.09.007.

    Article  PubMed  Google Scholar 

  252. Rimawi MF, Schiff R, Osborne CK. Targeting HER2 for the treatment of breast cancer. Annu Rev Med. 2015;66:111–28. https://doi.org/10.1146/annurev-med-042513-015127.

    Article  PubMed  CAS  Google Scholar 

  253. Wolff AC, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31:3997–4013. https://doi.org/10.1200/JCO.2013.50.9984.

    Article  PubMed  Google Scholar 

  254. Rosen PP, Lesser ML, Senie RT, Duthie K. Epidemiology of breast carcinoma IV: age and histologic tumor type. J Surg Oncol. 1982;19(1):44–51.

    PubMed  CAS  Google Scholar 

  255. Porter PL, El-Bastawissi AY, Mandelson MT, Lin MG, Khalid N, Watney EA, et al. Breast tumor characteristics as predictors of mammographic detection: comparison of interval- and screen-detected cancers. J Natl Cancer Inst. 1999;91(23):2020–8.

    PubMed  CAS  Google Scholar 

  256. Porter AJ, Evans EB, Foxcroft LM, Simpson PT, Lakhani SR. Mammographic and ultrasound features of invasive lobular carcinoma of the breast. J Med Imaging Radiat Oncol. 2014;58(1):1–10.

    PubMed  Google Scholar 

  257. Houssami N, Turner RM, Morrow M. Meta-analysis of pre-operative magnetic resonance imaging (MRI) and surgical treatment for breast cancer. Breast Cancer Res Treat. 2017;165(2):273–83.

    PubMed  PubMed Central  Google Scholar 

  258. Ashikari R, Huvos AG, Urban JA, Robbins GF. Infiltrating lobular carcinoma of the breast. Cancer. 1973;31(1):110–6.

    PubMed  CAS  Google Scholar 

  259. DiCostanzo D, Rosen PP, Gareen I, Franklin S, Lesser M. Prognosis in infiltrating lobular carcinoma. An analysis of “classical” and variant tumors. Am J Surg Pathol. 1990;14(1):12–23.

    PubMed  CAS  Google Scholar 

  260. Dixon JM, Anderson TJ, Page DL, Lee D, Duffy SW. Infiltrating lobular carcinoma of the breast. Histopathology. 1982;6(2):149–61.

    PubMed  CAS  Google Scholar 

  261. Breslow A, Brancaccio ME. Intracellular mucin production by lobular breast carcinoma cells. Arch Pathol Lab Med. 1976;100(11):620–1.

    PubMed  CAS  Google Scholar 

  262. Gad A, Azzopardi JG. Lobular carcinoma of the breast: a special variant of mucin-secreting carcinoma. J Clin Pathol. 1975;28(9):711–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  263. Allenby PA, Chowdhury LN. Histiocytic appearance of metastatic lobular breast carcinoma. Arch Pathol Lab Med. 1986;110(8):759–60.

    PubMed  CAS  Google Scholar 

  264. Weidner N, Semple JP. Pleomorphic variant of invasive lobular carcinoma of the breast. Hum Pathol. 1992;23(10):1167–71.

    PubMed  CAS  Google Scholar 

  265. Eusebi V, Magalhaes F, Azzopardi JG. Pleomorphic lobular carcinoma of the breast: an aggressive tumor showing apocrine differentiation. Hum Pathol. 1992;23(6):655–62.

    PubMed  CAS  Google Scholar 

  266. Brouckaert O, Laenen A, Smeets A, Christiaens MR, Vergote I, Wildiers H, et al. Prognostic implications of lobular breast cancer histology: new insights from a single hospital cross-sectional study and SEER data. Breast. 2014;23(4):371–7.

    PubMed  CAS  Google Scholar 

  267. Da Silva L, Parry S, Reid L, Keith P, Waddell N, Kossai M, et al. Aberrant expression of E-cadherin in lobular carcinomas of the breast. Am J Surg Pathol. 2008;32(5):773–83.

    PubMed  Google Scholar 

  268. Rakha EA, Patel A, Powe DG, Benhasouna A, Green AR, Lambros MB, et al. Clinical and biological significance of E-cadherin protein expression in invasive lobular carcinoma of the breast. Am J Surg Pathol. 2010;34(10):1472–9.

    PubMed  Google Scholar 

  269. Dabbs DJ, Kaplai M, Chivukula M, Kanbour A, Kanbour-Shakir A, Carter GJ. The spectrum of morphomolecular abnormalities of the E-cadherin/catenin complex in pleomorphic lobular carcinoma of the breast. Appl Immunohistochem Mol Morphol. 2007;15(3):260–6.

    PubMed  CAS  Google Scholar 

  270. Dabbs DJ, Bhargava R, Chivukula M. Lobular versus ductal breast neoplasms: the diagnostic utility of p120 catenin. Am J Surg Pathol. 2007;31(3):427–37.

    PubMed  Google Scholar 

  271. Iorfida M, Maiorano E, Orvieto E, Maisonneuve P, Bottiglieri L, Rotmensz N, et al. Invasive lobular breast cancer: subtypes and outcome. Breast Cancer Res Treat. 2012;133(2):713–23.

    PubMed  CAS  Google Scholar 

  272. Weigelt B, Geyer FC, Natrajan R, Lopez-Garcia MA, Ahmad AS, Savage K, et al. The molecular underpinning of lobular histological growth pattern: a genome-wide transcriptomic analysis of invasive lobular carcinomas and grade- and molecular subtype-matched invasive ductal carcinomas of no special type. J Pathol. 2010;220(1):45–57.

    PubMed  CAS  Google Scholar 

  273. Simpson PT, Reis-Filho JS, Lambros MB, Jones C, Steele D, Mackay A, et al. Molecular profiling pleomorphic lobular carcinomas of the breast: evidence for a common molecular genetic pathway with classic lobular carcinomas. J Pathol. 2008;215(3):231–44.

    PubMed  CAS  Google Scholar 

  274. Desmedt C, Zoppoli G, Gundem G, Pruneri G, Larsimont D, Fornili M, et al. GenomicCharacterization of Primary Invasive Lobular Breast Cancer. J Clin Oncol. 2016;34(16):1872–81.

    PubMed  CAS  Google Scholar 

  275. Wasif N, Maggard MA, Ko CY, Giuliano AE. Invasive lobular vs. ductal breast cancer: a stage-matched comparison of outcomes. Ann Surg Oncol. 2010;17(7):1862–9.

    PubMed  Google Scholar 

  276. Pestalozzi BC, Zahrieh D, Mallon E, Gusterson BA, Price KN, Gelber RD, et al. Distinct clinical and prognostic features of infiltrating lobular carcinoma of the breast: combined results of 15 International Breast Cancer Study Group clinical trials. J Clin Oncol. 2008;26(18):3006–14.

    PubMed  Google Scholar 

  277. Dixon JM, Anderson TJ, Page DL, Lee D, Duffy SW, Stewart HJ. Infiltrating lobular carcinoma of the breast: an evaluation of the incidence and consequence of bilateral disease. Br J Surg. 1983;70(9):513–6.

    PubMed  CAS  Google Scholar 

  278. Vapiwala N, Hwang WT, Kushner CJ, Schnall MD, Freedman GM, Solin LJ. No impact of breast magnetic resonance imaging on 15-year outcomes in patients with ductal carcinoma in situ or early-stage invasive breast cancer managed with breast conservation therapy. Cancer. 2017;123(8):1324–32.

    PubMed  Google Scholar 

  279. Wang J, Mittendorf EA, Sahin AA, Yi M, Caudle A, Hunt KK, et al. Outcomes of sentinel lymph node dissection alone vs. axillary lymph node dissection in early stage invasive lobular carcinoma: a retrospective study of the surveillance, epidemiology and end results (SEER) database. PLoS One. 2014;9(2):e89778.

    PubMed  PubMed Central  Google Scholar 

  280. Kader HA, Jackson J, Mates D, Andersen S, Hayes M, Olivotto IA. Tubular carcinoma of the breast: a population-based study of nodal metastases at presentation and of patterns of relapse. Breast J. 2001;7(1):8–13.

    PubMed  CAS  Google Scholar 

  281. Rakha EA, Lee AH, Evans AJ, et al. Tubular carcinoma of the breast: further evidence to support its excellent prognosis. J Clin Oncol. 2010;28(1):99–104.

    PubMed  Google Scholar 

  282. Li C, Uribe D, Daling J. Clinical characteristics of different histologic types of breast cancer. Br J Cancer. 2005;93(9):1046.

    PubMed  PubMed Central  CAS  Google Scholar 

  283. Marzullo F, Zito FA, Marzullo A, et al. Infiltrating cribriform carcinoma of the breast. A clinico-pathologic and immunohistochemical study of 5 cases. Eur J Gynaecol Oncol. 1996;17(3):228–31.

    PubMed  CAS  Google Scholar 

  284. Liu GF, Yang Q, Haffty BG, Moran MS. Clinical-pathologic features and long-term outcomes of tubular carcinoma of the breast compared with invasive ductal carcinoma treated with breast conservation therapy. Int J Radiat Oncol Biol Phys. 2009;75(5):1304–8.

    PubMed  Google Scholar 

  285. Green I, McCormick B, Cranor M, Rosen PP. A comparative study of pure tubular and tubulolobular carcinoma of the breast. Am J Surg Pathol. 1997;21(6):653–7.

    PubMed  CAS  Google Scholar 

  286. Mitnick JS, Gianutsos R, Pollack AH, et al. Tubular carcinoma of the breast: sensitivity of diagnostic techniques and correlation with histopathology. AJR Am J Roentgenol. 1999;172(2):319–23.

    PubMed  CAS  Google Scholar 

  287. Diab SG, Clark GM, Osborne CK, Libby A, Allred DC, Elledge RM. Tumor characteristics and clinical outcome of tubular and mucinous breast carcinomas. J Clin Oncol. 1999;17(5):1442–8.

    PubMed  CAS  Google Scholar 

  288. Fedko MG, Scow JS, Shah SS, et al. Pure tubular carcinoma and axillary nodal metastases. Ann Surg Oncol. 2010;17(Suppl 3):338–42.

    PubMed  Google Scholar 

  289. Page DL, Dixon JM, Anderson TJ, Lee D, Stewart HJ. Invasive cribriform carcinoma of the breast. Histopathology. 1983;7(4):525–36.

    PubMed  CAS  Google Scholar 

  290. Tavassoli FA, Devilee P. Organization WH. Tumours of the breast and female genital organs (who/IARC classification of tumours). Lyon: IARC; 2003.

    Google Scholar 

  291. Fernandez-Aguilar S, Simon P, Buxant F, Simonart T, Noel JC. Tubular carcinoma of the breast and associated intra-epithelial lesions: a comparative study with invasive low-grade ductal carcinomas. Virchows Arch. 2005;447(4):683–7.

    PubMed  Google Scholar 

  292. Goldstein NS, O’Malley BA. Cancerization of small ectatic ducts of the breast by ductal carcinoma in situ cells with apocrine snouts: a lesion associated with tubular carcinoma. Am J Clin Pathol. 1997;107(5):561–6.

    PubMed  CAS  Google Scholar 

  293. Papadatos G, Rangan AM, Psarianos T, Ung O, Taylor R, Boyages J. Probability of axillary node involvement in patients with tubular carcinoma of the breast. Br J Surg. 2001;88(6):860–4.

    PubMed  CAS  Google Scholar 

  294. Aulmann S, Elsawaf Z, Penzel R, Schirmacher P, Sinn HP. Invasive tubular carcinoma of the breast frequently is clonally related to flat epithelial atypia and low-grade ductal carcinoma in situ. Am J Surg Pathol. 2009;33(11):1646–53.

    PubMed  Google Scholar 

  295. Man S, Ellis IO, Sibbering M, Blamey RW, Brook JD. High levels of allele loss at the FHIT and ATM genes in non-comedo ductal carcinoma in situ and grade I tubular invasive breast cancers. Cancer Res. 1996;56(23):5484–9.

    PubMed  CAS  Google Scholar 

  296. Riener MO, Nikolopoulos E, Herr A, et al. Microarray comparative genomic hybridization analysis of tubular breast carcinoma shows recurrent loss of the CDH13 locus on 16q. Hum Pathol. 2008;39(11):1621–9.

    PubMed  CAS  Google Scholar 

  297. Waldman FM, Hwang ES, Etzell J, et al. Genomic alterations in tubular breast carcinomas. Hum Pathol. 2001;32(2):222–6.

    PubMed  CAS  Google Scholar 

  298. Javid SH, Smith BL, Mayer E, et al. Tubular carcinoma of the breast: results of a large contemporary series. Am J Surg. 2009;197(5):674–7.

    PubMed  Google Scholar 

  299. Venable JG, Schwartz AM, Silverberg SG. Infiltrating cribriform carcinoma of the breast: a distinctive clinicopathologic entity. Hum Pathol. 1990;21(3):333–8.

    PubMed  CAS  Google Scholar 

  300. Di Saverio S, Gutierrez J, Avisar E. A retrospective review with long term follow up of 11,400 cases of pure mucinous breast carcinoma. Breast Cancer Res Treat. 2008;111(3):541–7.

    PubMed  Google Scholar 

  301. Rasmussen BB, Rose C, Christensen IB. Prognostic factors in primary mucinous breast carcinoma. Am J Clin Pathol. 1987;87(2):155–60.

    PubMed  CAS  Google Scholar 

  302. Toikkanen S, Kujari H. Pure and mixed mucinous carcinomas of the breast: a clinicopathologic analysis of 61 cases with long-term follow-up. Hum Pathol. 1989;20(8):758–64.

    PubMed  CAS  Google Scholar 

  303. Wilson TE, Helvie MA, Oberman HA, Joynt LK. Pure and mixed mucinous carcinoma of the breast: pathologic basis for differences in mammographic appearance. AJR Am J Roentgenol. 1995;165(2):285–9.

    PubMed  CAS  Google Scholar 

  304. Conant EF, Dillon RL, Palazzo J, Ehrlich SM, Feig SA. Imaging findings in mucin-containing carcinomas of the breast: correlation with pathologic features. AJR Am J Roentgenol. 1994;163(4):821–4.

    PubMed  CAS  Google Scholar 

  305. Fentiman IS, Millis RR, Smith P, Ellul JP, Lampejo O. Mucoid breast carcinomas: histology and prognosis. Br J Cancer. 1997;75(7):1061–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  306. Komaki K, Sakamoto G, Sugano H, Morimoto T, Monden Y. Mucinous carcinoma of the breast in Japan. A prognostic analysis based on morphologic features. Cancer. 1988;61(5):989–96.

    PubMed  CAS  Google Scholar 

  307. Silverberg SG, Kay S, Chitale AR, Levitt SH. Colloid carcinoma of the breast. Am J Clin Pathol. 1971;55(3):355–63.

    PubMed  CAS  Google Scholar 

  308. Clayton F. Pure mucinous carcinomas of breast: morphologic features and prognostic correlates. Hum Pathol. 1986;17(1):34–8.

    PubMed  CAS  Google Scholar 

  309. Scopsi L, Andreola S, Pilotti S, Bufalino R, Baldini MT, Testori A, et al. Mucinous carcinoma of the breast. A clinicopathologic, histochemical, and immunocytochemical study with special reference to neuroendocrine differentiation. Am J Surg Pathol. 1994;18(7):702–11.

    PubMed  CAS  Google Scholar 

  310. Walker RA. Mucoid carcinomas of the breast: a study using mucin histochemistry and peanut lectin. Histopathology. 1982;6(5):571–9.

    PubMed  CAS  Google Scholar 

  311. Steinbrecher JS, Silverberg SG. Signet-ring cell carcinoma of the breast. The mucinous variant of infiltrating lobular carcinoma? Cancer. 1976;37(2):828–40.

    PubMed  CAS  Google Scholar 

  312. Hull MT, Seo IS, Battersby JS, Csicsko JF. Signet-ring cell carcinoma of the breast: a clinicopathologic study of 24 cases. Am J Clin Pathol. 1980;73(1):31–5.

    PubMed  CAS  Google Scholar 

  313. Capella C, Eusebi V, Mann B, Azzopardi JG. Endocrine differentiation in mucoid carcinoma of the breast. Histopathology. 1980;4(6):613–30.

    PubMed  CAS  Google Scholar 

  314. Coady AT, Shousha S, Dawson PM, Moss M, James KR, Bull TB. Mucinous carcinoma of the breast: further characterization of its three subtypes. Histopathology. 1989;15(6):617–26.

    PubMed  CAS  Google Scholar 

  315. Tan PH, Tse GM, Bay BH. Mucinous breast lesions: diagnostic challenges. J Clin Pathol. 2008;61(1):11–9.

    PubMed  CAS  Google Scholar 

  316. Chinyama CN, Davies JD. Mammary mucinous lesions: congeners, prevalence and important pathological associations. Histopathology. 1996;29(6):533–9.

    PubMed  CAS  Google Scholar 

  317. Rosen PP. Mucocele-like tumors of the breast. Am J Surg Pathol. 1986;10(7):464–9.

    PubMed  CAS  Google Scholar 

  318. Ro JY, Sneige N, Sahin AA, Silva EG, del Junco GW, Ayala AG. Mucocelelike tumor of the breast associated with atypical ductal hyperplasia or mucinous carcinoma. A clinicopathologic study of seven cases. Arch Pathol Lab Med. 1991;115(2):137–40.

    PubMed  CAS  Google Scholar 

  319. Hamele-Bena D, Cranor ML, Rosen PP. Mammary mucocele-like lesions. Benign and malignant. Am J Surg Pathol. 1996;20(9):1081–5.

    PubMed  CAS  Google Scholar 

  320. Diab SG, Clark GM, Osborne CK, Libby A, Allred DC, Elledge RM. Tumor characteristics and clinical outcome of tubular and mucinous breast carcinomas. J Clin Oncol. 1999;17(5):1442–8.

    PubMed  CAS  Google Scholar 

  321. Do SI, Kim K, Kim DH, Chae SW, Park YL, Park CH, et al. Associations between the expression of mucins (MUC1, MUC2, MUC5AC, and MUC6) and clinicopathologic parameters of human breast ductal carcinomas. J Breast Cancer. 2013;16(2):152–8.

    PubMed  PubMed Central  Google Scholar 

  322. Rakha EA, Boyce RW, Abd El-Rehim D, Kurien T, Green AR, Paish EC, et al. Expression of mucins (MUC1, MUC2, MUC3, MUC4, MUC5AC and MUC6) and their prognostic significance in human breast cancer. Mod Pathol. 2005;18(10):1295–304.

    PubMed  CAS  Google Scholar 

  323. Marchetti A, Buttitta F, Pellegrini S, Campani D, Diella F, Cecchetti D, et al. p53 mutations and histological type of invasive breast carcinoma. Cancer Res. 1993;53(19):4665–9.

    PubMed  CAS  Google Scholar 

  324. Lacroix-Triki M, Lambros MB, Geyer FC, Suarez PH, Reis-Filho JS, Weigelt B. Absence of microsatellite instability in mucinous carcinomas of the breast. Int J Clin Exp Pathol. 2010;4(1):22–31.

    PubMed  PubMed Central  Google Scholar 

  325. Lacroix-Triki M, Suarez PH, MacKay A, Lambros MB, Natrajan R, Savage K, et al. Mucinous carcinoma of the breast is genomically distinct from invasive ductal carcinomas of no special type. J Pathol. 2010;222(3):282–98.

    PubMed  CAS  Google Scholar 

  326. Weigelt B, Geyer FC, Horlings HM, Kreike B, Halfwerk H, Reis-Filho JS. Mucinous and neuroendocrine breast carcinomas are transcriptionally distinct from invasive ductal carcinomas of no special type. Mod Pathol. 2009;22(11):1401–14.

    PubMed  CAS  Google Scholar 

  327. Wargotz ES, Norris HJ. Metaplastic carcinomas of the breast. III. Carcinosarcoma. Cancer. 1989;64(7):1490–9.

    PubMed  CAS  Google Scholar 

  328. Wargotz ES, Deos PH, Norris HJ. Metaplastic carcinomas of the breast. II. Spindle cell carcinoma. Hum Pathol. 1989;20(8):732–40.

    PubMed  CAS  Google Scholar 

  329. Wargotz ES, Norris HJ. Metaplastic carcinomas of the breast. I. Matrix-producing carcinoma. Hum Pathol. 1989;20(7):628–35.

    PubMed  CAS  Google Scholar 

  330. Wargotz ES, Norris HJ. Metaplastic carcinomas of the breast. IV. Squamous cell carcinoma of ductal origin. Cancer. 1990;65(2):272–6.

    PubMed  CAS  Google Scholar 

  331. Gobbi H, Simpson JF, Borowsky A, Jensen RA, Page DL. Metaplastic breast tumors with a dominant fibromatosis-like phenotype have a high risk of local recurrence. Cancer. 1999;85(10):2170–82.

    PubMed  CAS  Google Scholar 

  332. Rosen PP, Ernsberger D. Low-grade adenosquamous carcinoma. A variant of metaplastic mammary carcinoma. Am J Surg Pathol. 1987;11(5):351–8.

    PubMed  CAS  Google Scholar 

  333. Geyer FC, Weigelt B, Natrajan R, Lambros MB, de Biase D, Vatcheva R, et al. Molecular analysis reveals a genetic basis for the phenotypic diversity of metaplastic breast carcinomas. J Pathol. 2010;220(5):562–73.

    PubMed  CAS  Google Scholar 

  334. Piscuoglio S, Ng CKY, Geyer FC, Burke KA, Cowell CF, Martelotto LG, et al. Genomic and transcriptomic heterogeneity in metaplastic carcinomas of the breast. NPJ Breast Cancer. 2017;3:48.

    PubMed  PubMed Central  Google Scholar 

  335. Wada H, Enomoto T, Tsujimoto M, Nomura T, Murata Y, Shroyer KR. Carcinosarcoma of the breast: molecular-biological study for analysis of histogenesis. Hum Pathol. 1998;29(11):1324–8.

    PubMed  CAS  Google Scholar 

  336. Weigelt B, Eberle C, Cowell CF, Ng CK, Reis-Filho JS. Metaplastic breast carcinoma: more than a special type. Nat Rev Cancer. 2014;14(3):147–8.

    PubMed  CAS  Google Scholar 

  337. Davis WG, Hennessy B, Babiera G, Hunt K, Valero V, Buchholz TA, et al. Metaplastic sarcomatoid carcinoma of the breast with absent or minimal overt invasive carcinomatous component: a misnomer. Am J Surg Pathol. 2005;29(11):1456–63.

    PubMed  Google Scholar 

  338. Pezzi CM, Patel-Parekh L, Cole K, Franko J, Klimberg VS, Bland K. Characteristics and treatment of metaplastic breast cancer: analysis of 892 cases from the National Cancer Data Base. Ann Surg Oncol. 2007;14(1):166–73.

    PubMed  Google Scholar 

  339. Yang WT, Hennessy B, Broglio K, Mills C, Sneige N, Davis WG, et al. Imaging differences in metaplastic and invasive ductal carcinomas of the breast. AJR Am J Roentgenol. 2007;189(6):1288–93.

    PubMed  Google Scholar 

  340. Patterson SK, Tworek JA, Roubidoux MA, Helvie MA, Oberman HA. Metaplastic carcinoma of the breast: mammographic appearance with pathologic correlation. AJR Am J Roentgenol. 1997;169(3):709–12.

    PubMed  CAS  Google Scholar 

  341. Toikkanen S. Primary squamous cell carcinoma of the breast. Cancer. 1981;48(7):1629–32.

    PubMed  CAS  Google Scholar 

  342. Eggers JW, Chesney TM. Squamous cell carcinoma of the breast: a clinicopathologic analysis of eight cases and review of the literature. Hum Pathol. 1984;15(6):526–31.

    PubMed  CAS  Google Scholar 

  343. Lakhani SR. WHO classification of tumours of the breast [text]. International Agency for Research on Cancer, World Health Organization: Lyon, France; 2012.

    Google Scholar 

  344. Goldstein NS, Decker D, Severson D, Schell S, Vicini F, Margolis J, et al. Molecular classification system identifies invasive breast carcinoma patients who are most likely and those who are least likely to achieve a complete Pathologic response after Neoadjuvant chemotherapy. Cancer. 2007;110(8):1687–96.

    PubMed  CAS  Google Scholar 

  345. Sneige N, Yaziji H, Mandavilli SR, Perez ER, Ordonez NG, Gown AM, et al. Low-grade (fibromatosis-like) spindle cell carcinoma of the breast. Am J Surg Pathol. 2001;25(8):1009–16.

    PubMed  CAS  Google Scholar 

  346. Van Hoeven KH, Drudis T, Cranor ML, Erlandson RA, Rosen PP. Low-grade adenosquamous carcinoma of the breast. A clinocopathologic study of 32 cases with ultrastructural analysis. Am J Surg Pathol. 1993;17(3):248–58.

    PubMed  Google Scholar 

  347. Drudis T, Arroyo C, Van Hoeven K, Cordon-Cardo C, Rosen PP. The pathology of low-grade adenosquamous carcinoma of the breast. An immunohistochemical study. Pathol Annu. 1994;29(Pt 2):181–97.

    PubMed  Google Scholar 

  348. Hennessy BT, Krishnamurthy S, Giordano S, Buchholz TA, Kau SW, Duan Z, et al. Squamous cell carcinoma of the breast. J Clin Oncol. 2005;23(31):7827–35.

    PubMed  Google Scholar 

  349. Farrand R, Lavigne R, Lokich J, McAuley R, Sparling S, Rollo Q, et al. Epidermoid carcinoma of the breast. J Surg Oncol. 1979;12(3):207–11.

    PubMed  CAS  Google Scholar 

  350. Eusebi V, Lamovec J, Cattani MG, Fedeli F, Millis RR. Acantholytic variant of squamous-cell carcinoma of the breast. Am J Surg Pathol. 1986;10(12):855–61.

    PubMed  CAS  Google Scholar 

  351. Carter MR, Hornick JL, Lester S, Fletcher CD. Spindle cell (sarcomatoid) carcinoma of the breast: a clinicopathologic and immunohistochemical analysis of 29 cases. Am J Surg Pathol. 2006;30(3):300–9.

    PubMed  Google Scholar 

  352. Oberman HA. Metaplastic carcinoma of the breast. A clinicopathologic study of 29 patients. Am J Surg Pathol. 1987;11(12):918–29.

    PubMed  CAS  Google Scholar 

  353. Pitts WC, Rojas VA, Gaffey MJ, Rouse RV, Esteban J, Frierson HF, et al. Carcinomas with metaplasia and sarcomas of the breast. Am J Clin Pathol. 1991;95(5):623–32.

    PubMed  CAS  Google Scholar 

  354. Downs-Kelly E, Nayeemuddin KM, Albarracin C, Wu Y, Hunt KK, Gilcrease MZ. Matrix-producing carcinoma of the breast: an aggressive subtype of metaplastic carcinoma. Am J Surg Pathol. 2009;33(4):534–41.

    PubMed  Google Scholar 

  355. Lamovec J, Kloboves-Prevodnik V. Teleangiectatic sarcomatoid carcinoma of the breast. Tumori. 1992;78(4):283–6.

    PubMed  CAS  Google Scholar 

  356. Weigelt B, Kreike B, Reis-Filho JS. Metaplastic breast carcinomas are basal-like breast cancers: a genomic profiling analysis. Breast Cancer Res Treat. 2009;117(2):273–80.

    PubMed  CAS  Google Scholar 

  357. Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, Gilcrease MZ, Krishnamurthy S, Lee JS, et al. Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res. 2009;69(10):4116–24.

    PubMed  PubMed Central  CAS  Google Scholar 

  358. Yamaguchi R, Tanaka M, Kondo K, Yokoyama T, Maeda I, Tsuchiya S, et al. Immunohistochemical study of metaplastic carcinoma and central acellular carcinoma of the breast: central acellular carcinoma is related to metaplastic carcinoma. Med Mol Morphol. 2012;45(1):14–21.

    PubMed  CAS  Google Scholar 

  359. Cimino-Mathews A, Subhawong AP, Elwood H, Warzecha HN, Sharma R, Park BH, et al. Neural crest transcription factor Sox10 is preferentially expressed in triple-negative and metaplastic breast carcinomas. Hum Pathol. 2013;44(6):959–65.

    PubMed  CAS  Google Scholar 

  360. Altaf FJ, Mokhtar GA, Emam E, Bokhary RY, Mahfouz NB, Al Amoudi S, et al. Metaplastic carcinoma of the breast: an immunohistochemical study. Diagn Pathol. 2014;9:139.

    PubMed  PubMed Central  Google Scholar 

  361. Moulder S, Helgason T, Janku F, Wheler J, Moroney J, Booser D, et al. Inhibition of the phosphoinositide 3-kinase pathway for the treatment of patients with metastatic metaplastic breast cancer. Ann Oncol. 2015;26(7):1346–52.

    PubMed  PubMed Central  CAS  Google Scholar 

  362. Suster S, Moran CA, Hurt MA. Syringomatous squamous tumors of the breast. Cancer. 1991;67(9):2350–5.

    PubMed  CAS  Google Scholar 

  363. Fisher ER, Palekar AS, Gregorio RM, Paulson JD. Mucoepidermoid and squamous cell carcinomas of breast with reference to squamous metaplasia and giant cell tumors. Am J Surg Pathol. 1983;7(1):15–27.

    PubMed  CAS  Google Scholar 

  364. Cardoso F, Leal C, Meira A, Azevedo R, Mauricio MJ, Leal da Silva JM, et al. Squamous cell carcinoma of the breast. Breast. 2000;9(6):315–9.

    PubMed  CAS  Google Scholar 

  365. Kaufman MW, Marti JR, Gallager HS, Hoehn JL. Carcinoma of the breast with pseudosarcomatous metaplasia. Cancer. 1984;53(9):1908–17.

    PubMed  CAS  Google Scholar 

  366. Lester TR, Hunt KK, Nayeemuddin KM, Bassett RL Jr, Gonzalez-Angulo AM, Feig BW, et al. Metaplastic sarcomatoid carcinoma of the breast appears more aggressive than other triple receptor-negative breast cancers. Breast Cancer Res Treat. 2012;131(1):41–8.

    PubMed  CAS  Google Scholar 

  367. Lee H, Jung SY, Ro JY, Kwon Y, Sohn JH, Park IH, et al. Metaplastic breast cancer: clinicopathological features and its prognosis. J Clin Pathol. 2012;65(5):441–6.

    PubMed  Google Scholar 

  368. Hennessy BT, Giordano S, Broglio K, Duan Z, Trent J, Buchholz TA, et al. Biphasic metaplastic sarcomatoid carcinoma of the breast. Ann Oncol. 2006;17(4):605–13.

    PubMed  CAS  Google Scholar 

  369. Bhatt L, Fernando I. Primary squamous cell carcinoma of the breast: achieving long-term control with cisplatin-based chemotherapy. Clin Breast Cancer. 2009;9(3):187–8.

    PubMed  Google Scholar 

  370. Dejager D, Redlich PN, Dayer AM, Davis HL, Komorowski RA. Primary squamous cell carcinoma of the breast: sensitivity to cisplatinum-based chemotherapy. J Surg Oncol. 1995;59(3):199–203.

    PubMed  CAS  Google Scholar 

  371. Abouharb S, Moulder S. Metaplastic breast cancer: clinical overview and molecular aberrations for potential targeted therapy. Curr Oncol Rep. 2015;17(3):431.

    PubMed  Google Scholar 

  372. Fisher ER, Palekar AS, Redmond C, Barton B, Fisher B. Pathologic findings from the National Surgical Adjuvant Breast Project (protocol no. 4). VI. Invasive papillary cancer. Am J Clin Pathol. 1980;73(3):313–22.

    PubMed  CAS  Google Scholar 

  373. Siriaunkgul S, Tavassoli FA. Invasive micropapillary carcinoma of the breast. Mod Pathol. 1993;6(6):660–2.

    PubMed  CAS  Google Scholar 

  374. Luna-More S, Gonzalez B, Acedo C, Rodrigo I, Luna C. Invasive micropapillary carcinoma of the breast. A new special type of invasive mammary carcinoma. Pathol Res Pract. 1994;190(7):668–74.

    PubMed  CAS  Google Scholar 

  375. Smith Sehdev AE, Sehdev PS, Kurman RJ. Noninvasive and invasive micropapillary (low-grade) serous carcinoma of the ovary: a clinicopathologic analysis of 135 cases. Am J Surg Pathol. 2003;27(6):725–36.

    PubMed  Google Scholar 

  376. Amin MB, Ro JY, el-Sharkawy T, Lee KM, Troncoso P, Silva EG, et al. Micropapillary variant of transitional cell carcinoma of the urinary bladder. Histologic pattern resembling ovarian papillary serous carcinoma. Am J Surg Pathol. 1994;18(12):1224–32.

    PubMed  CAS  Google Scholar 

  377. Sakamoto K, Watanabe M, De La Cruz C, Honda H, Ise H, Mitsui K, et al. Primary invasive micropapillary carcinoma of the colon. Histopathology. 2005;47(5):479–84.

    PubMed  CAS  Google Scholar 

  378. Amin MB, Tamboli P, Merchant SH, Ordonez NG, Ro J, Ayala AG, et al. Micropapillary component in lung adenocarcinoma: a distinctive histologic feature with possible prognostic significance. Am J Surg Pathol. 2002;26(3):358–64.

    PubMed  Google Scholar 

  379. Nagao T, Gaffey TA, Visscher DW, Kay PA, Minato H, Serizawa H, et al. Invasive micropapillary salivary duct carcinoma: a distinct histologic variant with biologic significance. Am J Surg Pathol. 2004;28(3):319–26.

    PubMed  Google Scholar 

  380. Guo X, Chen L, Lang R, Fan Y, Zhang X, Fu L. Invasive micropapillary carcinoma of the breast: association of pathologic features with lymph node metastasis. Am J Clin Pathol. 2006;126(5):740–6.

    PubMed  Google Scholar 

  381. Nassar H, Wallis T, Andea A, Dey J, Adsay V, Visscher D. Clinicopathologic analysis of invasive micropapillary differentiation in breast carcinoma. Mod Pathol. 2001;14(9):836–41.

    PubMed  CAS  Google Scholar 

  382. Yang YL, Liu BB, Zhang X, Fu L. Invasive Micropapillary Carcinoma of the Breast: An Update. Arch Pathol Lab Med. 2016;140(8):799–805.

    PubMed  Google Scholar 

  383. Kubota K, Ogawa Y, Nishioka A, Murata Y, Itoh S, Hamada N, et al. Radiological imaging features of invasive micropapillary carcinoma of the breast and axillary lymph nodes. Oncol Rep. 2008;20(5):1143–7.

    PubMed  Google Scholar 

  384. Yun SU, Choi BB, Shu KS, Kim SM, Seo YD, Lee JS, et al. Imaging findings of invasive micropapillary carcinoma of the breast. J Breast Cancer. 2012;15(1):57–64.

    PubMed  PubMed Central  Google Scholar 

  385. Paterakos M, Watkin WG, Edgerton SM, Moore DH 2nd, Thor AD. Invasive micropapillary carcinoma of the breast: a prognostic study. Hum Pathol. 1999;30(12):1459–63.

    PubMed  CAS  Google Scholar 

  386. Pettinato G, Manivel CJ, Panico L, Sparano L, Petrella G. Invasive micropapillary carcinoma of the breast: clinicopathologic study of 62 cases of a poorly recognized variant with highly aggressive behavior. Am J Clin Pathol. 2004;121(6):857–66.

    PubMed  Google Scholar 

  387. Middleton LP, Tressera F, Sobel ME, Bryant BR, Alburquerque A, Grases P, et al. Infiltrating micropapillary carcinoma of the breast. Mod Pathol. 1999;12(5):499–504.

    PubMed  CAS  Google Scholar 

  388. Lotan TL, Ye H, Melamed J, Wu XR, Shih Ie M, Epstein JI. Immunohistochemical panel to identify the primary site of invasive micropapillary carcinoma. Am J Surg Pathol. 2009;33(7):1037–41.

    PubMed  PubMed Central  Google Scholar 

  389. Chen AC, Paulino AC, Schwartz MR, Rodriguez AA, Bass BL, Chang JC, et al. Prognostic markers for invasive micropapillary carcinoma of the breast: a population-based analysis. Clin Breast Cancer. 2013;13(2):133–9.

    PubMed  CAS  Google Scholar 

  390. Stewart RL, Caron JE, Gulbahce EH, Factor RE, Geiersbach KB, Downs-Kelly E. HER2 immunohistochemical and fluorescence in situ hybridization discordances in invasive breast carcinoma with micropapillary features. Mod Pathol. 2017;30(11):1561–6.

    PubMed  CAS  Google Scholar 

  391. Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. Arch Pathol Lab Med. 2014;138(2):241–56.

    PubMed  Google Scholar 

  392. Nassar H, Pansare V, Zhang H, Che M, Sakr W, Ali-Fehmi R, et al. Pathogenesis of invasive micropapillary carcinoma: role of MUC1 glycoprotein. Mod Pathol. 2004;17(9):1045–50.

    PubMed  CAS  Google Scholar 

  393. Kim MJ, Gong G, Joo HJ, Ahn SH, Ro JY. Immunohistochemical and clinicopathologic characteristics of invasive ductal carcinoma of breast with micropapillary carcinoma component. Arch Pathol Lab Med. 2005;129(10):1277–82.

    PubMed  Google Scholar 

  394. Natrajan R, Wilkerson PM, Marchio C, Piscuoglio S, Ng CK, Wai P, et al. Characterization of the genomic features and expressed fusion genes in micropapillary carcinomas of the breast. J Pathol. 2014;232(5):553–65.

    PubMed  PubMed Central  CAS  Google Scholar 

  395. Tang SL, Yang JQ, Du ZG, Tan QW, Zhou YT, Zhang D, et al. Clinicopathologic study of invasive micropapillary carcinoma of the breast. Oncotarget. 2017;8(26):42455–65.

    PubMed  PubMed Central  Google Scholar 

  396. Wu Y, Zhang N, Yang Q. The prognosis of invasive micropapillary carcinoma compared with invasive ductal carcinoma in the breast: a meta-analysis. BMC Cancer. 2017;17(1):839.

    PubMed  PubMed Central  Google Scholar 

  397. Eusebi V, Millis RR, Cattani MG, Bussolati G, Azzopardi JG. Apocrine carcinoma of the breast. A morphologic and immunocytochemical study. Am J Pathol. 1986;123(3):532–41.

    PubMed  PubMed Central  CAS  Google Scholar 

  398. Abati AD, Kimmel M, Rosen PP. Apocrine mammary carcinoma. A clinicopathologic study of 72 cases. Am J Clin Pathol. 1990;94(4):371–7.

    PubMed  CAS  Google Scholar 

  399. Eusebi V, Magalhaes F, Azzopardi JG. Pleomorphic lobular carcinoma of the breast: an aggressive tumor showing apocrine differentiation. Hum Pathol. 1992;23(6):655–62.

    PubMed  CAS  Google Scholar 

  400. Pendleton G. Blank reference #1. 2018.

    Google Scholar 

  401. Vranic S, Gatalica Z, Deng H, et al. ER-alpha36, a novel isoform of ER-alpha66, is commonly over-expressed in apocrine and adenoid cystic carcinomas of the breast. J Clin Pathol. 2011;64(1):54–7.

    PubMed  Google Scholar 

  402. Bhargava R, Beriwal S, Striebel JM, Dabbs DJ. Breast cancer molecular class ERBB2: preponderance of tumors with apocrine differentiation and expression of basal phenotype markers CK5, CK5/6, and EGFR. Appl Immunohistochem Mol Morphol. 2010;18(2):113–8.

    PubMed  CAS  Google Scholar 

  403. Niemeier LA, Dabbs DJ, Beriwal S, Striebel JM, Bhargava R. Androgen receptor in breast cancer: expression in estrogen receptor-positive tumors and in estrogen receptor-negative tumors with apocrine differentiation. Mod Pathol. 2010;23(2):205–12.

    PubMed  CAS  Google Scholar 

  404. Suzuki T, Miki Y, Takagi K, et al. Androgens in human breast carcinoma. Med Mol Morphol. 2010;43(2):75–81.

    PubMed  CAS  Google Scholar 

  405. Farmer P, Bonnefoi H, Becette V, et al. Identification of molecular apocrine breast tumours by microarray analysis. Oncogene. 2005;24(29):4660–71.

    PubMed  CAS  Google Scholar 

  406. Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.

    PubMed  CAS  Google Scholar 

  407. Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98(19):10869–74.

    PubMed  PubMed Central  CAS  Google Scholar 

  408. Sorlie T, Tibshirani R, Parker J, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100(14):8418–23.

    PubMed  PubMed Central  CAS  Google Scholar 

  409. Weigelt B, Horlings HM, Kreike B, et al. Refinement of breast cancer classification by molecular characterization of histological special types. J Pathol. 2008;216(2):141–50.

    PubMed  CAS  Google Scholar 

  410. d’Amore ES, Terrier-Lacombe MJ, Travagli JP, Friedman S, Contesso G. Invasive apocrine carcinoma of the breast: a long term follow-up study of 34 cases. Breast Cancer Res Treat. 1988;12(1):37–44.

    PubMed  Google Scholar 

  411. Japaze H, Emina J, Diaz C, et al. ‘Pure’ invasive apocrine carcinoma of the breast: a new clinicopathological entity? Breast (Edinburgh, Scotland). 2005;14(1):3–10.

    CAS  Google Scholar 

  412. Sapino A, Righi L, Cassoni P, Papotti M, Gugliotta P, Bussolati G. Expression of apocrine differentiation markers in neuroendocrine breast carcinomas of aged women. Mod Pathol. 2001;14(8):768–76.

    PubMed  CAS  Google Scholar 

  413. Sapino A, Righi L, Cassoni P, Papotti M, Pietribiasi F, Bussolati G. Expression of the neuroendocrine phenotype in carcinomas of the breast. Semin Diagn Pathol. 2000;17(2):127–37.

    PubMed  CAS  Google Scholar 

  414. Shin SJ, DeLellis RA, Ying L, Rosen PP. Small cell carcinoma of the breast: a clinicopathologic and immunohistochemical study of nine patients. Am J Surg Pathol. 2000;24(9):1231–8.

    PubMed  CAS  Google Scholar 

  415. Weigelt B, Geyer FC, Horlings HM, Kreike B, Halfwerk H, Reis-Filho JS. Mucinous and neuroendocrine breast carcinomas are transcriptionally distinct from invasive ductal carcinomas of no special type. Mod Pathol. 2009;22(11):1401–14.

    PubMed  CAS  Google Scholar 

  416. Oberman HA. Secretory carcinoma of the breast in adults. Am J Surg Pathol. 1980;4(5):465–70.

    PubMed  CAS  Google Scholar 

  417. Rosen PP, Cranor ML. Secretory carcinoma of the breast. Arch Pathol Lab Med. 1991;115(2):141–4.

    PubMed  CAS  Google Scholar 

  418. Tavassoli F, Eusebi V. Tumors of the mammary gland. Washington, DC: American Registry of Pathology in collaboration with the Armed Forces Institute of Pathology; 2009.

    Google Scholar 

  419. Herz H, Cooke B, Goldstein D. Metastatic secretory breast cancer. Non-responsiveness to chemotherapy: case report and review of the literature. Ann Oncol. 2000;11(10):1343–7.

    PubMed  CAS  Google Scholar 

  420. Lae M, Freneaux P, Sastre-Garau X, Chouchane O, Sigal-Zafrani B, Vincent-Salomon A. Secretory breast carcinomas with ETV6-NTRK3 fusion gene belong to the basal-like carcinoma spectrum. Mod Pathol. 2009;22(2):291–8.

    PubMed  CAS  Google Scholar 

  421. Tognon C, Knezevich SR, Huntsman D, et al. Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell. 2002;2(5):367–76.

    PubMed  CAS  Google Scholar 

  422. Reis-Filho JS, Natrajan R, Vatcheva R, et al. Is acinic cell carcinoma a variant of secretory carcinoma? A FISH study using ETV6 ‘split apart’ probes. Histopathology. 2008;52(7):840–6.

    PubMed  CAS  Google Scholar 

  423. Krausz T, Jenkins D, Grontoft O, Pollock DJ, Azzopardi JG. Secretory carcinoma of the breast in adults: emphasis on late recurrence and metastasis. Histopathology. 1989;14(1):25–36.

    PubMed  CAS  Google Scholar 

  424. Maitra A, Tavassoli FA, Albores-Saavedra J, et al. Molecular abnormalities associated with secretory carcinomas of the breast. Hum Pathol. 1999;30(12):1435–40.

    PubMed  CAS  Google Scholar 

  425. Arce C, Cortes-Padilla D, Huntsman DG, et al. Secretory carcinoma of the breast containing the ETV6-NTRK3 fusion gene in a male: case report and review of the literature. World J Surg Oncol. 2005;3:35.

    PubMed  PubMed Central  CAS  Google Scholar 

  426. Anderson WF, Pfeiffer RM, Dores GM, Sherman ME. Comparison of age distribution patterns for different histopathologic types of breast carcinoma. Cancer Epidemiol Biomarkers Prev. 2006;15:1899–905. https://doi.org/10.1158/1055-9965. Epi-06-0191.

    Article  PubMed  Google Scholar 

  427. Martinez SR, et al. Medullary carcinoma of the breast: a population-based perspective. Med Oncol (Northwood, London, England). 2011;28:738–44. https://doi.org/10.1007/s12032-010-9526-z.

    Article  Google Scholar 

  428. Vu-Nishino H, Tavassoli FA, Ahrens WA, Haffty BG. Clinicopathologic features and long-term outcome of patients with medullary breast carcinoma managed with breast-conserving therapy (BCT). Int J Radiat Oncol Biol Phys. 2005;62:1040–7. https://doi.org/10.1016/j.ijrobp.2005.01.008.

    Article  PubMed  Google Scholar 

  429. Pedersen L, Holck S, Mouridsen HT, Schodt T, Zedeler K. Prognostic comparison of three classifications for medullary carcinoma of the breast. Histopathology. 1999;34:175–8.

    PubMed  CAS  Google Scholar 

  430. Ridolfi RL, Rosen PP, Port A, Kinne D, Mike V. Medullary carcinoma of the breast: a clinicopathologic study with 10 year follow-up. Cancer. 1977;40:1365–85.

    PubMed  CAS  Google Scholar 

  431. Orlando L, et al. Are all high-grade breast cancers with no steroid receptor hormone expression alike? The special case of the medullary phenotype. Ann Oncol. 2005;16:1094–9. https://doi.org/10.1093/annonc/mdi213.

    Article  PubMed  CAS  Google Scholar 

  432. Bertucci F, et al. Gene expression profiling shows medullary breast cancer is a subgroup of basal breast cancers. Cancer Res. 2006;66:4636–44. https://doi.org/10.1158/0008-5472.Can-06-0031.

    Article  PubMed  CAS  Google Scholar 

  433. Eisinger F, et al. Mutations at BRCA1: the medullary breast carcinoma revisited. Cancer Res. 1998;58:1588–92.

    PubMed  CAS  Google Scholar 

  434. Vargas AC, Da Silva L, Lakhani SR. The contribution of breast cancer pathology to statistical models to predict mutation risk in BRCA carriers. Fam Cancer. 2010;9:545–53. https://doi.org/10.1007/s10689-010-9362-5.

    Article  PubMed  CAS  Google Scholar 

  435. Lakhani SR, et al. The pathology of familial breast cancer: histological features of cancers in families not attributable to mutations in BRCA1 or BRCA2. Clin Cancer Res. 2000;6:782–9.

    PubMed  CAS  Google Scholar 

  436. Osin P, et al. Distinct genetic and epigenetic changes in medullary breast cancer. Int J Surg Pathol. 2003;11:153–8. https://doi.org/10.1177/106689690301100301.

    Article  PubMed  CAS  Google Scholar 

  437. Rodriguez-Pinilla SM, et al. Sporadic invasive breast carcinomas with medullary features display a basal-like phenotype: an immunohistochemical and gene amplification study. Am J Surg Pathol. 2007;31:501–8. https://doi.org/10.1097/01.pas.0000213427.84245.92.

    Article  PubMed  Google Scholar 

  438. Rakha EA, et al. The prognostic significance of inflammation and medullary histological type in invasive carcinoma of the breast. Eur J Cancer (Oxford, England: 1990). 2009;45:1780–7. https://doi.org/10.1016/j.ejca.2009.02.014.

    Article  CAS  Google Scholar 

  439. Rakha EA, Reis-Filho JS, Ellis IO. Basal-like breast cancer: a critical review. J Clin Oncol. 2008;26:2568–81. https://doi.org/10.1200/jco.2007.13.1748.

    Article  PubMed  Google Scholar 

  440. Ghabach B, Anderson WF, Curtis RE, Huycke MM, Lavigne JA, Dores GM. Adenoid cystic carcinoma of the breast in the United States (1977 to 2006): a population-based cohort study. Breast Cancer Res. 2010;12(4):R54.

    PubMed  PubMed Central  Google Scholar 

  441. Sumpio BE, Jennings TA, Merino MJ, Sullivan PD. Adenoid cystic carcinoma of the breast. Data from the Connecticut Tumor Registry and a review of the literature. Ann Surg. 1987;205(3):295–301.

    PubMed  PubMed Central  CAS  Google Scholar 

  442. Azumi N, Battifora H. The cellular composition of adenoid cystic carcinoma. An immunohistochemical study. Cancer. 1987;60(7):1589–98.

    PubMed  CAS  Google Scholar 

  443. Foschini MP, Krausz T. Salivary gland-type tumors of the breast: a spectrum of benign and malignant tumors including “triple negative carcinomas” of low malignant potential. Semin Diagn Pathol. 2010;27(1):77–90.

    PubMed  Google Scholar 

  444. Glazebrook KN, Reynolds C, Smith RL, Gimenez EI, Boughey JC. Adenoid cystic carcinoma of the breast. AJR Am J Roentgenol. 2010;194(5):1391–6.

    PubMed  Google Scholar 

  445. Fukuoka K, Hirokawa M, Shimizu M, et al. Basaloid type adenoid cystic carcinoma of the breast. APMIS. 1999;107(8):762–6.

    PubMed  CAS  Google Scholar 

  446. Shin SJ, Rosen PP. Solid variant of mammary adenoid cystic carcinoma with basaloid features: a study of nine cases. Am J Surg Pathol. 2002;26(4):413–20.

    PubMed  Google Scholar 

  447. Lamovec J, Us-Krasovec M, Zidar A, Kljun A. Adenoid cystic carcinoma of the breast: a histologic, cytologic, and immunohistochemical study. Semin Diagn Pathol. 1989;6(2):153–64.

    PubMed  CAS  Google Scholar 

  448. Azoulay S, Lae M, Freneaux P, et al. KIT is highly expressed in adenoid cystic carcinoma of the breast, a basal-like carcinoma associated with a favorable outcome. Mod Pathol. 2005;18(12):1623–31.

    PubMed  CAS  Google Scholar 

  449. Mastropasqua MG, Maiorano E, Pruneri G, et al. Immunoreactivity for c-kit and p63 as an adjunct in the diagnosis of adenoid cystic carcinoma of the breast. Mod Pathol. 2005;18(10):1277–82.

    PubMed  CAS  Google Scholar 

  450. Crisi GM, Marconi SA, Makari-Judson G, Goulart RA. Expression of c-kit in adenoid cystic carcinoma of the breast. Am J Clin Pathol. 2005;124(5):733–9.

    PubMed  CAS  Google Scholar 

  451. Marchio C, Weigelt B, Reis-Filho JS. Adenoid cystic carcinomas of the breast and salivary glands (or ‘The strange case of Dr Jekyll and Mr Hyde’ of exocrine gland carcinomas). J Clin Pathol. 2010;63(3):220–8.

    PubMed  Google Scholar 

  452. Alva S, Shetty-Alva N. An update of tumor metastasis to the breast data. Arch Surg. 1999;134(4):450.

    PubMed  CAS  Google Scholar 

  453. Williams SA, Ehlers RA 2nd, Hunt KK, et al. Metastases to the breast from nonbreast solid neoplasms: presentation and determinants of survival. Cancer. 2007;110(4):731–7.

    PubMed  Google Scholar 

  454. Cabrero IA, Álvarez MC, Montiel DP, Tavassoli FA. Metastases to the breast. Eur J Surg Oncol (EJSO). 2003;29(10):854–5.

    Google Scholar 

  455. Lee AH. The histological diagnosis of metastases to the breast from extramammary malignancies. J Clin Pathol. 2007;60(12):1333–41.

    PubMed  PubMed Central  Google Scholar 

  456. Hajdu SI, Urban JA. Cancers metastatic to the breast. Cancer. 1972;29(6):1691–6.

    PubMed  CAS  Google Scholar 

  457. Georgiannos SN, Chin J, Goode AW, Sheaff M. Secondary neoplasms of the breast: a survey of the 20th century. Cancer. 2001;92(9):2259–66.

    PubMed  CAS  Google Scholar 

  458. Buisman FE, van Gelder L, Menke-Pluijmers MB, Bisschops BH, Plaisier PW, Westenend PJ. Non-primary breast malignancies: a single institution's experience of a diagnostic challenge with important therapeutic consequences-a retrospective study. World J Surg Oncol. 2016;14(1):166.

    PubMed  PubMed Central  Google Scholar 

  459. Surov A, Fiedler E, Holzhausen HJ, Ruschke K, Schmoll HJ, Spielmann RP. Metastases to the breast from non-mammary malignancies: primary tumors, prevalence, clinical signs, and radiological features. Acad Radiol. 2011;18(5):565–74.

    PubMed  Google Scholar 

  460. Toombs BD, Kalisher L. Metastatic disease to the breast: clinical, pathologic, and radiographic features. AJR Am J Roentgenol. 1977;129(4):673–6.

    PubMed  CAS  Google Scholar 

  461. Amichetti M, Perani B, Boi S. Metastases to the breast from extramammary malignancies. Oncology. 1990;47(3):257–60.

    PubMed  CAS  Google Scholar 

  462. Lee SK, Kim WW, Kim SH, et al. Characteristics of metastasis in the breast from extramammary malignancies. J Surg Oncol. 2010;101(2):137–40.

    PubMed  Google Scholar 

  463. Sabaté JM, Gómez A, Torrubia S, et al. Lymphoma of the breast: clinical and radiologic features with pathologic correlation in 28 patients. Breast J. 2002;8(5):294–304.

    PubMed  Google Scholar 

  464. Cohen PL, Brooks JJ. Lymphomas of the breast. A clinicopathologic and immunohistochemical study of primary and secondary cases. Cancer. 1991;67(5):1359–69.

    PubMed  CAS  Google Scholar 

  465. DeLair DF, Corben AD, Catalano JP, Vallejo CE, Brogi E, Tan LK. Non-mammary metastases to the breast and axilla: a study of 85 cases. Mod Pathol. 2013;26(3):343–9.

    PubMed  Google Scholar 

  466. Telesinghe PU, Anthony PP. Primary lymphoma of the breast. Histopathology. 1985;9(3):297–307.

    PubMed  CAS  Google Scholar 

  467. Wiseman C, Liao KT. Primary lymphoma of the breast. Cancer. 1972;29(6):1705–12.

    PubMed  CAS  Google Scholar 

  468. Brustein S, Filippa DA, Kimmel M, Lieberman PH, Rosen PP. Malignant lymphoma of the breast. A study of 53 patients. Ann Surg. 1987;205(2):144–50.

    PubMed  PubMed Central  CAS  Google Scholar 

  469. Hugh JC, Jackson FI, Hanson J, Poppema S. Primary breast lymphoma. An immunohistologic study of 20 new cases. Cancer. 1990;66(12):2602–11.

    PubMed  CAS  Google Scholar 

  470. Talwalkar SS, Miranda RN, Valbuena JR, Routbort MJ, Martin AW, Medeiros LJ. Lymphomas involving the breast: a study of 106 cases comparing localized and disseminated neoplasms. Am J Surg Pathol. 2008;32(9):1299–309.

    PubMed  Google Scholar 

  471. Ganjoo K, Advani R, Mariappan MR, McMillan A, Horning S. Non-Hodgkin lymphoma of the breast. Cancer. 2007;110(1):25–30.

    PubMed  Google Scholar 

  472. Validire P, Capovilla M, Asselain B, et al. Primary breast non-Hodgkin's lymphoma: a large single center study of initial characteristics, natural history, and prognostic factors. Am J Hematol. 2009;84(3):133–9.

    PubMed  Google Scholar 

  473. Hans CP, Weisenburger DD, Greiner TC, et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103(1):275–82.

    PubMed  CAS  Google Scholar 

  474. Yoshida S, Nakamura N, Sasaki Y, et al. Primary breast diffuse large B-cell lymphoma shows a non-germinal center B-cell phenotype. Mod Pathol. 2005;18(3):398–405.

    PubMed  CAS  Google Scholar 

  475. Martinelli G, Ryan G, Seymour JF, et al. Primary follicular and marginal-zone lymphoma of the breast: clinical features, prognostic factors and outcome: a study by the International Extranodal Lymphoma Study Group. Ann Oncol. 2009;20(12):1993–9.

    PubMed  CAS  Google Scholar 

  476. Mattia AR, Ferry JA, Harris NL. Breast lymphoma. A B-cell spectrum including the low grade B-cell lymphoma of mucosa associated lymphoid tissue. Am J Surg Pathol. 1993;17(6):574–87.

    PubMed  CAS  Google Scholar 

  477. Ribrag V, Bibeau F, El Weshi A, et al. Primary breast lymphoma: a report of 20 cases. Br J Haematol. 2001;115(2):253–6.

    PubMed  CAS  Google Scholar 

  478. Daneshbod Y, Oryan A, Khojasteh HN, Rasekhi A, Ahmadi N, Mohammadianpanah M. Primary ALK-positive anaplastic large cell lymphoma of the breast: a case report and review of the literature. J Pediatr Hematol Oncol. 2010;32(2):e75–8.

    PubMed  Google Scholar 

  479. Miranda RN, Lin L, Talwalkar SS, Manning JT, Medeiros LJ. Anaplastic large cell lymphoma involving the breast: a clinicopathologic study of 6 cases and review of the literature. Arch Pathol Lab Med. 2009;133(9):1383–90.

    PubMed  Google Scholar 

  480. de Jong D, Vasmel WL, de Boer JP, et al. Anaplastic large-cell lymphoma in women with breast implants. JAMA. 2008;300(17):2030–5.

    PubMed  Google Scholar 

  481. Li S, Lee AK. Silicone implant and primary breast ALK1-negative anaplastic large cell lymphoma, fact or fiction? Int J Clin Exp Pathol. 2009;3(1):117–27.

    PubMed  Google Scholar 

  482. Thompson PA, Lade S, Webster H, Ryan G, Prince HM. Effusion-associated anaplastic large cell lymphoma of the breast: time for it to be defined as a distinct clinico-pathological entity. Haematologica. 2010;95(11):1977–9.

    PubMed  PubMed Central  Google Scholar 

  483. Wong AK, Lopategui J, Clancy S, Kulber D, Bose S. Anaplastic large cell lymphoma associated with a breast implant capsule: a case report and review of the literature. Am J Surg Pathol. 2008;32(8):1265–8.

    PubMed  Google Scholar 

  484. Roden AC, Macon WR, Keeney GL, Myers JL, Feldman AL, Dogan A. Seroma-associated primary anaplastic large-cell lymphoma adjacent to breast implants: an indolent T-cell lymphoproliferative disorder. Mod Pathol. 2008;21(4):455–63.

    PubMed  CAS  Google Scholar 

  485. Brogi E, Harris NL. Lymphomas of the breast: pathology and clinical behavior. Semin Oncol. 1999;26(3):357–64.

    PubMed  CAS  Google Scholar 

  486. Brown V, Carty NJ. A case of nodular fascitis of the breast and review of the literature. Breast (Edinburgh, Scotland). 2005;14(5):384–7.

    CAS  Google Scholar 

  487. Stanley MW, Skoog L, Tani EM, Horwitz CA. Nodular fasciitis: spontaneous resolution following diagnosis by fine-needle aspiration. Diagn Cytopathol. 1993;9(3):322–4.

    PubMed  CAS  Google Scholar 

  488. Brogi E. Benign and malignant spindle cell lesions of the breast. Semin Diagn Pathol. 2004;21(1):57–64.

    PubMed  Google Scholar 

  489. McMenamin ME, DeSchryver K, Fletcher CD. Fibrous lesions of the breast: a review. Int J Surg Pathol. 2000;8(2):99–108.

    PubMed  Google Scholar 

  490. Weiss SW, Nickoloff BJ. CD-34 is expressed by a distinctive cell population in peripheral nerve, nerve sheath tumors, and related lesions. Am J Surg Pathol. 1993;17(10):1039–45.

    PubMed  CAS  Google Scholar 

  491. Erickson-Johnson MR, Chou MM, Evers BR, et al. Nodular fasciitis: a novel model of transient neoplasia induced by MYH9-USP6 gene fusion. Lab Invest. 2011;91(10):1427–33.

    PubMed  CAS  Google Scholar 

  492. Powell CM, Cranor ML, Rosen PP. Pseudoangiomatous stromal hyperplasia (PASH). A mammary stromal tumor with myofibroblastic differentiation. Am J Surg Pathol. 1995;19(3):270–7.

    PubMed  CAS  Google Scholar 

  493. Vuitch MF, Rosen PP, Erlandson RA. Pseudoangiomatous hyperplasia of mammary stroma. Hum Pathol. 1986;17(2):185–91.

    PubMed  CAS  Google Scholar 

  494. Blank RS. 2018.

    Google Scholar 

  495. Gresik CM, Godellas C, Aranha GV, Rajan P, Shoup M. Pseudoangiomatous stromal hyperplasia of the breast: a contemporary approach to its clinical and radiologic features and ideal management. Surgery. 2010;148(4):752–7. discussion 757–758

    PubMed  Google Scholar 

  496. Magro G. Mammary myofibroblastoma: a tumor with a wide morphologic spectrum. Arch Pathol Lab Med. 2008;132(11):1813–20.

    PubMed  Google Scholar 

  497. Tavassoli FA, Eusebi V, American Registry of P, Armed Forces Institute of P. Tumors of the mammary gland. Washington, DC: American Registry of Pathology in collaboration with the Armed Forces Institute of Pathology; 2009.

    Google Scholar 

  498. Wargotz ES, Weiss SW, Norris HJ. Myofibroblastoma of the breast. Sixteen cases of a distinctive benign mesenchymal tumor. Am J Surg Pathol. 1987;11(7):493–502.

    PubMed  CAS  Google Scholar 

  499. Magro G, Michal M, Vasquez E, Bisceglia M. Lipomatous myofibroblastoma: a potential diagnostic pitfall in the spectrum of the spindle cell lesions of the breast. Virchows Arch. 2000;437(5):540–4.

    PubMed  CAS  Google Scholar 

  500. Magro G. Epithelioid-cell myofibroblastoma of the breast: expanding the morphologic spectrum. Am J Surg Pathol. 2009;33(7):1085–92.

    PubMed  Google Scholar 

  501. Magro G, Bisceglia M, Michal M, Eusebi V. Spindle cell lipoma-like tumor, solitary fibrous tumor and myofibroblastoma of the breast: a clinico-pathological analysis of 13 cases in favor of a unifying histogenetic concept. Virchows Arch. 2002;440(3):249–60.

    PubMed  Google Scholar 

  502. Neuman HB, Brogi E, Ebrahim A, Brennan MF, Van Zee KJ. Desmoid tumors (fibromatoses) of the breast: a 25-year experience. Ann Surg Oncol. 2008;15(1):274–80.

    PubMed  Google Scholar 

  503. Wargotz ES, Norris HJ, Austin RM, Enzinger FM. Fibromatosis of the breast. A clinical and pathological study of 28 cases. Am J Surg Pathol. 1987;11(1):38–45.

    PubMed  CAS  Google Scholar 

  504. Abraham SC, Reynolds C, Lee JH, et al. Fibromatosis of the breast and mutations involving the APC/beta-catenin pathway. Hum Pathol. 2002;33(1):39–46.

    PubMed  CAS  Google Scholar 

  505. Li M, Cordon-Cardo C, Gerald WL, Rosai J. Desmoid fibromatosis is a clonal process. Hum Pathol. 1996;27(9):939–43.

    PubMed  CAS  Google Scholar 

  506. Rosen PP. Rosen’s breast pathology. 3rd ed. Philadelphia: Wolters Kluwer, Lippincott Williams & Williams; 2008.

    Google Scholar 

  507. Lanng C, Eriksen BO, Hoffmann J. Lipoma of the breast: a diagnostic dilemma. Breast (Edinburgh, Scotland). 2004;13(5):408–11.

    CAS  Google Scholar 

  508. Yu GH, Fishman SJ, Brooks JS. Cellular angiolipoma of the breast. Mod Pathol. 1993;6(4):497–9.

    PubMed  CAS  Google Scholar 

  509. Kryvenko ON, Chitale DA, VanEgmond EM, Gupta NS, Schultz D, Lee MW. Angiolipoma of the female breast: clinicomorphological correlation of 52 cases. Int J Surg Pathol. 2011;19(1):35–43.

    PubMed  Google Scholar 

  510. Adeniran A, Al-Ahmadie H, Mahoney MC, Robinson-Smith TM. Granular cell tumor of the breast: a series of 17 cases and review of the literature. Breast J. 2004;10(6):528–31.

    PubMed  Google Scholar 

  511. Lack EE, Worsham GF, Callihan MD, et al. Granular cell tumor: a clinicopathologic study of 110 patients. J Surg Oncol. 1980;13(4):301–16.

    PubMed  CAS  Google Scholar 

  512. Bellezza G, Lombardi T, Panzarola P, Sidoni A, Cavaliere A, Giansanti M. Schwannoma of the breast: a case report and review of the literature. Tumori. 2007;93(3):308–11.

    PubMed  Google Scholar 

  513. Dhingra KK, Mandal S, Roy S, Khurana N. Malignant peripheral nerve sheath tumor of the breast: case report. World J Surg Oncol. 2007;5:142.

    PubMed  PubMed Central  Google Scholar 

  514. Rosen PP. Vascular tumors of the breast. V. Nonparenchymal hemangiomas of mammary subcutaneous tissues. Am J Surg Pathol. 1985;9(10):723–9.

    PubMed  CAS  Google Scholar 

  515. Rosen PP. Angiomas and other benign vascular lesions of the breast. In: Rosen’s breast pathology. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2008.

    Google Scholar 

  516. Brodie C, Provenzano E. Vascular proliferations of the breast. Histopathology. 2008;52(1):30–44.

    PubMed  CAS  Google Scholar 

  517. Fineberg S, Rosen PP. Cutaneous angiosarcoma and atypical vascular lesions of the skin and breast after radiation therapy for breast carcinoma. Am J Clin Pathol. 1994;102(6):757–63.

    PubMed  CAS  Google Scholar 

  518. Oberman HA. Secretory carcinoma of the breast in adults. Am J Surg Pathol. 1980;4(5):465–70.

    PubMed  CAS  Google Scholar 

  519. Adem C, Reynolds C, Ingle JN, Nascimento AG. Primary breast sarcoma: clinicopathologic series from the Mayo Clinic and review of the literature. Br J Cancer. 2004;91(2):237–41.

    PubMed  PubMed Central  CAS  Google Scholar 

  520. Yap J, Chuba PJ, Thomas R, et al. Sarcoma as a second malignancy after treatment for breast cancer. Int J Radiat Oncol Biol Phys. 2002;52(5):1231–7.

    PubMed  Google Scholar 

  521. Fayette J, Martin E, Piperno-Neumann S, et al. Angiosarcomas, a heterogeneous group of sarcomas with specific behavior depending on primary site: a retrospective study of 161 cases. Ann Oncol. 2007;18(12):2030–6.

    PubMed  CAS  Google Scholar 

  522. Mery CM, George S, Bertagnolli MM, Raut CP. Secondary sarcomas after radiotherapy for breast cancer: sustained risk and poor survival. Cancer. 2009;115(18):4055–63.

    PubMed  Google Scholar 

  523. Pendleton B. 2018.

    Google Scholar 

  524. Nascimento AF, Raut CP, Fletcher CD. Primary angiosarcoma of the breast: clinicopathologic analysis of 49 cases, suggesting that grade is not prognostic. Am J Surg Pathol. 2008;32(12):1896–904.

    PubMed  Google Scholar 

  525. Rosen PP, Jozefczyk MA, Boram LH. Vascular tumors of the breast. IV. The venous hemangioma. Am J Surg Pathol. 1985;9(9):659–65.

    PubMed  CAS  Google Scholar 

  526. Manner J, Radlwimmer B, Hohenberger P, et al. MYC high level gene amplification is a distinctive feature of angiosarcomas after irradiation or chronic lymphedema. Am J Pathol. 2010;176(1):34–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  527. Antonescu CR, Yoshida A, Guo T, et al. KDR activating mutations in human angiosarcomas are sensitive to specific kinase inhibitors. Cancer Res. 2009;69(18):7175–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  528. Mentzel T, Fletcher CD. Lipomatous tumours of soft tissues: an update. Virchows Arch. 1995;427(4):353–63.

    PubMed  CAS  Google Scholar 

  529. Hornick JL, Bosenberg MW, Mentzel T, McMenamin ME, Oliveira AM, Fletcher CD. Pleomorphic liposarcoma: clinicopathologic analysis of 57 cases. Am J Surg Pathol. 2004;28(10):1257–67.

    PubMed  Google Scholar 

  530. Hays DM, Donaldson SS, Shimada H, et al. Primary and metastatic rhabdomyosarcoma in the breast: neoplasms of adolescent females, a report from the Intergroup Rhabdomyosarcoma Study. Med Pediatr Oncol. 1997;29(3):181–9.

    PubMed  CAS  Google Scholar 

  531. Gallego Melcon S, Sanchez de Toledo Codina J. Molecular biology of rhabdomyosarcoma. Clin Transl Oncol. 2007;9(7):415–9.

    PubMed  CAS  Google Scholar 

  532. Linardic CM. PAX3-FOXO1 fusion gene in rhabdomyosarcoma. Cancer Lett. 2008;270(1):10–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  533. Eusebi V, Cattani MG, Ceccarelli C, Lamovec J. Sarcomatoid carcinomas of the breast: an immunocytochemical study of 14 cases. In: Progress in surgical pathology: Springer; 1989. p. 83–99.

    Google Scholar 

  534. Gorlick R. Current concepts on the molecular biology of osteosarcoma. Cancer Treat Res. 2009;152:467–78.

    PubMed  Google Scholar 

  535. Falconieri G, Della Libera D, Zanconati F, Bittesini L. Leiomyosarcoma of the female breast: report of two new cases and a review of the literature. Am J Clin Pathol. 1997;108(1):19–25.

    PubMed  CAS  Google Scholar 

  536. Beck AH, Lee CH, Witten DM, et al. Discovery of molecular subtypes in leiomyosarcoma through integrative molecular profiling. Oncogene. 2010;29(6):845–54.

    PubMed  CAS  Google Scholar 

  537. Huvos AG, Hutter RV, Berg JW. Significance of axillary macrometastases and micrometastases in mammary cancer. Ann Surg. 1971;173(1):44–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  538. Amin MB, Greene FL, Edge SB, et al. The Eighth Edition AJCC Cancer Staging Manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J Clin. 2017;67(2):93–9.

    PubMed  Google Scholar 

  539. Gospodarowicz MK, Brierley JD, Wittekind C. TNM classification of malignant tumours: Wiley; 2017.

    Google Scholar 

  540. Turner RR, Weaver DL, Cserni G, et al. Nodal stage classification for breast carcinoma: improving interobserver reproducibility through standardized histologic criteria and image-based training. J Clin Oncol. 2008;26(2):258–63.

    PubMed  Google Scholar 

  541. Krag DN, Anderson SJ, Julian TB, et al. Sentinel-lymph-node resection compared with conventional axillary-lymph-node dissection in clinically node-negative patients with breast cancer: overall survival findings from the NSABP B-32 randomised phase 3 trial. Lancet Oncol. 2010;11(10):927–33.

    PubMed  PubMed Central  Google Scholar 

  542. Fu JF, Chen HL, Yang J, Yi CH, Zheng S. Feasibility and accuracy of sentinel lymph node biopsy in clinically node-positive breast cancer after neoadjuvant chemotherapy: a meta-analysis. PLoS One. 2014;9(9):e105316.

    PubMed  PubMed Central  Google Scholar 

  543. Kim T, Giuliano AE, Lyman GH. Lymphatic mapping and sentinel lymph node biopsy in early-stage breast carcinoma: a metaanalysis. Cancer. 2006;106(1):4–16.

    PubMed  Google Scholar 

  544. Boughey JC, Suman VJ, Mittendorf EA, et al. Sentinel lymph node surgery after neoadjuvant chemotherapy in patients with node-positive breast cancer: the ACOSOG Z1071 (Alliance) clinical trial. JAMA. 2013;310(14):1455–61.

    PubMed  PubMed Central  CAS  Google Scholar 

  545. Kuehn T, Bauerfeind I, Fehm T, et al. Sentinel-lymph-node biopsy in patients with breast cancer before and after neoadjuvant chemotherapy (SENTINA): a prospective, multicentre cohort study. Lancet Oncol. 2013;14(7):609–18.

    PubMed  Google Scholar 

  546. Boileau JF, Poirier B, Basik M, et al. Sentinel node biopsy after neoadjuvant chemotherapy in biopsy-proven node-positive breast cancer: the SN FNAC study. J Clin Oncol. 2015;33(3):258–64.

    PubMed  Google Scholar 

  547. CTSU Alliance A011202 – A Randomized Phase III Trial Evaluating the Role of Axillary Lymph Node Dissection in Breast Cancer Patients (CT1-3 N1) Who Have Positive Sentinel Lymph Node Disease After Neoadjuvant Chemotherapy.

    Google Scholar 

  548. Mamounas EP, Bandos H, White JR, et al. NRG Oncology/NSABP B-51/RTOG 1304: Phase III trial to determine if chest wall and regional nodal radiotherapy (CWRNRT) post mastectomy (Mx) or the addition of RNRT to breast RT post breast-conserving surgery (BCS) will reduce invasive cancer events in patients (pts) with positive axillary (Ax) nodes who are ypN0 after neoadjuvant chemotherapy (NC). J Clin Oncol. 2015;33(15_suppl):TPS11112.

    Google Scholar 

  549. Lester SC, Bose S, Chen YY, et al. Protocol for the examination of specimens from patients with invasive carcinoma of the breast. Arch Pathol Lab Med. 20019, 133:1515–38.

    Google Scholar 

  550. Lyman GH, Temin S, Edge SB, et al. Sentinel lymph node biopsy for patients with early-stage breast cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2014;32(13):1365–83.

    PubMed  Google Scholar 

  551. Giuliano AE, Hunt KK, Ballman KV, et al. Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: a randomized clinical trial. JAMA. 2011;305(6):569–75.

    PubMed  PubMed Central  CAS  Google Scholar 

  552. Galimberti V, Cole BF, Zurrida S, et al. IBCSG 23-01 randomised controlled trial comparing axillary dissection versus no axillary dissection in patients with sentinel node micrometastases. Lancet Oncol. 2013;14(4):297–305. https://doi.org/10.1016/S1470-2045(13)70035-4.

    Article  PubMed  PubMed Central  Google Scholar 

  553. Donker M, van Tienhoven G, Straver ME, et al. Radiotherapy or surgery of the axilla after a positive sentinel node in breast cancer (EORTC 10981-22023 AMAROS): a randomised, multicentre, open-label, phase 3 non-inferiority trial. Lancet Oncol. 2014;15(12):1303–10.

    PubMed  PubMed Central  Google Scholar 

  554. Klepchick PR, Dabbs DJ, Bonaventura M, et al. Selective intraoperative consultation for the evaluation of sentinel lymph nodes in breast cancer. Am J Surg. 2004;188(4):429–32.

    PubMed  Google Scholar 

  555. Weiser MR, Montgomery LL, Susnik B, Tan LK, Borgen PI, Cody HS. Is routine intraoperative frozen-section examination of sentinel lymph nodes in breast cancer worthwhile? Ann Surg Oncol. 2000;7(9):651–5.

    PubMed  CAS  Google Scholar 

  556. Tew K, Irwig L, Matthews A, Crowe P, Macaskill P. Meta-analysis of sentinel node imprint cytology in breast cancer. Br J Surg. 2005;92(9):1068–80.

    PubMed  CAS  Google Scholar 

  557. Cox C, Centeno B, Dickson D, et al. Accuracy of intraoperative imprint cytology for sentinel lymph node evaluation in the treatment of breast carcinoma. Cancer. 2005;105(1):13–20.

    PubMed  Google Scholar 

  558. Creager AJ, Geisinger KR, Shiver SA, et al. Intraoperative evaluation of sentinel lymph nodes for metastatic breast carcinoma by imprint cytology. Mod Pathol. 2002;15(11):1140–7.

    PubMed  Google Scholar 

  559. Chao C, Wong SL, Ackermann D, et al. Utility of intraoperative frozen section analysis of sentinel lymph nodes in breast cancer. Am J Surg. 2001;182(6):609–15.

    PubMed  CAS  Google Scholar 

  560. Khalifa K, Pereira B, Thomas VA, Mokbel K. The accuracy of intraoperative frozen section analysis of the sentinel lymph nodes during breast cancer surgery. Int J Fertil Womens Med. 2004;49(5):208–11.

    PubMed  CAS  Google Scholar 

  561. Krishnamurthy S, Meric-Bernstam F, Lucci A, et al. A prospective study comparing touch imprint cytology, frozen section analysis, and rapid cytokeratin immunostain for intraoperative evaluation of axillary sentinel lymph nodes in breast cancer. Cancer. 2009;115(7):1555–62.

    PubMed  Google Scholar 

  562. Langer I, Guller U, Berclaz G, et al. Accuracy of frozen section of sentinel lymph nodes: a prospective analysis of 659 breast cancer patients of the Swiss multicenter study. Breast Cancer Res Treat. 2009;113(1):129–36.

    PubMed  Google Scholar 

  563. Mori M, Tada K, Ikenaga M, et al. Frozen section is superior to imprint cytology for the intra-operative assessment of sentinel lymph node metastasis in stage I breast cancer patients. World J Surg Oncol. 2006;4:26.

    PubMed  PubMed Central  Google Scholar 

  564. Tanis PJ, Boom RP, Koops HS, et al. Frozen section investigation of the sentinel node in malignant melanoma and breast cancer. Ann Surg Oncol. 2001;8(3):222–6.

    PubMed  CAS  Google Scholar 

  565. Wada N, Imoto S, Hasebe T, Ochiai A, Ebihara S, Moriyama N. Evaluation of intraoperative frozen section diagnosis of sentinel lymph nodes in breast cancer. Jpn J Clin Oncol. 2004;34(3):113–7.

    PubMed  Google Scholar 

  566. Liu LC, Lang JE, Lu Y, et al. Intraoperative frozen section analysis of sentinel lymph nodes in breast cancer patients: a meta-analysis and single-institution experience. Cancer. 2011;117(2):250–8.

    PubMed  Google Scholar 

  567. Tsujimoto M, Nakabayashi K, Yoshidome K, et al. One-step nucleic acid amplification for intraoperative detection of lymph node metastasis in breast cancer patients. Clin Cancer Res. 2007;13(16):4807–16.

    PubMed  CAS  Google Scholar 

  568. Cserni G. Intraoperative analysis of sentinel lymph nodes in breast cancer by one-step nucleic acid amplification. J Clin Pathol. 2012;65(3):193–9.

    PubMed  CAS  Google Scholar 

  569. Tiernan JP, Verghese ET, Nair A, et al. Systematic review and meta-analysis of cytokeratin 19-based one-step nucleic acid amplification versus histopathology for sentinel lymph node assessment in breast cancer. Br J Surg. 2014;101(4):298–306.

    PubMed  CAS  Google Scholar 

  570. Lyman GH, Temin S, Edge SB, et al. Sentinel lymph node biopsy for patients with early-stage breast cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2014;32(13):1365–83.

    PubMed  Google Scholar 

  571. Lester SC, Bose S, Chen Y-Y, et al. Protocol for the examination of specimens from patients with invasive carcinoma of the breast. Arch Pathol Lab Med. 2009;133(10):1515–38.

    PubMed  Google Scholar 

  572. Weaver DL, Ashikaga T, Krag DN, Skelly JM, Anderson SJ, Harlow SP, Julian TB, Manounas EP. Effect of occult metastases on survival in node-negative breast cancer. N Engl J Med. 2011;364(5):412–21. EPUB 2011 Jan 19

    PubMed  PubMed Central  CAS  Google Scholar 

  573. Johnson CB, Korourian S, Badgwell BD, Fincher RL, Dell CM, Don Bice C, Boneti C, Westbrook KC, Klimberg VS. Sensitivity of axillary specimen X-ray to predict nodal count and positivity. Ann Surg Oncol. 2011;18:3181–6.

    PubMed  Google Scholar 

  574. Neuman H, Carey LA, Ollila DW, et al. Axillary lymph node count is lower after neoadjuvant chemotherapy. Am J Surg. 2006;191(6):827–9.

    PubMed  Google Scholar 

  575. Boughey JC, Donohue JH, Jakub JW, Lohse CM, Degnim AC. Number of lymph nodes identified at axillary dissection: effect of neoadjuvant chemotherapy and other factors. Cancer. 2010;116(14):3322–9.

    PubMed  Google Scholar 

  576. Fellegara G, Carcangiu ML, Rosai J. Benign epithelial inclusions in axillary lymph nodes: report of 18 cases and review of the literature. Am J Surg Pathol. 2011;35(8):1123–33.

    PubMed  Google Scholar 

  577. Corben AD, Nehhozina T, Garg K, Vallejo CE, Brogi E. Endosalpingiosis in axillary lymph nodes: a possible pitfall in the staging of patients with breast carcinoma. Am J Surg Pathol. 2010;34(8):1211–6.

    PubMed  Google Scholar 

  578. Diaz NM, Cox CE, Ebert M, Clark JD, Vrcel V, Stowell N, Sharma A, Jakub JW, Cantor A, Centeno BA, Dupont E, Muro-Cacho C, Nicosia S. Benign mechanical transport of breast epithelial cells to sentinel lymph nodes. Am J Surg Pathol. 2004;28:1641–5.

    PubMed  Google Scholar 

  579. Peters-Engl C, Konstantiniuk P, Tausch C, et al. The impact of preoperative breast biopsy on the risk of sentinel lymph node metastases: analysis of 2502 cases from the Austrian Sentinel Node Biopsy Study Group. Br J Cancer. 2004;91(10):1782–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  580. Diaz NM, Mayes JR, Vrcel V. Breast epithelial cells in dermal angiolymphatic spaces: a manifestation of benign mechanical transport. Hum Pathol. 2005;36(3):310–3.

    PubMed  Google Scholar 

  581. Nagi C, Bleiweiss I, Jaffer S. Epithelial displacement in breast lesions: a papillary phenomenon. Arch Pathol Lab Med. 2005;129(11):1465–9.

    PubMed  Google Scholar 

  582. Bleiweiss IJ, Nagi CS, Jaffer S. Axillary sentinel lymph nodes can be falsely positive due to iatrogenic displacement and transport of benign epithelial cells in patients with breast carcinoma. J Clin Oncol. 2006;24(13):2013–8.

    PubMed  Google Scholar 

  583. Wei S, Bleiweiss IJ, Nagi C, Jaffer S. Characteristics of breast carcinoma cases with false-negative sentinel lymph nodes. Clin Breast Cancer. 2014;14(4):280–4.

    PubMed  Google Scholar 

  584. Huo L. A practical approach to grossing breast specimens. Ann Diagn Pathol. 2011;15(4):291–301.

    PubMed  Google Scholar 

  585. Schnitt SJ, Connolly JL. Processing and evaluation of breast excision specimens. A clinically oriented approach. Am J Clin Pathol. 1992;98(1):125–37.

    PubMed  CAS  Google Scholar 

  586. Lester SC. Breast. In: Lester SC, editor. Manual of surgical pathology. 2nd ed. Philadelphia: Elsevier; 2006.

    Google Scholar 

  587. Lester SC, Bose S, Chen YY, et al. Protocol for the examination of specimens from patients with invasive carcinoma of the breast. Arch Pathol Lab Med. 2009;133(10):1515–38.

    PubMed  Google Scholar 

  588. Burch-Smith R, Babiera G, Fearmonti R, et al. Pathologic evaluation of Nipple-Areolar complex sparing mastectomy specimens. Mod Pathol. 2011;24(Suppl 1):30A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savitri Krishnamurthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krishnamurthy, S., Contreras, A., Albarracin, C.T., Gilcrease, M.Z., Huo, L., Wu, Y. (2020). Breast Pathology. In: Moran, C.A., Kalhor, N., Weissferdt, A. (eds) Oncological Surgical Pathology . Springer, Cham. https://doi.org/10.1007/978-3-319-96681-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96681-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96680-9

  • Online ISBN: 978-3-319-96681-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics